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Abstract

We combine the analysis of experiments based on in situ X-ray imaging
and phase-field simulations to get insight into the interplay between faceting
and confinement effects in thin silicon samples during directional solidifica-
tion from a monocrystalline seed. The phase-field model is parametrized
by available experimental results, especially regarding the anisotropy func-
tions for the surface energy and for the kinetic attachment coefficient. In
the present work, a method is proposed to extrapolate 2D fully quantitative
simulations results to 3D thin sample geometry. Two simple seed orienta-
tions along the 〈110〉 and 〈100〉 crystal directions are considered. For 〈110〉
direction, it is shown that confinement effects are weak so 2D simulations can
be readily compared to the experiments. For 〈100〉 direction, much stronger
confinement effects are identified and characterized by a confinement fac-
tor that is estimated from phase-field simulations of thin 3D systems. For
both directions, the length of the side facets is shown to increase with the
solidification velocity and an analytical expression including the confinment
factor is obtained for the law relating both quantities. A very quantitative
experiment-simulation agreement is obtained in each case.
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1. Introduction

Directional solidification is one leading process to fabricate silicon for the
ever increasing needs of solar energy conversion [1]. To obtain materials
with properties meeting the requirements for solar cell fabrication, several
types of features and defects appearing during the solidification step must
be controlled. During the solidification of silicon, crystal faceting and the
associated twin formation are frequent and are reported in industrial ingots
where the latter is the main mechanism of the grain structure formation. The
corresponding facet dynamics, twin generation mechanisms and the interac-
tion of both with other structural defects are of current interest [2–6]. Other
main structural defects are dislocations that can be at the origin of subgrains
known to be deleterious for photovoltaic properties and which interact with
facets, twins and other defects in general [4, 7]. During the directional solid-
ification of pure silicon, for positive temperature gradients generally used in
the processes, the solid-liquid interface remains stable without microstruc-
tures [6, 8]. Besides, due to triple junction conditions, the interface usually
becomes faceted near the crucible walls [6]. In stationary growth conditions,
the facet lengths are observed to sensitively depend on misalignment effects
that are almost unavoidable in the experimental situation. During the solid-
ification of thin model samples, it can be anticipated that the combination of
the temperature gradient misalignment angle θm with the confinement due
to a very limited sample thickness (Ly = 300 µm here), results in a complex
law relating the facet length to its normal growth velocity.

The ultimate goal of this paper is to shed some light on this matter by
drawing a comparison between experimental investigations and phase field
simulations. Experimental investigations are based on directional solidifi-
cation experiments of thin model samples in which the interface dynamics
and generation of structural defects is characterized by in situ X-ray imaging
during solidification [9].

The thin interface phase-field model (TIPM) was introduced more than
two decades ago by Alain Karma and his collaborators, first for the free
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solidification of a pure substance [10, 11] and later for the directional solid-
ification of a dilute binary alloy [12, 13]. Since then, this model has proved
successful, notably in providing quantitative support to theoretical results
[14]. In our previous work, a comparison of TIPM simulations with experi-
mental results for silicon free growth [15] and for directional solidification [6]
recently allowed to quantitatively parametrize anisotropy functions for both
the surface energy and the kinetic attachment coefficient [16, 17]. In the
case of silicon directional solidification, the quantitativeness of our numerical
code was recently assessed by comparing two-dimensional (2D) simulations
with an analytical model [17]. In the present study, the 3D version of the
phase-field code is implemented to conform to the thin layer geometry of the
experimental setup.

After a short description of the experimental context, our numerical
model is briefly described. The main part of this paper concerns the com-
parison of the results obtained by both approaches and presents the informa-
tions provided by this combined investigation. As a first investigation step,
we consider a simple situation without misalignment (θm = 0) to determine
the confinement effects due to the limited sample thickness. Based on the
obtained results, the second step is to determine an accurate estimate for
the kinetic coefficient β111, assuming a linear kinetic growth law for {111}
facets. Experimental and phase-field curves relating the side facet length to
the facet velocity are then compared. Finally, we establish a simple scaling
relation that predicts the influence of θm on the lengths of both side facets. A
quantitative comparison is drawn between the results of experiment and sim-
ulation. Finally, conclusions are presented with a brief discussion of possible
perspectives.

