
HAL Id: hal-04312262
https://hal.science/hal-04312262

Submitted on 28 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MTD-DS: an SLA-aware Decision Support Benchmark
for Multi-tenant Parallel DBMSs

Shaoyi Yin, Franck Morvan, Jorge Martinez-Gil, Abdelkader Hameurlain

To cite this version:
Shaoyi Yin, Franck Morvan, Jorge Martinez-Gil, Abdelkader Hameurlain. MTD-DS: an SLA-aware
Decision Support Benchmark for Multi-tenant Parallel DBMSs. IRIT/RR–2023–05–FR, IRIT - Insti-
tut de Recherche en Informatique de Toulouse. 2023. �hal-04312262�

https://hal.science/hal-04312262
https://hal.archives-ouvertes.fr

Research Report: IRIT/RR--2023--05--FR Nov. 2023

1

MTD-DS: an SLA-aware Decision Support Benchmark for
Multi-tenant Parallel DBMSs

Shaoyi Yin
 Paul Sabatier University,

Toulouse, France
 shaoyi.yin@irit.fr

Franck Morvan
 Paul Sabatier University,

Toulouse, France
 franck.morvan@irit.fr

Jorge Martinez-Gil
Software Competence Center

Hagenberg GmbH, Hagenberg,
Austria

 jorge.martinez-gil@scch.at

Abdelkader Hameurlain
 Paul Sabatier University, Toulouse, France

 abdelkader.hameurlain@irit.fr

ABSTRACT

Multi-tenant DBMSs are used by Cloud providers for their DBaaS

(Database-as-a-Service) products. They could be Single-node

RDBMSs installed in VMs, SQL-on-Hadoop systems running on

a cluster, or parallel RDBMSs with a shared-nothing or shared-

disk architecture. From a Cloud provider’s point of view, it is

interesting to measure these systems’ capability of dealing with

multi-tenant workloads. From a tenant’s point of view, having the

above information on different providers could be helpful in

choosing the most suitable one (or several for a multi-cloud

deployment). In this paper, we present MTD-DS benchmark

(with MTD for Multi-Tenant parallel DBMSs and DS for

Decision Support), which extends TPC-DS by adding a multi-

tenant query workload generator, a performance SLO (Service

Level Objective) generator, configurable DBaaS pricing models,

and new metrics to measure the potential capability of a multi-

tenant parallel DBMS in obtaining the best trade-off between the

provider’s benefit and the tenants’ satisfaction. Example

experimental results have been produced to show the relevance

and the feasibility of the MTD-DS benchmark.

CCS CONCEPTS

• Information systems➝Data management systems➝Database

management system engines➝Parallel and distributed

DBMSs • Information systems➝Data management

systems➝Database management system engines➝Online

analytical processing engines.

KEYWORDS

Database management systems; Decision support;

Benchmark; Multi-tenancy; Service level agreement.

1 INTRODUCTION

More and more multi-tenant DBMSs have been deployed in the

Cloud in form of DBaaS (Database-as-a-Service), such as

Amazon Redshift [2], Google BigQuery [8], MS Azure SQL [13],

Oracle Cloud [20], Snowflake [23], Cloudera Data Warehouse

[3], ScaleGrid [22], and many others [6]. The underlying

implementations vary and they fall mainly into three categories:

Single-node RDBMSs installed in VMs, SQL-on-Hadoop systems

(e.g., HIVE, Spark SQL) running on a cluster, and parallel

RDBMSs with a shared-nothing or shared-disk architecture. These

Cloud-based systems make it possible to develop new decision-

support applications very quickly [14]. Moreover, they allow the

tenants to reduce dramatically their monetary costs compared to

on-premise solutions that run on dedicated servers [14].

From a Cloud provider’s point of view, it is interesting to

measure its system’s capability of dealing with multi-tenant

workloads which are characterized by: (1) unstable query arrival

rates, (2) different levels of SLA (Service Level Agreement), and

(3) heterogeneity of tenants’ requirements (in terms of database

size, query complexity…). From a tenant’s point of view, having

the above information on different providers could help in

choosing the most suitable one (or several for a multi-cloud

deployment). Therefore, it is important to have a benchmark that

helps both Cloud providers and tenants in making their choices.

