
HAL Id: hal-04312271
https://hal.science/hal-04312271

Submitted on 28 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Timed Non-interference Under Partial Observability
and Bounded Memory

Anthony Spriet, Didier Lime, Olivier H. Roux

To cite this version:
Anthony Spriet, Didier Lime, Olivier H. Roux. Timed Non-interference Under Partial Observability
and Bounded Memory. 21st International Conference on Formal Modeling and Analysis of Timed
Systems (FORMATS 2023), Sep 2023, Antwerp, Belgium. pp.122-137, �10.1007/978-3-031-42626-1_8�.
�hal-04312271�

https://hal.science/hal-04312271
https://hal.archives-ouvertes.fr

Timed non-interference under Partial
Observability and Bounded Memory⋆

Anthony Spriet, Didier Lime, Olivier H. Roux

Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes

Abstract. We investigate a timed non-interference property for security
systems modeled as timed automata, in which a low-security level user
should not be able to deduce the occurrence of some high-security level
actions. We assume an attack model in which the malicious (low-level)
user has the ability to partially observe and memorize the set of runs of
the timed automaton modeling the system.
We first formalize a non-interference property that ensures the system
security under such an attack model and we then prove the undecidability
of that property when the attacker can have an arbitrarily big memory,
i. e., when they are able to memorize sequences of previous observations,
with time-stamps, of any length. We next assume bounded memory for
the attacker and show that the property can then be decided in PSPACE
for a subclass of timed automata ensuring finite duration between distinct
observations.

Keywords: Non-interference, Timed Automata, Partial observability.

1 Introduction

Information leakage is a type of software vulnerability in which information
is unintentionally accessible to unauthorized party, potentially aiding malicious
attackers or leading to malfunction of systems. Various information flow properties
have been defined in the literature such as anonymity, non-interference, secrecy,
privacy, opacity, non-deducibility. These properties intersect with each other
and formal comparisons have been made as in [BKMR08] between opacity,
anonymity, (trace-based) non-interference and non-deducibility. We focus here
on non-interference properties that could thus be written as opacity.

A system is said to be non-interferent [GM84] if the information available
on the interface of the system is not sufficient to infer some classified internal
information. That is to say, the information available in the low-level channel
(not classified, observable by most users) does not contain any clues about the
information only available on the high-level channel (classified information, only
accessible to some or no users). Another way to put it is that a sequence of low-
level inputs will always produce the same low-level outputs, regardless of what
happens on high-level inputs. It has been shown that additional information that
⋆ This work has been partially funded by ANR project ProMiS ANR-19-CE25-0015.

2 Anthony Spriet, Didier Lime, Olivier H. Roux

is not directly provided by the system can be used to make inferences on what
happens on the high-level channel. In particular, a system may be non-interferent
when considering sequences of low-level inputs and outputs but interferent when
the dates of each observation of the different inputs and outputs are measured
and memorized by a malicious observer [Koc96,FS00,BB07,KPJJ13].
In [BT03], Barbuti et al proposed two notions of timed non-interference in
systems modeled by timed automata. One is a trace-based notion in which the
attacker can observe the consecutive actions performed by the system and tries to
guess if a hidden action has occurred. The trace-based approach has since been
refined by taking simulation properties into account or by providing control
synthesis algorithms [GMR07,BCLR15,GSB18]. The other approach is state-
based: the attacker can observe the state of the system directly but does not see
any action. If the observed state is not reachable using only low-level actions, the
attacker is able to infer the use of a high-level action. The state-based approach
has also been refined since by being extended to parametric timed automata
[AK20]. Other notions of non-interference have also been proposed, a common
framework involves ensuring that no information is leaked through the execution
time of a timed automaton with final locations [ALMS22,WZ18,AETYM21].

Contributions We introduce a new state-based non interference property (POS-
NNI) and discuss its relevance when it comes to modeling realistic attackers. We
prove that the POS-NNI verification problem is undecidable when the attacker
memory is infinite. We provide a subclass of timed automata for which this
property is decidable for attackers with finite memory of any length and we
prove that its verification is PSPACE-complete.

In section 2, we recall definitions used to formalize the timed non-interference
property and present some basic constructions over timed automata used to
model the systems and the information flow. In section 3, we introduce the
POS-NNI property and we prove its undecidability when the attacker memory
is infinite. Lastly, in section 4, we provide a subclass of timed automata for
attackers with finite memory of any length for which the POS-NNI verification
problem is PSPACE-complete.

2 Definitions

2.1 Timed automata

Timed automata [AD94] are one of the many formalism to model real-time
systems, they consist in adding real-valued clocks to finite automata in order
to capture timed behaviors accurately. We consider here security automata, in
which the set of actions is partitioned into two subsets, modeling two users with
different access privileges to information or commands.

Definition 1 (Clocks and valuations). A clocks is a real-valued variable that
evolves at rate 1 w.r.t. time. We define a set X = {x1, x2, ..., xH} of clocks.

Timed non-interference under Partial Observability and Bounded Memory 3

A clock valuation is a function ν : X → R≥0. We denote by RX
≥0 the set of

valuations.
Given d ∈ R≥0, ν+d denotes the valuation s. t. (ν+d)(x) = ν(x)+d. Given

R ⊆ X, we define the reset of a valuation ν, denoted by [ν]R s. t. [ν]R(x) = 0 if
x ∈ R, and [ν]R(x) = ν(x) otherwise.