2. Experimental

The experiments are performed in the GaTSBI (Growth at high Temper-
ature observed by Synchrotron Beam Imaging) device. It allows to study the
directional solidification of silicon (Si) characterized in situ and in real-time
during the solidification process. It is composed of a high temperature (up
to 1800 ◦C) directional solidification (DS) furnace coupled with synchrotron
radiation X-ray imaging techniques (Bragg diffraction imaging and radiog-
raphy). A more detailed description of the device and of the X-ray imaging
methods can be found in Ouaddah et al. [9]. The Si samples (38 mm × 5.8
mm × 0.3 mm), housed in a boron nitride crucible, are introduced inside the

3



DS furnace. The crucible assembly can be seen for example in Figure 1b in
[5]. The results shown in the following were obtained during the solidification
of two silicon samples. They were cut from the same Si (110) wafer (float-
ing zone process by SILITRONIX) in order to study two orientations along
the growth direction: 〈110〉 and 〈100〉. Initially, the samples were partially
melted to keep a seed. Then, they were directionally solidified from the seed
at a constant applied temperature gradient, Gappl. = 37.5 K/cm, imposed be-
tween the two heaters of the solidification furnace and with a cooling rate of
-1 K/min applied on both heaters. In the following, the samples are labelled
DS〈011〉 (green color code in the figures) and DS〈001〉 (red color code in the
figures) for seed orientation along the solidification direction 〈110〉 and 〈100〉,
respectively. The crystal axes corresponding to the two seed orientations are
represented in figure 1 and superimposed on the octahedral crystal unit (see
column (a)).

The facet dynamics of these experiments was studied in particular in
Stamelou et al [6]. In our experiments, both main faces of the silicon samples
are in contact with the boron nitride crucible plates [5, 18]. As a consequence,
the solid-liquid interface is as well in contact with these plates, as shown
schematically in figure 2a right. A sketch of the front view of the solid-liquid
interface can be seen in figure 2a left. It can be directly compared to the
X-ray radiography image of the solid-liquid interface (figure 2b). Facets at
the side edges of the samples are always experimentally observed at the solid-
liquid interface, as shown in figure 2b. We showed that they correspond to
{111} facets [6, 9].

These {111} facets are particularly important for the establishment of the
grain structure. Indeed, we showed that the grain structure in pure samples is
fully driven by twinning on the {111} side facets at the solid-liquid interface
[6, 8, 9]. As such, the {111} facet dynamics was studied and their velocity as a
function of the undercooling measured; details can be found in [6]. The right
side of figure 2a displays a sketch of the solid-liquid interface viewed from the
side. It corresponds to the situation of sample DS〈001〉. Due to the projection
mode of X-ray radiography, we have no information on the precise shape of
the solid-liquid within the sample thickness by X-ray radiographs. However,
it was shown repeatedly using X-ray topographs and EBSD measurements
that the {111} facets cross the whole thickness of the samples from the front
to the back boron nitride crucible plates [5, 8, 9]. The orientation of the {111}
traversing facets is determined by the possible {111} plane family orientations
corresponding to the seed crystallographic orientation [5, 8, 9, 19]. However,
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the precise shape of the solid-liquid interface within the thickness can only be
obtained by the phase field simulation and will be discussed in the following.