There exist several TPC (Transaction Processing Performance

Council) benchmarks in the decision support domain and the most

popular one is TPC-DS [16][17][18]. It uses multiple snowflake

schemas containing 24 relations. There are 99 SQL queries that

cover ad-hoc, reporting, iterative OLAP and data mining type

workloads. TPC-DS has already been used directly to study the

behavior of SQL-on-Hadoop systems [1][4]. However, since

many cloud-related factors, such as the multi-tenant workload

characteristics and the various possible pricing models, cannot be

directly integrated into the original TPC-DS benchmark, the

above evaluations are limited to on-premise settings.

In this paper, we present MTD-DS benchmark (with MTD for

Multi-Tenant parallel DBMSs and DS for Decision Support),

which extends TPC-DS by adding: (1) a multi-tenant query

workload generator, (2) a performance SLO (Service Level

Objective, an important component in an SLA) generator which

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

The source code is available online:

https://github.com/shyin2021/MTDDS/

https://github.com/shyin2021/MTDDS/

2

defines a performance SLO for each query in the workload, (3)

configurable DBaaS pricing models, and (4) new metrics to

measure the potential capability of the multi-tenant parallel

DBMS in obtaining the best trade-off between the provider’s

benefit and the tenants’ satisfaction. We expect to make our

proposal as an evaluation tool for the following use cases: (1) a

current DBaaS provider would like to evaluate its system and test

new ideas (e.g., new query optimization methods) in order to

increase its economic benefit without hurting the tenants’

interests, and (2) a future DBaaS provider would like to choose a

DBMS product and a corresponding deployment strategy. Our

target users also include non-profitable DBaaS providers whose

objective is to self-finance the offered services. Governments who

hold the data of all public hospitals and federations of multiple

financially autonomous organizations are potential examples. In

case of a private Cloud deployment (e.g., inside a single

organization), the tenants often use the services for free, but

pricing models remain interesting: the provider can generate

virtual bills such that the tenants will be aware of what they have

consumed and thus pay attention to their future utilization.

The rest of the paper is organized as follows. In section 2, we

present the related work. In section 3, we explain our SLA-aware

benchmark in detail. In section 4, we analyze the experimental

evaluation results and highlight the interest of adopting our

proposal. Finally, we conclude the paper in section 5.

2 RELATED WORK

With the increasing adoption of relational database management

systems for building Decision Support Systems (DSS) in 1990s

[10], the TPC council released its first data warehouse benchmark,

called TPC-D, in 1994. As said in [16], TPC-D was later

effectively broken due to various technical developments of the

DBMSs and then replaced by TPC-H (with ad-hoc queries) and

TPC-R (with business reporting queries) in 1999. The latter had

never attracted much attention and was decommissioned in 2006.

In contrast, TPC-H won a great success very soon because it is

closer to the requirements of the industrial decision support

applications, and it is still challenging enough today to motivate

technical innovations of the DBMS manufacturers. Meanwhile,

decision support systems evolved a lot in the 2000’s by adopting

new relational schemas (e.g., star schema) and mixing various

types of queries (e.g., ad-hoc, reporting, iterative and extraction

queries). All of these industrial needs could not be covered by

TPC-H. Therefore, the TPC council developed another generation

of decision support benchmark, called TPC-DS, released in 2006

[16]. TPC-DS extended the data model of TPC-H with multiple

snowflake schemas, designed 99 queries (instead of 22 in TPC-H)

representing different types of business questions, and overcame

several deficiencies of TPC-H in order to be more realistic (e.g.,

using more representative skewed database content, sub-linear

scaling of non-fact tables, and ETL-like data maintenance). TPC-

DS has been updated twice [18] and it remains very relevant for

current decision support systems.