Definition 2 (Clock Constraint). A clock constraint g is a constraint over
X defined by a conjunction of inequalities of the form x ▷◁ d with d ∈ N and
▷◁∈ {≤, <,>,≥}.

Given g, we write ν |= g iff each inequality in g evaluates to true when each
clock x is replaced with its value ν(x).

Definition 3 (ϵ-Timed Automatons (ϵ-TA)). An ϵ-TA A is a tuple A =
(Σ ∪ {ϵ}, L, l0,X, I, E) where: Σ is a finite set of actions, ϵ is the unique "silent
action", L is a finite set of locations, l0 is the initial location, X is a finite set
of clocks, I assigns to every l ∈ L a clock constraint I(l) called invariant, E is
a finite set of edges e = (l, g, a,R, l′) where l, l′ ∈ L are respectively the source
and target locations, a ∈ Σ ∪ {ϵ}, R ⊆ X is a set of clocks to be reset, and g is a
clock constraint.

Definition 4 (Semantics of timed automata). Given an ϵ-TA A = (Σ ∪
{ϵ}, L, l0,X, I, E), the semantics of A is given by the timed transition system
(S, s0,→), with:

– S = {(l, ν) ∈ L× RX
≥0 | ν |= I(l)}

– s0 = (l0,0) with 0 the valuation of clocks with all clocks equal to 0.
– → consists of the discrete and continuous delay transitions:

• discrete transitions: (l, ν)
a−→ (l′, ν′) with (l, ν), (l′, ν′) ∈ S and there

exists e = (l, g, a,R, l′) ∈ E such that ν′ = [ν]R and ν |= g

• delay transitions: (l, ν) d−→ (l, ν + d) with d ∈ R≥0 if ∀d′ ∈ [0, d], (l, ν +
d′) ∈ S

Definition 5 (Run). Let A = (Σ ∪ {ϵ}, L, l0,X, I, E) be a ϵ-TA and (S, s0,→)
its semantics. A (finite) run ρ of A is a finite sequence ρ = s0e0s1e1 · · · sn with
∀i, si ∈ S and (si, ei, si+1) ∈→, which we will also write ρ = s0

e0−→ s1
e1−→

· · · en−1−−−→ sn.
A run ρ can always be put in the form:ρ = s0

d1−→ s1
a2−→ d2−→ s2

a2−→ ...sn−1
an−−→ dn−→

sn where delays and actions strictly alternate. we have omitted some state names
for brevity.

We write Ψ(A) the set of all runs of A. We say that a state s is reachable in
A if there exists a run ρ ∈ Ψ(A) s.t. s ∈ ρ. We write QA set of all the reachable
states in A

4 Anthony Spriet, Didier Lime, Olivier H. Roux

2.2 Timed language

Sequences of actions generated by a TA, together with their dates, describe the
behavior of the automaton.

Definition 6 (Timed word and trace). A timed word over the alphabet Σ is
a finite sequence w = (a0, t0)(a1, t1)...(an, tn) so that ∀i ≥ 0, ai ∈ Σ, ti ∈ R≥0.

Given a run ρ = s0
d1−→ s1

a2−→ d2−→ s2
a2−→ ...sn−1

an−−→ dn−→ sn, its trace is the
timed word (a1, d1)(a2, d1 + d2) · · · (an,

∑n−1
i=1 di)

We denote U(Σ) the set of all timed words over the alphabet Σ

Definition 7 (Timed Language). For a given ϵ-TA A, its timed language
L(A) is the set of the traces of all its runs.

2.3 Security Timed Automata

Definition 8 (Security Timed Automaton). A Security Timed Automaton
A = (Σ ∪ {ϵ}, L, l0,X, I, E) is an ϵ-TA whose set of (visible) actions Σ is
partitioned in two subsets Σlow and Σhigh such that Σlow ∩Σhigh = ∅ and Σlow ∪
Σhigh = Σ.

In order to compare high-level behaviors and low-level behaviors by removing
all the high-level information we define restricted timed automata as follows.
Fig. 1 shows a security TA A and its restriction A\Σhigh

.

Definition 9 (Restricted timed Automata). Let A = (Σ,L, l0,X, I, E) be
a TA and Γ ⊆ Σ. We define the Γ -restriction TA A\Γ = (Σ\Γ,L, l0,X, I, E\Γ)
where (l, g, a,R, l′) ∈ E\Γ iff a ∈ (Σ\Γ) and (l, g, a,R, l′) ∈ E.

A Security Automaton A A\Σhigh

l0

x ≤ 3

l1

x ≤ 4

l2

x ≤ 4

low
x ≥ 1

low
x ≥ 2

high

x ≥ p1

high

x ≥ p2

l0

x ≤ 3

l1

x ≤ 4

l2

x ≤ 4

low
x ≥ 1

low
x ≥ 2

Fig. 1: A security TA A and A\Σhigh

Timed non-interference under Partial Observability and Bounded Memory 5

3 State-based non-interference properties

3.1 Already existing state-based non-interference properties

To our knowledge, the first proposal of a state-based non-interference property
for timed automata comes from Barbuti and Tesei, [BT03] and has later been
refined by Gardey et al [GMR07]. To define a state-based property of non-
interference we can picture a memoryless attacker who is able to fully observe
the system states (both location and clocks valuation) and tries to guess if a high-
level action has occurred. Because they are memoryless, they have to make their
guess based on a single observation of the system, which intuitively corresponds
to the property called St-NNI (State non-interference) by Gardey et al [GMR07]:
a security automaton A satisfies St-NNI iff QA = Q