3. Numerical model

3.1. Phase-field model

We adopt the TIPF model defined in [11], in which the phase field ϕ
varies continuously across the interface, between ϕ = 1 far on the solid side
(r � 0) and ϕ = −1 far on the liquid side (r � 0), r being the coordinate
along the normal to the interface which is located at r = 0. This variation is
only appreciable over a distance of the order of the interface width W0 which
is the governing model parameter. For a flat interface, one shows that in the
stationary state,

ϕ = − tanh
( r

W0

√
2

)
. (1)

Our implementation of the TIPM makes use of the reciprocal function

ψ =
√

2 tanh−1(ϕ) (2)

that is equal to −r/W0 for a planar interface. This preconditioned phase field
ψ was introduced by Glasner [20] to reduce the simulation times. For the
present simulations, we further increase the code efficiency by using Graphics
Processing Unit (GPU) parallel programming [21]. Similar implementations
of the TIPM were recently used in a number of situations where the simula-
tions could be directly compared to experimental data [16, 22–25].

We only give the main lines of our TIPM model here; more details can
be found elsewhere [17]. In order to take into account the dependence of
the surface energy on the crystal orientation, the anisotropy function as(~n)
must be defined, where ~n is the unit vector normal to the solid-liquid inter-
face. Similarly, the kinetic attachment coefficient is characterize by its own
anisotropy function ak(~n). Both functions are characteristic of the material
under study. In the case of pure silicon, based on symmetry considerations
and on experimental results, we recently proposed an analytical form for
both functions [16, 17]. In the phase-field model, the singularities of these
anisotropy functions have to be smoothed out to avoid numerical divergences.
For the surface energy,

as(~n) = 1 + δ
√

cos2 α + ε2 + δ0

√
sin2 α + ε2, (3)
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where α is the conical angle between the normal to the interface ~n and the
unit vector ~n111 normal to a {111} facet, and where ε is a parameter much
smaller than one that is used to avoid a sharp cusp at α = 0 [26]. For the
reasonable choice ε = 10−2, the amplitudes δ ' 2.5 and δ0 ' 1.75 were
obtained by fitting phase-field equilibrium shapes [17] to their experimental
counterparts [15]. For the kinetic attachment,

ak(~n) = b0 exp
[
−
( θ

∆θ

)2

−
( φ

∆φ

)2]
, (4)

where θ and φ are two spherical angles separating ~n from ~n111 and where ∆θ
and ∆φ are their dispersions [16]. The Gaussian amplitude b0 is proportional
to the physical kinetic coefficient β111 and inversely proportional to the phase-
field coefficient β0 defined below. Moreover, it must also be adjusted to the
criterion that defines the facet extension to ensure quantitative results [17].
Taking the interface width W0 and the relaxation time τ0 as the length and
time units, the ψ evolution equation reads

aτ (~n)
∂ψ

∂t
=
√

2
[
ϕ− a1ξ(1− ϕ2)u

]
+a2

s

[
∇2ψ −

√
2ϕ(~∇ψ)2

]
+2as~∇as · ~∇ψ

+

√
2

(1− ϕ2)
~∇ · ~A, (5)

where
u = cp(T − Tm)/lH (6)

is the dimensionless temperature field, with cp the specific heat at constant
pressure, lH the latent heat, Tm the melting temperature, and a1 ' 0.8839 a
model constant [11]. In situ observation of the solid-liquid interface dynamics
show that, in the low growth velocity regime considered here, a constant
temperature gradient settles rapidly in the interface region [6]. In addition,
the latent heat released at the solid-liquid interface is rapidly dissipated by
the experimental setup [27]. Relying on these observations, we thus chose to
impose a frozen linear temperature profile in the simulations,

u(z) = cpG(z − zm)/lH, (7)
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using the measured value of the local temperature gradient G. In equation
(5), the anisotropy vector ~A concentrates all the terms depending on the
surface energy anisotropy as(~n). Details about this formulation can be found
elsewhere [17, 25, 28]. As a function of the scale parameter ξ, the character-
istic length and time read W0 = ξd0, and τ0 = a0(d2

0/D)ξ3, D being the Si
thermal diffusivity, d0 the capillary length, and a0 ' 0.5539 [11]. The kinetic
attachment then reads β(~n) = β0ak(~n) with β0 = a0W0/D. Following [16]
and [29], the anisotropy function aτ is taken as

aτ (~n) = as(~n)[as(~n) + ak(~n)]. (8)

The expression of anisotropy function as is given in the frame of the three
main cubic crystal axes, [001], [010], and [001]. In the simulations, the three
components of the unit vector ~n normal to the solid-liquid interface are cal-
culated in the (x, y, z) frame of the numerical domain that is also the frame
of the crystal cubic directions that define the seed orientation, as shown in
figure 1. Three Euler angles are then used to obtain n100, n010, n001 from
nx, ny, nz by inverse rotations.