In the 2010’s, with the Big Data movement, efforts were made

to integrate as many V’s (e.g., volume, velocity, variety, …) as

possible into decision support benchmarks. In this context, the

TPC council released the TPCx-BB benchmark, which came from

the BigBench paper [5]. In this benchmark, not only structured

data are considered, but also semi-structured and non-structured

data are generated and queried. On the one hand, some machine

learning and natural language processing queries are added into

the benchmark, and on the other hand, only a subset of the TPC-

DS queries are conserved (30 of them) to make the benchmark not

so heavy. In our paper, rather than targeting all Big Data

applications, we focus on how relational parallel DBMSs tackle

the multi-tenancy problem when processing decision support

queries. In paper [19], the authors addressed similar issues and

they considered the unstable query arrival rates by using a hidden

Markov model to simulate the transition between busy and quiet

periods. They proposed a new metric based on SLAs and included

monetary costs in the evaluation results. Since the paper

concentrated on defining a metric to measure the elasticity, the

authors made several assumptions for simplification, for example:

(1) they treat the workload as a whole without distinguishing

individual tenants; (2) the SLAs for all queries are generated in

the same way so there is no distinction between urgent and

ordinary queries or between premium and basic tenants; (3) the

pricing models are not formulated, thus we cannot measure how

the DBMS’s behaviors change according to different pricing

policies. In our paper, we would like to pay more attention on

these multi-tenancy related issues. In addition, we will propose

more intuitive metrics to guide providers and tenants in making

their decisions.

During the writing of this paper, we noticed the publication of

the Cloud Analytics Benchmark (CAB) [21]. CAB chose the

TPC-H as a foundation and enrich it by adding multi-tenancy

concerns, based on an analysis of a real-world query trace. In our

paper, we choose to extend TPC-DS due to the aforementioned

reasons, but this is not the most important difference compared to

CAB. Although having similar observations and objectives, we

adopt a different approach for query workload generation,

consider the performance SLO in a finer way, and propose new

benchmark metrics which serve more directly the service

providers to improve their systems. CAB integrates “pay-as-you-

go” pricing models in evaluations, while we aim to measure a

system’s ability to “go-as-you-pay” as well. Here, by using “go-

as-you-pay”, we refer to the system’s ability to adjust the resource

consumption for a query according to the tenant’s expectation on

the response time and the negotiated price. Overall speaking, our

work is complementary to CAB.

It is worth mentioning that, the TPC council has an add-on

specification called TPC-Pricing [25], which is a consistent set of

pricing procedures and methodologies for all TPC benchmarks.

For example, for TPC-DS, a Price-Performance metric

($/kQphDS@SF) should be measured. This metric considers the

global monetary cost of the System Under Test (SUT), but for us,

this cost is independent of the SLA satisfaction and it is not

necessarily correlated to the provider’s economic benefit.

Therefore, new metrics could be interesting for multi-tenant

parallel DBMS evaluations.

3 MTD-DS BENCHMARK PROPOSAL

In this section, we present the MTD-DS benchmark proposal,

which extends the TPC-DS benchmark on several aspects. First,

with regard to the query workload, we generate queries for each

tenant by considering various tenant specific factors, such as the

tenant’s priority, database size and queries’ complexity. Multiple

tenants arrive simultaneously and the aggregation of all arrived

3

queries constitute the entire query workload which itself is

fluctuating and thus very challenging for multi-tenant parallel

DBMSs. Second, for each query of each tenant, we propose a

Query Completion Time (QCT for short, meaning the time

elapsed between the query submission and completion) threshold

as a performance SLO, based on a real execution of the query on

the tenant’s database. Note that it is different from methods used

by DBaaS providers to define the performance SLOs with their

tenants, because in that case, it often requires an additional

module of the DBMS that interacts with the query optimizer’s

cost model to get reasonable performance estimates [15][27]. For

benchmarking purpose, it is necessary to use the same

performance SLOs for all SUTs (Systems Under Test) in order to

be fair. Since we are allowed to really execute the TPC-DS

queries sequentially and register the execution traces, we prefer

designing a benchmark-specific performance SLO generator

based on these execution traces rather than pure estimations. The

third extension is about the DBaaS pricing models that will be

used to deduce the economic income and costs. Finally, we

present our new metrics and the benchmark execution rules.