A\Σhigh

3.2 A more realistic property

As we described St-NNI can be seen as a model for a really powerful attacker,
in the sense that they can fully observe the system states, but with the minimal
deductive abilities due to their memorylessness. If we were to give memory to the
attacker, in the sense that the attacker would have access to all their previous
observations, while keeping their ability to observe the state directly: we would
end up with an unrealistically high standard for security. We therefore propose
an attacker that has memory and is able to continuously observe the system but
is only able to observe part of the information, in the sense that they cannot
observe systems clocks and that some locations are indistinguishable to them.
Formally, we do so by attributing a value to each location, the attacker being
able to observe this value and associate it with a time-stamp.

Definition 10 (Observation functions). Let Ω be a finite set with |Ω| ≤ |L|.
We call the elements of Ω observations. An observation function is a function
O : L → Ω. If O(l) = O(l′) (resp: O(l) ̸= O(l′)) we say that l and l′ are
indistinguishable (resp: distinguishable).

We now use the observation to define the runs from the attacker point of
view.

Definition 11 (Observed runs and events). Given a run ρ = (l0,0)
d1−→

(l1, ν1)
a2−→ d2−→ (l2, ν2) . . . (ln−1, νn−1)

an−−→ dn−→ (ln, νn) and an observation function
O. We define the projecting operator O as:

O(ρ) = (O(li0), 0)(O(li1),
∑i1−1

k=1 dk) . . . (O(lim−1),
∑im−1

k=1 dk)(O(lim),
∑im

k=1 dk),
where the sequence (i0, i1, ..., im) is defined as follows:

– i0 = 0
– for 1 ≤ k < m, ik is the smallest index j > ik−1 such that O(lik−1

) ̸= O(lj)
– im = n

We call O(ρ) an observed run of A (with respect to O). We note O(A) the
set of observed runs of A.

When the observed run O(ρ) of a run ρ contains an element (a, t) we say
that an observed event occured at time t in the run.

6 Anthony Spriet, Didier Lime, Olivier H. Roux

To put it simply, because attackers are able to continuously observe the system,
they are therefore able to memorize the absolute date of the events (when a
discrete transitions between distinguishable locations occurs). The last element
of the observed run is there to model the time elapsed since the last event,
by construction O(lim) = O(lim−1

). If an observed run is possible both with
and without high-level actions, an attacker cannot deduce anything from this
observed run. Therefore, ensuring that no observed run is possible only for high-
level users guarantees security.

Example 1 (A run and its associated observed run). Given a run ρ = (l0,0)
d1,a1−−−→

(l1, ν1)
d2,a2−−−→ (l2, ν2)

d3,a3−−−→ (l3, ν3)
d4,a4−−−→ (l4, ν4)

d5,a5−−−→ (l5, ν5)
d6−→ (l5, ν6) with

O(l0) = O(l1) = O(l3) = O(l4) = o1,O(l2) = o2 and O(l5) = o3. We have
O(ρ) = (o1, 0)(o2, d1 + d2)(o1, d1 + d2 + d3)(o3,

∑5
k=1 dk)(o3,

∑6
k=1 dk)

We say that observed events occurred at time 0, d1,
∑2

k=1 dk,
∑4

k=1 dk and∑5
k=1 dk. No event occurred at

∑6
k=1 dk, the last term is to account for the time

elapsed since the last event.

Definition 12 (Partial Observability State-based non-interference (POS-
NNI)). A security automaton A satisfies POS-NNI with respect to the observation
function O if and only if O(A) = O(A\Σhigh

)

We now show that verifying POS-NNI is undecidable by reducing to it
the problem of timed language universality, which is known to be undecidable
[AD94]. We do so in the following way: we first define a transformation T on
TAs that allows us to define an observation function so that there is a one to one
correspondence between the observed run set of T (A) and the timed language
of A. Then for any TA A, we define an augmented security automaton that is
equal to T (A) when restricted to low-level actions (therefore having the same
language) but has the universal language when not restricted. The augmented
automaton therefore satisfies POS-NNI with respect to our observation function
if and only if the timed language of A is the universal language.

Definition 13 (Transformation T). Given a TA A = (Σ,L, l0,X, I, E), we
define T (A) = (Σ,LT (A), l0T (A)

,X, IT (A), ET (A)) with:

– l0T = (l0, ϵ, 0)
– LT = {L} × {Σ ∪ {ϵ}} × {0; 1}
– ∀l ∈ L,∀a ∈ Σ,∀i ∈ {0, 1}, (l, a, i) ∈ LT (A) ∧ IT (A)((l, a, i)) = I(l)
– ET (A) is the smallest set such that ∀e = (l, g, a,R, l′) ∈ E :

• ∀b ∈ (Σ ∪ {ϵ}), ((l, b, 0), g, a, R, (l′, a, 1)) ∈ ET (A)

• ∀b ∈ (Σ ∪ {ϵ}), ((l, b, 1), g, a, R, (l′, a, 0)) ∈ ET (A)

The idea of transformation T is to preserve the language while augmenting
the set of locations by splitting it into triplets (l, σ, b). When using a discrete
transition labeled σ, the automaton T (A) necessarily reaches a location labeled
σ as well. The parameter b is a boolean value ensuring the absence of self-loop
transitions in T (A), any discrete transition available from a locality marked with