3.2. Numerical parameters and conditions

Obtaining physically meaningful simulation results necessitates to care-
fully specify several numerical parameters and conditions. The first parame-
ter is the interface width W0. A detailed convergence test of our phase-field
code with this parameter showed that quantitative results can be obtained
by decreasing it down to W0 ' 1 µm [17]. For such low W0 values, the
domain size is already very large for 2D simulations (up to 2400× 2× 2400
mesh points), so 3D fully quantitative simulations are out of reach. In order
to compare our 2D results with experimental ones obtained in thin samples,
we adopt the following strategy. First, semi-quantitative 3D simulations for
higher values of W0 are performed to determine the confinement effects in the
experimental thin samples. Second, these confinement effects are taken into
account to adjust the 2D simulation results to the case of thin 3D systems.

For the quantitative simulations in 2D systems, the domain size is reduced
to two mesh points and mirror boundary conditions are imposed in the y
(thickness) direction. For thin 3D systems, the number of mesh points along
y is increased to reproduce the experimental sample thickness (Ly = 300 µm)
and different wetting and/or mirror boundary conditions are imposed. Con-
cerning the contacts of the solid-liquid interface with the domain boundaries,
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it is modeled on the left domain side by imposing(∂ψ
∂x

)
`

= σ0(1− ϕ2), (9)

where σ0 is a positive constant. This wetting boundary condition was al-
ready used in [22]. Here, we verify that, as observed experimentally [8], it
does produce an almost straight facet on the side of the interface with the
crystallographic angle θf that is expected for the seed crystal orientation
(see Table 1). The condition on the right domain boundary is either a mir-
ror when we simulate only a half of the system, or the wetting condition
(∂ψ/∂x)r = −σ0(1− ϕ2) when the whole system is simulated. The imposed
initial condition is a flat interface located at the altitude z = zm of the T = Tm

isotherm. Accordingly, the phase field is initially set to ψ(z) = (zm− z)/W0.
The two major difficulties in the process of rendering the phase-field sim-

ulations fully quantitative are:

(i) to achieve an accurate parametrization of the anisotropy functions as
and ak that relies on experimental data,

(ii) to ensure a satisfactory convergence of the numerical results with de-
creasing interface width, W0 → 0.

Point (i) has been discussed in the previous subsection for the parameters
δ and δ0 entering as. The method used to deal with the parameter β111

of ak, will be discussed in the next section. For point (ii), a systematic
convergence method was recently introduced for the present model. The
method consists in building a scaling curve that is valid for a wide range of
growth velocities and for a wide range of W0 values. This master curve is
then used to extrapolate the side facet length Λ to the W0 → 0 limit [17].

3.3. Physical parameters

Simulations are performed with the physical parameters gathered in ta-
ble 1. A constant temperature gradient G is considered here: it represents
a reasonable average value of the local interfacial gradients estimated exper-
imentally. The variable geometrical parameter is the space dimension (2D
or confined 3D) and the variable control parameters are the vertical growth
velocity V and the misalignment angle θm.
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Physical parameter Symbol Value

melting temperature Tm 1687 K (ref. [30])
capillary length d0 1.94× 10−4 µm (ref. [30])

thermal diffusivity D 2.3× 107 µm2/s (ref. [31])
specific heat at constant pressure cp 1.032 J/g/K (ref. [32])

specific latent heat lH 1650 J/g (ref. [33]
local temperature gradient G 1.08× 10−3 K/µm (ref. [6])

interface velocity V (2.0− 22.0) µm/s
kinetic coefficient β111 24.7× 10−6 s/µm (sec. 4.1.2)

facet angle between 〈100〉 and {111} θf 35.26◦

facet angle between 〈110〉 and {111} θf 54.74◦

Table 1: Physical silicon parameters used in the phase-field simulations.