3.1 Multi-tenant Query Workload Generator

To simulate the continuously varying query arrival rates, Poggi et

al. [19] consider the entire workload as a whole (i.e., without

distinguishing individual tenants) and propose to use a hidden

Markov model with a series of n discrete levels. At a given point

in time, the arrival rate is represented by a series of parameters,

describing the probability of being in each level (1 to n), along

with the probabilities of transitioning to each of the other levels.

As for the workload generation, [19] adapted the notion of

streams employed in TPC benchmarks, where for a given number

of streams m, one instance of each query appears in each stream.

In our proposal, for simulating query arrival rates, instead of

considering directly the queries of all tenants as a whole, we

simulate the query arrivals of each tenant separately. The reasons

are as follows: (1) tenant specific characteristics (e.g., the tenant’s

priority, database size, and queries’ complexity) can be

considered, (2) the number of tenants can be represented as a

variable so that the service provider can choose the number and

will have a more intuitionistic view of the simulated query

workload, and (3) tenant-level metrics (e.g., SLO satisfaction rate

for each tenant and the fairness between tenants) can be measured.

Each tenant is modeled as a tuple <TnID, TnPriority, DBsize,

QueriesComplexity, TnArrivalTime, NbQueries, Lambda,

IdleRatio, PeakRatio, f_peak>. Table 1 shows the meaning of

these parameters. Their values differ from one tenant to another,

and the simple aggregation of all tenants’ queries forms naturally

the entire query workload (see Table 3). First, we differentiate the

tenants according to the priority, the database size and the queries

complexity. Three levels of tenant priority will be considered:

basic, standard and premium. They differ from each other in terms

of performance SLOs and prices of their queries, which will be

explained in Section 3.2 and Section 3.3. With regard to the

database size, we use three different scale factors to represent

small, medium and large databases. As for the query complexity1,

1 For simplicity, we define the query complexity only based on the number of binary

operators (joins, unions, etc.) in the query.

the following workload streams can be generated: (1) simple

workload streams, consisting only of the simple queries with less

than 4 binary operators; (2) complex workload streams, consisting

only of the complex queries with more than 6 binary operators;

and (3) mixed workload streams, consisting of all the original

TPC-DS benchmark queries. The list of queries in each

complexity category can be found in Table 2.

Based on the above characteristics, 27 combinations (with

respect to TnPriority, DBSize and QueriesComplexity) could

appear in the complete generated workload. In the benchmark, we

treat the total number of tenants as a variable whose value will be

chosen by the benchmark user. To be more realistic, we suggest

that the proportion of standard tenants reaches at least 50%.

Table 1: Parameters used to characterize a tenant

Parameter Signification
TnID The tenant’s identifier

TnPriority The priority of the tenant
DBSize The size of the database used for the tenant

(small, medium or large)

QueriesComplexity The complexity of the tenant’s queries
(simple, medium or complex)

TnArrivalTime The arrival time of the tenant’s first query

NbQueries Total number of queries launched by the
tenant

Lambda The expected value of the number of query

arrivals per time unit
IdleRatio The ratio between the number of idle intervals

and the total number of time intervals

occupied by the tenant
PeakRatio The ratio between the number of peak

intervals and the total number of time

intervals occupied by the tenant
f_peak The multiplication factor for the parameter

Lambda during the peak time

Table 2: Simple, medium and complex queries

Query

complexity

Query IDs

Simple

3, 12, 15, 20, 21, 22, 28, 36, 37, 41, 42, 43, 52, 53,

55, 63, 80, 81, 82, 86, 89, 93, 96, 97, 98 (25 queries)

Medium 1, 2, 5, 6, 7, 10, 16, 19, 26, 27, 30, 32, 34, 35, 38, 40,

45, 47, 50, 51, 57, 62, 67, 68, 70, 71, 73, 79, 84, 90,
91, 92, 94, 95, 99 (35 queries)

Complex 4, 8, 9, 11, 13, 14, 17, 18, 23, 24, 25, 29, 31, 33, 39,
44, 46, 48, 49, 54, 56, 58, 59, 60, 61, 64, 65, 66, 69,