Timed non-interference under Partial Observability and Bounded Memory 7

0 would reach a locality marked with 1 and vice-versa. This way, we are able
to define an observation function on T (A) so that every transition of a run is
associated with an observed event and every observation is associated with a
unique transition label.

l0

l1

σ1

σ2 σ1σ2

(l0, ϵ, 0) (l0, σ1, 1)

(l1, σ2, 1)

(l0, σ1, 0)

(l1, σ2, 0)

σ1

σ2 σ2

σ1

σ1

σ1

σ2

σ2

σ1

σ2

Fig. 2: A timed automaton and its transformation with T (clock constraints are
omitted)

Proposition 1. Given a TA A defined over the alphabet Σ and its transformation
T (A), the following properties holds:

i) L(A) = L(T (A))
ii) ∀((ls, σs, js), g, a, R, (lt, σt, jt)) ∈ ET (A), a = σt

iii) ∀((ls, σs, js), g, a, R, (lt, σt, jt)),∈ ET (A), js ̸= jt
iv) There is no self-loop edge in ET (A)

Proof. i) First we recall that by definition of T , ∀l′ = (l, a, i) ∈ LT (A), IT (A)(l
′) =

I(l). Then we notice that ∀e = (ls, g, a, R, lt) ∈ E,∃e′ = ((ls, σs, js), g, a, R, (lt, a, jt)) ∈
ET (A) for any pair (σs, js) and for some jt, which implies L(A) ⊆ L(T (A)).
Conversely, ∀e = ((ls, σs, js), g, a, R, (lt, a, jt)) ∈ ET (A),∃e′ = (ls, g, a, R, lt) ∈
E which implies L(T (A)) ⊆ L(A).

ii) By definition of T , there is no edge of the form ((ls, σs, js), g, a, R, (lt, σt, jt))
with a ̸= σt in the set ET (A). In other words, each location of T (A) is
associated with a unique letter of Σ and can only be reached using an edge
labeled with this letter.

iii) By definition of ET (A), there is no edge of the form ((ls, σs, 0), g, σt, R, (lt, σt, 0))
or ((ls, σs, 1), g, σt, R, (lt, σt, 1)).

iv) Is a direct consequence of (iii). ⊓⊔

Theorem 1. The verification problem associated with POS-NNI is undecidable.

Proof (sketch). Given a TA A defined over the alphabet Σ, we define a trivially
universal automaton U = (Σ, lu, lu, ∅, I(lu) = true, (lu, ∅, Σ, ∅, lu)). We then

8 Anthony Spriet, Didier Lime, Olivier H. Roux

define a security TA A∗ that is the union of T (A) and T (U) with only one
high-level edge going from the initial location of T (A) to the initial location of
T (U). To this TA we associate an observation function so that all locations are
distinguishable from every other except the two initial locations of T (A) and
T (U). This way, the high-level location does not appear in the set of observed
runs (no event occurs when using it). By choosing the initial location of T (A)
to be the initial location of A∗ we show that A∗ has the language of U when
not restricted but the language of A when restricted to low-level actions. Using
the absence of self-loops in T (A) and T (U) (Proposition 1), we show that any
low-level action (actions of Σ) corresponds to an observed event, it allows us to
provide a bijection between the set of projected runs and the language, showing
the reduction of POS-NNI to language universality. ⊓⊔

4 A decidable sub-problem

We now consider that the attacker has a bounded memory, which seems not
unreasonable.

Such an attacker could choose between various policies to store and discard
information. As a first approach we choose to model an attacker who uses a first-
in/first-out policy, only keeping the most recent information and discarding the
oldest one each time new information is available to them. This can be modeled
by taking the suffixes of observed runs (and relabeling with new time-stamps).

Definition 14 (Observed runs with memory k).
Given an observation function O, a run ρ and its observed run of O(ρ) =

(o1, t1 = 0)(o2, t2) . . . (on, tn)(on, tn+1), the observed run of memory size k associated
with ρ, noted Ok(ρ), is the sequence defined by:

if n ≤ k: Ok(ρ) = O(ρ)
if n > k: Ok(ρ) = (on−k, 0)(on−k+1, tn−k+1− tn−k) . . . (on, tn− tn−k)(on, tn+1−

tn−k)

We note Ok(A) the set of observed runs with memory k for every run of A

Similar to observed runs (with infinite memory), observed runs with memory
k contain k+ 1 elements as one is added to keep track of the time elapsed since
the last event.

Example 2 (An observed run and its associated observed run with memory 3).
Let us go back to example 1, given a run ρ and its associated projected run:
O(ρ) = (o1, 0)(o2, d1 + d2)(o1, d1 + d2 + d3)(o3,

∑5
k=1 dk)(o3,

∑6
k=1 dk) We have

O3(ρ) = (o2, 0)(o1, d3)(o3,
∑5

k=3 dk)(o3,
∑6

k=3 dk).

This gives rise to an updated version of the non-interference property adapted
to attackers with finite memory.

Definition 15 (Partial Observability State-based non-interference with
finite memory of size k (k-POS-NNI)). A security automaton A satisfies
k-POS-NNI with respect to the observation O if and only if Ok(A) = Ok(A\Σhigh

)

Timed non-interference under Partial Observability and Bounded Memory 9

Remark 1. If k = 0, any run ρ ending in a location l would have the same
observed run with memory 0: O0(ρ) = (O(l), 0). It is therefore clear that 0-POS-
NNI is equivalent to the reachability of locations, which is decidable [AD94].