4. Results of the comparison between experiment and simulation

We first investigate the confinement effects due to the limited sample
thickness.

4.1. Dimensionality and confinement effects

Most of our simulations are performed in 2D systems while experiments
use thin samples (300 µm in thickness). As the average experimental facet
length is ' 600 µm, significant confinement effects are expected. They neces-
sarily influence the solid-liquid interface shape as a whole. As a consequence,
extracting an accurate value of the kinetic coefficient from local measure-
ments on a side facet relies on a good knowledge of the confinement effects
that affect the facet shape.

4.1.1. Shape of the solidification front

A few simulations of thin layers are first performed. In order to keep
reasonable simulation times, the interface width W0 must be increased. As
discussed in [17] the results of these 3D simulations are not fully quantitative
in this case. The boundary conditions imposed along the y direction at
the front and the back domain boundaries differ. The reason is that in
experiments, one crucible wall is a flat and atomically smooth piece of boron
nitride (BN), while the other wall is carved into a similar piece of material
by a mechanical tool that introduces surface roughness. It is well known
that the roughness of the BN surface is an important factor affecting its
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wetting by silicon [34]. We thus expect different contact angles on front and
back walls. To incorporate these features into the simulations, we impose a
wetting condition like (9) at the front boundary (smooth wall) and a mirror
boundary condition at the back one (rough wall).

Let us first consider the side facets that appear on both x edges of the
experimental samples. The interface equation that is applicable to a facetted
2D solid-liquid interface is the Ben Amar-Pomeau (BAP) equation [35]. Gen-
eralizing this equation to 3D is not straightforward but one can argue that,
provided the kinetic term is much larger than the capillary one, it should
approximately read

ū ' −β111Vf , (10)

where ū represents the dimensionless temperature u averaged over the whole
facet area and Vf = V sin θf is the normal facet velocity. In the frozen linear
temperature field imposed in the simulations,

ū = −cp

lH
G(H + fūΛ cos θf). (11)

Here H is the distance from the T = Tm isotherm to the facet highest point,
fū a shape factor relating the location of the facet center of mass to its height,
Λ the facet length observed from some remote point along the y direction, and
θf the crystallographic facet angle (see figure 2c). It was shown previously by
a 2D analytical model that H can be neglected in first approximation [17].
As a result, the side facet length

Λ '
(β111lH

cp

) Vf

fūG cos θf

(12)

increases linearly with the facet normal velocity Vf , with a proportionality
factor that depends on the facet geometry through its center of mass relative
height fū.

For the DS〈011〉 seed orientation, the phase-field simulations show that
the solid-liquid interface is rough, except on both sides of the sample where
wetting conditions are used to obtain two {111} facets as observed in the
experiments [6, 8]. Large rectangular-shaped facets are formed (top row in
figure 1), due to the crystallographic octahedral structure of silicon where the
y direction is the common edge of two {111} planes. This suggests that for the
DS〈011〉 orientation, 2D domains should be rather representative of 3D ones,
thus that simulations results do not depend much on the domain thickness,
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as illustrated in figure 1. For the DS〈001〉 orientation, side facets still exist
but the interface is also largely faceted in the sample thickness because the
apex of the octahedron is now common to four {111} facets (see bottom
row in figure 1). In thin samples two triangular-shaped side facets pointing
upward are formed along x and one rectangular-shaped facet (thickness facet)
crosses the domain in the y direction. For both orientations, the side facets
are perpendicular to the direction of observation (y axis). For this reason,
the facet height Hf = Λ cos θf , where Λ is the apparent facet length observed
through the sample. Then the facet center of mass approximatively lies at an
altitudeHf/2 below the apex of the rectangular facet and at an altitude 2Hf/3
for a triangular facet pointing upward. This gives the values fū(011) ' 1/2
and fū(001) ' 2/3 for the shape factor introduced in equation (11).