72, 74, 75, 76, 77, 78, 83, 85, 87, 88 (39 queries)

The number of queries launched by each tenant is a random

value between 10 and 100. To amplify the instability of the query

arrival rates, we distinguish idle, peak and normal periods for each

tenant. During an idle period, no query arrives, while during a

peak period, queries arrive very frequently. For each normal

period, we assume a Poisson distribution for the query arrivals,

with Lambda the expected value of the number of query arrivals

per time unit. More precisely, the arrival times of N queries are

generated with the following process [9]: First, simulate

exponential random variables X1, X2, …, XN-1 representing

4

interarrival times, based on the value of Lambda. Then, set Y1 =

TnArrivalTime, Y2 = Y1 + X1, …, YN = YN-1 +XN-1, where the

variables Y1, …, YN, represent the arrival times of the tenant’s N

queries. Note that, during a peak period, the number of queries

arrived per time unit is multiplied by a factor f_peak. Concerning

the distribution of idle, peak and normal periods, we fix a specific

ratio for each tenant (e.g., 10% idle time, 10% peak time and 80%

normal time for tenant T). The tenant arrival time itself is

generated in the way that the tenant arrivals also follow a Poisson

distribution, with 3 tenant arrivals per time unit in average.

In Table 3, we show the first six tenants of the generated

workload. Figure 1 shows the query arrivals per time unit of 20

tenants, and Figure 2 gives the aggregative query arrival trend for

the complete query workload. Finally, in Figure 3, we focus on

three representative tenants: Tenant 4 has more idle periods (40%)

than peak periods (12%), Tenant 8 has more peak periods (49%)

than idle periods (12%), while Tenant 16 differs less in peak

(54%) and idle periods (37%).

Table 3: Examples of tenants’ information

TnID TnPriority DB Size Queries Complexity TnArrivalTime NbQueries Lambda IdleRatio PeakRatio f_peak

1 Standard Medium Simple 0 26 8 29 23 2

2 Basic Small Mixed 13.58 73 8 39 53 3

3 Basic Medium Simple 20.76 38 6 48 13 2

4 Premium Small Complex 25.01 48 2 40 12 2

5 Standard Large Simple 27.32 36 3 14 36 2

6 Standard Medium Mixed 28.17 69 6 29 47 2

3.2 Performance SLO Generator

Most of the commercial DBaaS providers do not define

performance SLOs for individual queries yet, and the bills

received by the tenants are independent of QCTs (different billing

policies will be discussed in section 3.3). Nevertheless, many

tenants expect strongly to have some performance guarantees

along with a pricing policy which pushes the provider to meet the

performance SLOs as much as possible. Some existing research

work [15] [27] proposes different ways to define personalized

SLAs for DBaaS tenants. We believe that including performance

SLOs in an SLA is a reasonable requirement and will be realized

in the near future, even though many efforts still need to be made

in this direction, as we will show later on in detail. In fact, to

some extent, this requires predictable performance of the system,

which has been recognized to be a major research challenge for

the serverless computing paradigm to come true [24].

In this paper, our focus is not to propose another method for

defining SLAs, but to evaluate multi-tenant parallel DBMSs by

assuming that performance SLOs will exist and they should

consequently have an economic impact. For evaluation and

comparison purposes, in order to be fair, we design a performance

SLO generator which provides a QCT threshold for each

benchmark query, and this threshold should be considered by the

SUT, because a penalty needs to be paid in case of violation. For

fixing this threshold, we distinguish two types of queries: ad-hoc

queries and reporting queries. The former expects an immediate

response and the latter has a fixed deadline that is not necessarily

urgent but often rigid. For ad-hoc queries, we assume that the

tenant has an expected QCT. However, the tenant could tolerate

some delay if the price is reduced accordingly and each priority

level has its own tolerance rate. Therefore, as in [12], we

introduce a factor τ (Tolerance rate threshold) such that a penalty

is only paid if the real QCT of the query q running on a database

of scale factor sf is larger than τ times of the QCT threshold in the

SLO, i.e., QCTq,sf > τ * QCT_SLOq,sf. As for the reporting queries,

a hard deadline is defined, which is a precise clock time. A

penalty should be paid in case of any delay.