If k = 1, observed runs of memory k are reduced to a measurement of the time
elapsed since the last observed event of the run. It follows that 1-POS-NNI is
decidable as well, since the (possibly infinite) maximal time that can be elapsed
in a set of indistinguishable locations is computable (see, e. g., Section 4.2).

4.1 First approach to 2-POS-NNI

One intuitive way to solve 2-POS-NNI is to add two attacker clocks xold and
xnew to the system to model the time elapsed since the last two observed events
and to synchronize on transitions associated with observable events the security
automaton with another automaton modeling the last sequence of observations
of the attacker. As the last two events occur, the attacker clocks are successively
reset to zero.

An automaton with two observations A and B, and a single clock x (left) and
its associated attacker automaton with 2 clocks xold and xnew (right) are given
in Fig. 3. Location lA and lA′ are observed as A and location lB is observed as
B.

lA

x ≤ 1

lB

x ≤ 1

l′A

x ≤ 3

l, x = 1, [x]

σB , x = 1, [x]

σA, x = 1, [x]

l, x = 1, [x]

h, x = 2, [x]

Init

x ≤ 0

Prefix ℓ∗(A)

ℓ∗(B) ℓ(B,A)

ℓ(A,B)

ℓ(A)

ϵ, [xold]

ϵ

{σA, σB}

σA, [xold]

σB , [xold]

σB , [xnew]

σB , [xnew]

σA, [xnew]

Fig. 3: A TA and a TA modeling the attacker memory ([] denote clock resets)

The automata shown in Fig. 3 illustrate how 2-POS-NNI can be reduced to a
state reachability problem. For instance, having (ℓ(A,B);xold = 2.5, xnew = 0.5)
reachable on the attacker automaton is equivalent to the existence of a run so
that at some point 2 time units elapse in lA and l′A, followed by 0.5 time unit
elapsed in lB . Conversely, for any run with n observed events (n > 2) there exists
one run of the attacker automaton that loops n − 2 times on location Prefix

10 Anthony Spriet, Didier Lime, Olivier H. Roux

before reaching ℓ∗(A) followed by ℓ(A,B) (or ℓ∗(B) followed by ℓ(B,A)), resetting the
attacker clocks along the way. Location ℓ(A) is meant to account for runs with
two or less events by "skipping" the Prefix cycle. However, in a run with n ≥ 2
events, the corresponding run on the attacker automaton could cycle n times or
n − 1 times on location Prefix so that it ends in location Prefix, ℓ∗(A) or ℓ∗(B)

instead of ℓ(A,B) or ℓ(B,A). Therefore, clock valuations on these locations do not
correspond to any observed runs.

This method can be generalized to any observation function: when one of the
last two observable events occurs, we add the new observation to the sequence
memorized by the attacker. Previous events are accounted for by cycling on
location Prefix.

However, the region graph (or zone-based graphs) does not faithfully represent
all reachable states of a given automaton because it relies for finiteness on the
use of some maximal constant above which the property that if some valuation
in a region is reachable, then all valuations in the region are, does not hold. And
it may well be that interfering states have some clock values above the maximal
constant found in clock constraints of the automaton.

For instance, for the automaton introduced in Fig. 3, we get the possible clock
valuations associated with the location ℓ(A,B) (clock x is omitted) depicted in
Figure 4.

xnew

xold

•

•

•

•

•

•

(a) Reachable clock valuations1
using only low-level actions

xnew

xold

•

•

•

•

•

•

•

•

•

•

(b) Reachable clock valuations1

with all actions

xnew

xold

•

•

•

(c) Reachable regions2

with all actions

Fig. 4: Reachable states and Reachable regions location ℓ(A,B) of Fig. 3

1 Regions without c-approximation, i.e. each point represent a reachable state of
location ℓ(A,B) associated with given values of xnew and xold

2 On this figure, regions are represented according to the original definition proposed
by Alur & Dill ([AD94]), that is with c-approximation, c being the largest synthaxic
value used to define the automaton

Timed non-interference under Partial Observability and Bounded Memory 11

We see that the interfering behaviors occur at the earliest when xold = 4,
after the maximal constant, which is 3. Here this could therefore be solved by
taking 4 instead of 3 as the constant for the definition of regions. However we
can define automata with more complex behaviors. For instance, changing the 2
with a 3 and every 1s by 2s in the automaton of Fig. 3 would change the required
maximal constant of regions to 6 instead of 4. By adding more locations to the
automata the maximal constant can be pushed even further from the largest
constant of the syntax. We found no trivial relation between the size of the
automaton and the necessary constant to ensure the validity of this approach.

Remark 2. Note that this example also shows that the claims of [BT03,GMR07]
that n-state-non-interference and St-NNI are decidable in the general case by
computing the set of reachable states of the considered automata do not hold,
unless the clocks are bounded.

This issue only gets worse when we extend this method to any memory size or
when the security automaton uses more clocks. This kind of example highlights
the need for automata with bounded time between events (i.e. bounded attacker
clocks) to decide k-POS-NNI.

4.2 Finite Duration Observation Automata (FDO automata)

In this part, we provide a class of automata for which k-POS-NNI is decidable.
It consists of automata for which the time elapsed between two consecutive
observed events of any run is bounded.