In the case of the DS〈001〉 seed orientation, due to the presence of a
thickness facet, confinement effects are expected to increase with the growth
velocity. At low velocities, the side facet shape is somewhat intermediate
between a triangle and a rectangle while it becomes fully triangular-shaped
at high velocities. The facet shape factor fū(001) increases accordingly from
' 1/2 to ' 2/3. A confinement criterion is obtained by comparing the max-
imum length of the thickness facet, Λc = Ly/ sin θf with the unconfined facet
length Λ(Vf) deduced from equation (12) with fū = 1/2. Strong confinement
approximately corresponds to Λ > Λc, that is to Vf > Vc, with

Vc =
( Gcp

β111lH

)Ly
2

cot θf . (13)

Using the physical parameters listed in table 1, one obtains Vc ' 5.80 µm/s.
Strong confinement is thus predicted in the experiments because Vf is always
larger than 7 µm/s. In the 3D phase-field simulations, we observe at high
growth velocities that strong confinement may induce the alternance of two
quasi-stationary states. The more stable one corresponds to side facets that
are shorter than the thickness facet, as shown in the bottom row of figure
1c. The reason why this shape is more stable is that the BAP equation (12)
is now simultaneously verified by the side and the thickness facets because
Λ and fū adjust to give the same average undercooling −ū = β111Vf on
both facets. Alternatively, in the case of the DS〈011〉 seed orientation, our
3D phase-field simulations show that fū(011) ' 1/2 independently of Vf .
Confinement effects are thus negligible for this orientation (top row in figure
1) so that 2D simulations are sufficient to describe the experimental system.
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Our next step is to determine an accurate estimate for the kinetic coeffi-
cient β111 of the {111} facets, assuming a linear kinetic law.

4.1.2. Kinetic coefficient for a linear law

The standard version of TIPM is designed to quantitatively incorporate
linear kinetic effects [10, 11], as confirmed by recent phase-field studies of
silicon solidification based on this model [16, 17, 36]. On the other hand,
attempts made to incorporate nonlinear kinetics showed that it is much more
difficult to ensure quantitativeness in this case [37]. An estimate of the kinetic
coefficient β111 was previously obtained by plotting experimental values of the
side facet normal velocity Vf as a function of the groove undercooling ∆Tg =
Gdg, where dg is the total groove depth, and by fitting them to a second order
kinetic law [6]. In the present context, we fit them to a linear law in oder
to allow for direct comparison with the linear kinetics imposed in our phase-
field simulations. The experimental data points and the corresponding linear
adjustment curves obtained for the DS〈001〉 and DS〈011〉 crystal orientations
are shown in figure 3a. When the appropriate shape factor fū is applied for
each experimental batch of data, the two straight lines convincingly merge
(figure 3b). Indeed, this is the expected result because all the facets on which
measurements are performed are portions of {111} planes, independently
of the sample crystal orientation. This implies that the quantitative 2D
results for the lateral facet length Λ presented in the next subsection have
to be corrected by a confinement factor fΛ = (1/2)/fū prior to compare
them with the experimental 3D ones because fū = 1/2 for a 2D facet. As
discussed recently [17], 2D simulations performed for the DS〈011〉 orientation
conform more closely to the experimental thin layer geometry because there
is a natural crystallographic invariance along the thickness y direction in this
case. Based on this remark, we retain the slope of the experimental data
points for the DS〈011〉 sample in order to evaluate β111 more accurately. A
linear fit of these points gives

β111 = 24.7± 4.3× 10−6 s/µm. (14)

As discussed in a recent review [38], several kinetic laws (not all linear) relat-
ing the {111} facet undercooling to its growth velocity have been proposed in
the literature. To our knowledge, linear kinetic laws have been observed only
for global solid-liquid interfaces of multicrystalline silicon [39–41]. The cor-
responding β estimates are 78.2, 86.4, and 104.2 (×10−6s/µm), respectively.
These values are of the same order of magnitude as our present estimate (14)
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but they are still significantly larger. This is probably due to the much higher
undercoolings, up to 7 K, reached in the case of multicrystalline solid-liquid
interfaces.

