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S4 Numerical discretization and resolution of the optimization prob-
lem

S4.1 Meshing the computation domain

The level-set formalism is used to described the stipules surface and boundary. Let ϕ be the level-set
function such that the stipules boundary is the zero level of ϕ defined as

∂Ω :=
{
x ∈ R2; ϕ(x) = 0

}
.

Then the stipules surface is Ω :=
{
x ∈ R2; ϕ(x) < 0

}
, and its complementary Ωc :=

{
x ∈ R2; ϕ(x) > 0

}
.

The function ϕ easily provides the exterior normal of leaf as n⃗ = ∇ϕ
||∇ϕ|| . The computation domain con-

sists in a cartesian grid of the overall area (see Figure A). The partial differential equations are solved
using explicit Euler finite differences in time and second order centered finite differences in space. The
gradient is solved using a descent method [4, 5]. The method is implemented with Petsc using Python
[2].
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Figure A: Schematic representation of the computational domain given by a cartesian grid and the
stipules area Ω =

{
x ∈ R2; ϕ(x) < 0

}
defined by the level-set function ϕ.
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S4.2 Variational image data assimilation

The optimization problem is solved thanks to the minimization of the Lagrangian [1]

L(a,D) =
1

2

t7∑
t=t3

∫
Ω
(u(x, t, θ)− ureg(x, t))

2dx

+

t7∑
t=t3

∫
Ω

(
∂u(x, t, θ)

∂t
−D∆u(x, t, θ) (Eq A)

− au(x, t, θ) (1− u(x, t, θ))
)
λ(x, t, θ)dx.

The adjoint state λ is the solution of the following backward PDE

−∂λ

∂t
= D∆λ(x, t) + a (1− 2u(x, t))λ(x, t) + (u(x, t)− ureg) in Ω (Eq B)

with homogeneous Neummann boundary condition ∂λ
∂n = 0 on ∂Ω, and with the final condition λ(t =

t7) = 0. Finally, the gradient of the cost function is given by
∂L
∂D

=

t7∑
t=t3

∫
Ω
∇u(x, t)∇λ(x, t)dx

∂L
∂a

= −
t7∑

t=t3

∫
Ω
u(x, t) (1− u(x, t))λ(x, t)dx.

(Eq C)

To avoid local minimum, the initial guess is determined by splitting the Fisher-KPP equation into

du

dt
(x, t) = au(x, t) (1− u(x, t)) (Eq D)

∂u

∂t
(x, t) = D∆u(x, t). (Eq E)

From the given set of registerd images ureg, the diffusion coefficient in equation (Eq D) is approximated
with 98% of the population preservation [3, 6], by

D ≃ ⟨r2⟩
16(tb − ta)

, (Eq F)

where ⟨r2⟩ denotes the mean of the square radius of mycelium spread between times tb and ta. On
the other hand, the logistic equation (Eq E) has explicit solution written as

u(tb) =
1

1 +
(

1
u(ta)

− 1
)
exp(−a(tb − ta))

that implies

a = − 1

(tb − ta)
ln

(
1

u(tb)
− 1

1
u(ta)

− 1

)
. (Eq G)

The numerical procedure is summarized in Algorithm 1.
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Algorithm 1 Parameters identification

Given N registered images ureg and a tolerance τ
Compute the stipules area Ω using level-set
Compute initial D0 with (Eq F) and a0 with (Eq G)
while ||∇L(θm)|| ≥ τ do,

Find um(x, t, θm) solution of the forward PDE (1)
Find λm(x, t, θm, um) solution of the backward PDE (Eq B)
Compute the gradient

Dm+1 = Dm − ρm1

(
t7∑

t=t3

∫
Ω
∇um(x, t)∇λm(x, t)dx

)
am+1 = am + ρm2

(∑
t = t3

t7

∫
Ω
u(x, t) (1− u(x, t))λ(x, t)dx

)
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S4.3 Numerical convergence examination

To ensure the convergence of the numerical method, the size of each set of images has been rescaled.
Table A indicates that same order values are found for a. The diffusion coefficient depends on images
size, but the relative diffusions, i.e. the quotient between diffusion coefficient and stipules area are
equal at order 10−3. Convergence results are provided in Table A.

Cultivar

1 Solara

size 512× 514 614× 617 717× 720 819× 822 922× 925
â 0.4788 0.4835 0.4845 0.4852 0.4841

D̂ 0.4597 0.4511 0.4529 0.4534 0.4584

17 James

size 512× 514 614× 617 717× 720 819× 822 922× 925
â 0.4472 0.4492 0.4530 0.4550 0.4543

D̂ 0.2367 0.2367 0.2368 0.2366 0.2368

Table A: Estimated diffusion D̂, rate growth â for two different sets of images with five variable image
sizes. The method provides same order parameters with respect to the size images.
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