Definition 16. An automaton A is a Finite Duration Observation Automaton
(FDO Automaton) with respect to an observation O1 if and only if ∃M ∈
R≥0 such that ∀ρ ∈ Ψ(A) with O(ρ) = (o0, t0 = 0)(o1, t1) · · · (on, tn),∀0 ≤ k <
n, we have tk+1 − tk ≤ M .

We call M the observation bound of A.

By focusing on systems in which time cannot elapse indefinitely without any
event occurring we get systems with a finite set of unapproximated regions
reachable on the attacker automaton as introduced above. Moreover, using a
different construct we will show in the next section that these regions only
contain clock valuations smaller than a specific bound, ensuring the equivalence
between reachable states (each corresponding to an observed runs of finite memory)
and the region graph. But first we provide a few results about FDO automata.

Proposition 2. Given an automaton A associated with an observation function
O. The membership of A in the set of FDO automata with respect to O is
decidable.

Proof (sketch). Given a TA A with a set of clocks X and an observation function
O, we define the TA AO as A but with an extra clock y and a self-loop edge on
1 We also say the automaton is FDO w.r.t. O.

12 Anthony Spriet, Didier Lime, Olivier H. Roux

every location to reset this clock. We then compute the region graph RG of AO
using standard techniques. We define RG− by removing every discrete transition
between two distinguishable locations from RG. Let R be a region of RG− in
which y = 0. We call unit cycle a path in RG− starting in R and ending in a
region R′ with y ≥ 1 and all other clocks satisfying the same constraints as in
R. Given any observation bound M , if there is a unit cycle in the region graph
there is a run executing the unit cycle at least M + 1 time, showing that the
maximal elapsed time between events is not bounded by M , hence A is not FDO
w.r.t. O. We now suppose that A does not contain any unit cycle yet is not FDO
w.r.t O. Because A is not FDO, for any M ∈ R≥0 there exists ρ ∈ Ψ(A) s.t.
O1(ρ) = (o, 0)(o, t > M). Let us call s the state reached when the event leading
to observation o occurs. Because of the absence of unit cycles, neither s nor any
state contained in the same region as s is ever reached in ρ after one time unit
has elapsed unless an observed event occurred. Because we can take M > 1, it
follows that at least one state s′ contained in a different region than s has to be
reached at some point in ρ after s′. Because the same argument applies to s′ by
taking M > 2. Inductively, it follows that after M +1 time unit elapsed, at least
M regions of the state-space are not reachable unless a event occurred. Because
the amount of regions (defined with c-approx) is finite, it follows that A is FDO
w.r.t. O with an observation bound less than the number of regions, which is a
contradiction. This proves that A is FDO w.r.t. O if and only if it has no unit
cycle in its region graph, which is decidable. ⊓⊔

Corollary 1. Given an observation O associated to the automaton A with x
clocks, c the largest integer used in clock constraints and L the size of the set
of locations. If A is FDO w.r.t. O, then its observation bound M verifies the
relation:

M ≤ x!(2c+ 2)xL

Proof. As previously demonstrated, A is FDO w.r.t. O iff it has no unit cycle.
Furthermore, we showed that the observation bound of an FDO automaton is
bounded by its number of region. Using the bound on the number of regions
given in [AD94], the relation follows. ⊓⊔

Corollary 2. Given an observation O associated to the automaton A. If A is
FDO w.r.t. O, then its observation bound M can be computed.

Proof. By adding a clock y to A (with x clocks, L locations and c its largest
constant used in clock constraints) and replacing any transition of the form
(l, g, a,R, l′) with O(l) ̸= O(l′) by (l, g, a,R∪{y}, l′), the cumulated time elapsed
in a run since the last observed event always corresponds to the value of y.
Thanks to the previous corollary we know that defining regions using constant
(x!(2c + 2)xL + 1) instead of c will provide a region-graph of A that does not
approximate the value of y. The maximal value of y can therefore be computed
by taking the smallest value M so that no region in the latter region graph
contains valuations of y greater than M . ⊓⊔

Timed non-interference under Partial Observability and Bounded Memory 13

4.3 Deciding k-POS-NNI for FDO automata

In this section we generalize and formalize the construction proposed in Section 4.1.
Given a sequence u, we note u(i) the i-th element of u, u[a, b] the subset of

u ranging from index a to index b, both u(a) and u(b) being included.
Given a security automaton A = (Σlow ∪Σhigh, L, l0,X, I, E) associated with

observation O : L 7→ Ω and an attacker memory k. We define Ωj the set of
sequences of observations from Ω of length j.

We define the attacker automaton Bk = ({ϵ} ∪ΣΩ , LBk
, Init, Y, IBk

, EBk
):

– ΣΩ = {σo | o ∈ Ω}
– LBk

= {Init} ∪ {Prefix} ∪ {ℓ∗ω |ω ∈ Ωj , j ∈ J1, k − 1K} ∪ {ℓω |ω ∈ Ωj , j ∈
J1, kK}

– IBk
(Init) = (Y = 0), IBk

(l ̸= Init) = true
– Y = (yi)i∈J1,kK, where the yi are some new clocks;
– EBk

is defined as follows:
(a) initialization (Init, ∅, ϵ, [y1], ℓO(l0))
(a) event ∀j ∈ J2, kK,∀ω ∈ Ωj , (ℓω[1,j−1], ∅, σω[j], yj , ℓω) ∈ EBk