We now compare experimental and phase-field data for the variations of
the side facet length as a function of the facet velocity.

4.2. Facet lengths

The side facet lengths Λ obtained in our 2D phase-field simulations are
corrected for 3D thickness effects and compared to our experimental results in
thin samples. As just discussed, according to the facet shape obtained in the
simulations of thin 3D samples, the Λ values obtained in 2D simulations have
to be multiplied by a confinement factor of either fΛ(011) = (1/2)/(1/2) = 1
or fΛ(001) = (1/2)/(2/3) = 3/4. The corresponding results are displayed
in figure 4. For both growth directions, we obtain a good overall agreement
between the experimental data and the 2D phase-field data corrected by the
confinement factor fΛ (figures 4a and 4c).

We finally extend our experiment-simulation comparison to the case of
a misalignment between the gradient direction and the crystal orientation
imposed along the z axis.

4.3. Misalignment effect

In the experiments, the isotherms are slightly tilted as compared to per-
fectly horizontal isotherms. This is mainly due to the thermal configuration
of the furnace as discussed in [6, 8]. As a result, while the isotherms remain
basically planar, they are often rotated around the y axis by a misalignment
angle θm of a few degrees (figure 2b). When the temperature gradient is
perfectly aligned with the crystal growth axis (θm = 0), the groove depth dg

associated to a facet of length Λ0 is obtained from equation (12),

dg = Λ0 cos θf '
(β111lH

cp

) Vf

fūG
. (15)

For θm 6= 0, as illustrated in figure 5, the depth of the left facet groove
measured along the gradient direction is dleft = Λleft cos(θf+θm), while dright =
Λright cos(θf−θm) for the right facet groove, the facet angle θf being the same
on both sides. According to equation (15), the groove depth measured along
the gradient direction is a constant for a given value of Vf , and one can thus
conclude that

dg = dleft = dright, (16)
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so
Λ0 cos θf = Λleft cos(θf + θm) = Λright cos(θf − θm). (17)

To study in more details the misalignment effect, we sorted out the experi-
mental Λ(Vf) data in two groups corresponding to left and right facets. In
parallel, we performed 2D phase-field simulations with a nonzero misalign-
ment angle θm to numerically determine Λleft and Λright and draw a compari-
son between both approaches. The corresponding data are gathered in figure
6. For both seed orientations, the curves display a very good agreement be-
tween phase-field and experiment. Comparing with figures 4b and c, one see
that the experiment-simulation agreement is definitely improved by taking
misalignment into account.

To go further, one can remark that equations (16) and (17) impose a
simple relation between the groove depths obtained at different misalign-
ments θm, since they are all related to dg, the groove depth for θm = 0. In
the following, dg(Vf) is estimated from our phase-field simulations performed
without misalignment, and compared to dleft(Vf) and to dright(Vf) both for
the phase-field and the experimental data obtained with a nonzero misalign-
ment. According to Eq. (16), plotting dleft(Vf) and dright(Vf) versus dg(Vf)
should cause the data points to collapse onto the identity line. This should
be equally true for the growth directions [011] and [001] and for different
values of the misalignment angle θm. Figure 7 fully confirms this prediction,
showing that the misalignment effect is geometrically based.