(b) initialization (Init, ∅, ϵ, ∅, Prefix)
(b) prefix event (Prefix, ∅, ΣΩ , ∅, Prefix)
(b) first event ∀o ∈ Ω, (Prefix, ∅, σo, [y1], ℓ

∗
o) ∈ EBk

(b) intermediary event ∀j ∈ J2, k−1K,∀ω ∈ Ωj , (ℓ∗ω[1,j−1], ∅, σω[j], yj , ℓ
∗
ω) ∈

EBk

(b) last event ∀ω ∈ Ωk, (ℓ∗ω[1,k−1], ∅, σω[k], [yk], ℓω) ∈ EBk

Bk is simply the generalization of the attacker automaton proposed in Example 3.
In the example, the (a) initialization transition is the one going from location
Init to location ℓ(A), it is used for runs with k events or less (again, counting
the initialization of the observed system as an event); the (b) initialization
transition is the one going from Init to location Prefix, it is used for runs with
more than k events; the transitions going from Prefix to ℓ∗(A) or ℓ∗(B) are (b)
first event transitions; the transitions going from ℓ∗(A) (resp: ℓ∗(B)) to ℓ(A,B)

(resp: ℓ(B,A)) are (b) last event transitions; the (b) intermediary event
type is absent in the example as it only appears when k ≥ 3 where intermediary
locations would be necessary between ℓ∗(A) (resp: ℓ∗(B)) and ℓ(A,B) (resp: ℓ(B,A))
to account for more time-stamps memorized. Lastly, the (a) event transitions
correspond to the transition between ℓ(A) and ℓ(A,B). Overall, the (a)-transitions
serve the purpose of memorizing time-stamps in short runs whereas the (b)-
transitions serve the same purpose for longer runs by allowing the attacker to
ignore information about the part of the run they would discard anyway (by
cycling on the Prefix location) so that only the last k events are associated
with clocks (yi)i∈J1,kK.

Because A and Bk do not use the same alphabet, we define the ϵ-automaton
AO = ({ϵ} ∪ΣΩ , L, l0,X, EO) so that Ok(A) = Ok(AO) as follows:

∀e = (l, g, a,R, l′) ∈ E :

O(l) = O(l′) =⇒ (l, g, ϵ, R, l′) ∈ EO

O(l) ̸= O(l′) =⇒ (l, g, σO(l′), R, l′) ∈ EO

14 Anthony Spriet, Didier Lime, Olivier H. Roux

We note A||ΣB the synchronized product à la Arnold Nivat ([Arn94]) of A
with B on the set of action Σ.

Lemma 1. (o1, t1 = 0)(o2, t2) . . . (oj , tj)(oj , tj+1) ∈ Ok(A) iff ∃l ∈ L, and a
valuation ν on Y ∪X such that ∀i ∈ J1, jK, ν(yi) = tj+1−ti and ((l, ℓ(o1,...,oj)), ν) ∈
QAO||ΣΩ

Bk .

Proof (sketch). We first notice that Bk is universal on alphabet ΣΩ . This is
sufficient to show that any reachable state of AO is also a reachable state of
AO||ΣΩ

Bk. We use this to associate to any run ρ of A a run ρ′ of AO||ΣΩ
Bk

ending in a location of the form (l ∈ L, ℓ(o1,...,on)) for some n ≤ k. We ensure
that such a run exists by splitting cases based on the number of events of ρ. If
ρ contains j ≤ k events we simply consider the a run ρ′ starting with the (a)
initialization transition. If ρ containsj > k events we consider a run ρ′ starting
with the (b) initialization transition and cycling on Prefix k − j times. By
the definition of EO and EBk

, a new location of the form ℓω or ℓ∗ω can only be
reached when an observed event would occur in the run of A that AO||ΣΩ

Bk is
reproducing. It follows that the values of clocks yi are such that the difference
between consecutive clocks are equal to the time elapsed between observable
events of the run. The relation between time-stamps of the observed run with
memory k of A and the clock valuations follows.

The other direction of the equivalence boils down to the same idea. To each
state of AO||ΣΩ

Bk can be associated plenty of runs of A, possibly mapping to
multiple observed runs, but to only a single observed run with memory k. ⊓⊔

Theorem 2. ∀k ∈ N, k-POS-NNI associated with an observation O is decidable
for FDO automata w.r.t. O.

Proof (sketch). Given an FDO security automata A and its observation bound
M , we can show that for any state ((l, ℓω), ν) reachable in AO||ΣΩ

Bk, ∀i <
|ω|, ν(yi) < kM . Therefore, the clocks yi that are relevant to Lemma 1 do not
suffer from the kind of "loss of information" caused by the region abstraction
described on Figure 4 if the constant used to define regions is greater than kM .

For any ω ∈ Ωj for some j < k, we can compute a set Γω of pairs (ω, ν) for
every ν that is the projection on clocks {yi, . . . , y|ω|} of a valuation contained in
any region R such that a vertex ((l, ℓω), R) is reachable in the region graph of
AO||ΣΩ

Bk. by Lemma 1, Γω is in bijection with the set of observed runs with
memory k of the form (ω[1], 0) . . . (ω[|ω|], t|ω|)(ω[|ω|], t|ω|+1). Because there is a
finite amount of possible ω, the set Γ =

⋃
ω Γω is in bijection with Ok(A)

Repeating this process for A\Σhigh
provides a set Γ \Σhigh in bijection with

Ok(A\Σhigh
). Therefore, A verifies k-POS-NNI if and only if Γ \Σhigh = Γ , which

can be computed using standard techniques on polyhedra, because those infinite
sets can be represented by finite unions of regions. ⊓⊔

Although the method given above would not be efficient if implemented as
it is, a PSPACE algorithm can be found.

Timed non-interference under Partial Observability and Bounded Memory 15

Theorem 3. With k represented in unary, k-POS-NNI for FDO automata is
PSPACE-complete.

Proof (sketch). To prove PSPACE-membership we use the PSPACE-membership
of region reachability in a region-graph. Because Bk is only defined with respect
to O and k it is not necessary to compute it explicitly, instead the transition
function of the Turing machine can account for the sequence of observations as O
is given in the input. Because the sequence of observation has to be memorized,
an overhead of size linear with k is induced, hence the necessity for k to be
represented in unary to preserve PSPACE complexity.

To prove PSPACE-hardness we reduce from location reachability in TAs.
Given a TA with a given target location, we create an augmented TA with an
extra location associated with a unique observation. We ensure this additional
location is reachable either by using a high-level action or be using a low-level
action from the target location so that this unique observation appears in the set
of observed runs restricted to low level actions if and only if the target location
is reachable. Some other details are added to ensure the augmented automaton
is FDO and to ensure the strict equality between observed runs.

5 Discussion and future work

We have introduced a new property of state-based non-interference. We believe
that this property is more realistic than previously studied state-based approach
to non-interference as it models a smarter attacker with a more reasonable
observation power. We have shown that this property is not decidable in the
general case. However, we have provided a decidable class of automata for which
the property is decidable given a finite memory of any length. We can also decide
membership in that class.

For future work consists first in investigating other policies for observation
replacement in the memory of the attacker. We also want to find more efficient,
e. g. DBM-based, algorithms to decide k-POS-NNI for FDO automata.

Lastly, we want to settle the general case of k-POS-NNI decidability for non-
FDO automata, and of the related problem of the decidability of St-NNI when
clocks are not bounded which, as we have shown, is actually still open.

References

AD94. Rajeev Alur and David L Dill. A theory of timed automata. Theoretical
computer science, 126(2):183–235, 1994.

AETYM21. Ikhlass Ammar, Yamen El Touati, Moez Yeddes, and John Mullins.
Bounded opacity for timed systems. Journal of Information Security and
Applications, 61:102926, 2021.

AK20. Étienne André and Aleksander Kryukov. Parametric non-interference in
timed automata. In 2020 25th International Conference on Engineering
of Complex Computer Systems (ICECCS), pages 37–42. IEEE, 2020.

16 Anthony Spriet, Didier Lime, Olivier H. Roux

ALMS22. Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. Guaranteeing
timed opacity using parametric timed model checking. ACM Transactions
on Software Engineering and Methodology (TOSEM), 31(4):1–36, 2022.

Arn94. André Arnold. Finite transition systems. Prentice Hall, 1994.
BB07. Andrew Bortz and Dan Boneh. Exposing private information by timing

web applications. In Proceedings of the 16th international conference on
World Wide Web, pages 621–628, 2007.

BCLR15. Gilles Benattar, Franck Cassez, Didier Lime, and Olivier H Roux. Control
and synthesis of non-interferent timed systems. International Journal of
Control, 88(2):217–236, 2015.

BKMR08. Jeremy Bryans, Maciej Koutny, Laurent Mazare, and Peter Y. A. Ryan.
Opacity generalised to transition systems. International Journal of
Information Security, 7(6):421–435, 2008.

BT03. Roberto Barbuti and Luca Tesei. A decidable notion of timed non-
interference. Fundamenta Informaticae, 54(2-3):137–150, 2003.

FS00. Edward W. Felten and Michael A. Schneider. Timing attacks on web
privacy. In Proceedings of the 7th ACM Conference on Computer and
Communications Security, CCS ’00, page 25–32, New York, NY, USA,
2000. Association for Computing Machinery.

GM84. Joseph A Goguen and José Meseguer. Unwinding and inference control.
In 1984 IEEE Symposium on Security and Privacy, pages 75–75. IEEE,
1984.

GMR07. Guillaume Gardey, John Mullins, and Olivier H Roux. Non-interference
control synthesis for security timed automata. Electronic Notes in
Theoretical Computer Science, 180(1):35–53, 2007.

GSB18. Christopher Gerking, David Schubert, and Eric Bodden. Model checking
the information flow security of real-time systems. In Engineering Secure
Software and Systems: 10th International Symposium, ESSoS 2018, Paris,
France, June 26-27, 2018, Proceedings 10, pages 27–43. Springer, 2018.

Koc96. Paul C Kocher. Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems. In Annual International Cryptology Conference,
pages 104–113. Springer, 1996.

KPJJ13. Robert Kotcher, Yutong Pei, Pranjal Jumde, and Collin Jackson. Cross-
origin pixel stealing: timing attacks using css filters. In Proceedings of the
2013 ACM SIGSAC conference on Computer & communications security,
pages 1055–1062, 2013.

WZ18. Lingtai Wang and Naijun Zhan. Decidability of the initial-state opacity
of real-time automata. In Symposium on Real-Time and Hybrid Systems:
Essays Dedicated to Professor Chaochen Zhou on the Occasion of His 80th
Birthday, pages 44–60. Springer, 2018.

	Timed non-interference under Partial Observability and Bounded Memory