5. Conclusions

To accurately characterize and model the physical behavior of directionally-
solidified thin silicon samples, it is appropriate to restrict their study to
well-defined simple situations, namely here well defined seed orientation and
monocrystal growth. In the present work, these conditions have been imposed
both in experiments and in numerical simulations with the concern to allow a
fine and relevant comparison of their results over a large range of growth ve-
locities. This has lead us to systematically parametrize the phase-field model
by available experimental data, with a particular attention devoted to the
anisotropy functions of both the surface energy and the kinetic attachment
coefficient. The results of 2D simulations have shown that useful information
could be obtained from a planar description but that quantitative compar-
ison with experiments also require 3D simulations to assess the influence of
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the sample thickness. Identifying and quantifying the resulting confinement
effect have demonstrated that they turn from very weak to high when the
seed orientation is changed from DS〈011〉 to DS〈001〉. In the first case, 2D
simulation results have proven representative of the thin experimental layers.
In the latter case, the predicted increase of the facet length with the growth
velocity opposed to the limited sample thickness has shown to provoke a
strong faceting-confinement interplay, and the corresponding correction fac-
tor between 2D and thin layer geometries has been quantitatively estimated.
The analytical law relating the facet length to the normal facet growth veloc-
ity in 3D confined and unconfined systems has been extended to include this
correction factor. The origin of the small misalignment effect observed exper-
imentally has been identified as geometrical and the experiment-simulation
agreement has improved by taking misalignment into account.

Altogether, the present results bring valuable pieces of information and
strong support to experimental studies of silicon solidification through in
situ X-ray imaging. Moreover they also validate the proposed 3D phase-field
model that uses anisotropy functions based on experimental studies. The
remarkable experiment-simulation agreement obtained in the present study
opens new perspectives to perform quantitative simulations of experimental
silicon solidification in systems governed by more complex physical condi-
tions.
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Figure 1: Cubic crystal axes defining the two seed orientations discussed in the text,
DS〈011〉 (top row) and DS〈001〉 (bottom row). These crystal axes are labeled x, y, z in
the paper. (a) Unit octahedron of the diamond crystal structure, (b) phase-field 3D growth
shape in a domain with a square base, (c) phase-field 3D growth shape in a thin domain
(Ly = 300 µm). The facet growth velocities imposed in the simulations are Vf = 4.89
µm/s (top row) and Vf = 10.39 µm/s (bottom row).
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Figure 2: (a) Sketch of a solid-liquid interface showing a traversing facet: front view
perpendicular to the y axis (as in the experimental radiograph) and side view perpendicular
to the x axis. (b) Experimental in situ radiograph: the sample width is about 6 mm.
Dashed lines parallel to the side facets are added to guide the eye. (c) Notations used in
the text to describe a side facet.
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Figure 3: (a) Experimental estimates of the {111} side facet growth velocity Vf along the
facet normal as a function of the total groove undercooling ∆Tg = Gdg, dg being the
total groove depth. (b) Same data with a confinement correction factor fū applied to the
undercooling: fū = 1/2 for the DS〈011〉 crystal orientation and fū = 2/3 for DS〈001〉.
The symbol size is of the order of the experimental error.
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Figure 4: Variations of the {111} side facet length Λ with the facet normal velocity
Vf compared between experiments (crosses) and 2D phase-field simulations (full circles):
(a) DS〈011〉 crystal orientation, (b) DS〈001〉 crystal orientation, (c) same as (b) with a
correction factor fΛ(001) = 3/4 applied to the Λ values obtained in the simulations.
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Figure 5: Schematic representation of the misalignment between the local temperature
gradient ~G and the vertical crystal direction (dashed vertical lines). The angle between

the {111} side facet and the vertical z axis is denoted by θf and the angle between ~G and
z axis by θm.
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Figure 6: Variations of the {111} side facet length Λ with the facet normal velocity Vf

compared between experiments (squares) and phase-field simulations (lines plus circles).
Right and left facet data are respectively represented by open and closed symbols. For
both growth directions, the results are obtained for a misalignment angle θm = 5◦.
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Figure 7: Universal curve showing the collapse of the experimental (squares) and phase-
field (other symbols) values of the groove depth d measured along the gradient direction.
Values of dleft(Vf) and dright(Vf) obtained for nonzero misalignment are represented as
functions of the phase-field groove depth dg(Vf) obtained with perfect alignment. Empty
(full) symbols are used for the right (left) {111} facets. Misalignment values are θm = 3◦

(asterisks), θm = 7◦ (plusses), and θm = 5◦ (other symbols). The straight line is the
identity line.
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