 In TPC-DS, ad-hoc queries are those concerning the Store and

Web sales, while reporting queries are the remaining ones which

concern the Catalog channel2 . In our proposal, it is logical to

distinguish both types of queries in the same way. To generate the

performance SLOs, we first run the TPC-DS queries in the Power

Test mode (i.e., running the queries sequentially without

concurrent sessions) under a System of Reference (SOR) on a

database of scale factor SFSMALL, SFMEDIIM, and SFLARGE

respectively and register the QCT of each query with each scale

factor. Here, an SOR is defined as a multi-tenant parallel DBMS

installed on top of a hardware infrastructure by the provider with

an initial configuration. For example, in our experimental

demonstration, we use a parallel version of PostgreSQL running

on a cluster of 5 virtual machines. Then, SFSMALL, SFMEDIUM, and

SFLARGE correspond to the possible values of the DBSize

parameter of the simulated tenants. In fact, both the SOR and the

three SF values depend on the business scale of the provider. Each

user of the benchmark should decide them according to the actual

or potential needs of their tenants.

 Based on the obtained numbers through the Power Tests, we

define the QCT_SLO for a query q running on a database of scale

factor sf by Equation [1], where 𝜏𝑅𝐸𝑃𝑂𝑅𝑇𝐼𝑁𝐺 needs to be fixed

before running the benchmark.

𝑄𝐶𝑇_𝑆𝐿𝑂𝑞,𝑠𝑓

= {
𝑄𝐶𝑇𝑞,𝑠𝑓, 𝑖𝑓 𝑞 𝑖𝑠 𝑎𝑛 𝑎𝑑 − ℎ𝑜𝑐 𝑞𝑢𝑒𝑟𝑦

𝑄𝐶𝑇𝑞,𝑠𝑓 ∗ 𝜏𝑅𝐸𝑃𝑂𝑅𝑇𝐼𝑁𝐺, 𝑖𝑓 𝑞 𝑖𝑠 𝑎 𝑟𝑒𝑝𝑜𝑟𝑡𝑖𝑛𝑔 𝑞𝑢𝑒𝑟𝑦
[1]

 In the case of comparing different SUTs, we generate a set of

QCT_SLO for each SUT separately and then apply the following

principles for each query: (1) in an isolated environment (i.e.,

single tenant, fixed amount of resources), at least one SUT can

meet the SLO strictly, without any delay; and (2) there should

exist situations in which the SLO is not met strictly but within the

tolerance threshold (i.e., the QCT is between QCT_SLOq,sf and

τmin * QCT_SLOq,sf), such that the performance differences

between systems could be observed. Here, the value of τmin is the

2 We recall that the TPC-DS imitates the business activity of a large retail company

and tracks its store, web and catalog sales channels.

5

tolerance rate threshold of the tenants with the highest priority

(i.e., Premium). Equation [2] defines the final QCT_SLO, in

which X represents the set of SUTs to compare.

𝑄𝐶𝑇_𝑆𝐿𝑂𝑞,𝑠𝑓

= 𝑚𝑎𝑥(𝑚𝑎𝑥
𝑥∈𝑋

(
𝑄𝐶𝑇𝑆𝐿𝑂𝑞,𝑠𝑓,𝑥

𝜏𝑚𝑖𝑛
) ,𝑚𝑖𝑛

𝑥∈𝑋
(𝑄𝐶𝑇𝑆𝐿𝑂𝑞,𝑠𝑓,𝑥)) [2]

3.3 Configurable Pricing Models

The pricing models used by commercial DBaaS providers fall

into two categories. In the first category, dedicated resources can

be allocated to a tenant for executing queries and the price

depends on the resource amount and the query duration. In the

second category, the price of a query is based on the input data

size. Academic researchers believe that the performance SLOs

should be included in the SLA and the bills for the tenants should

be computed based on the real performance with respect to the

SLO satisfaction[15][27]. Therefore, we introduce another two

pricing models. All these models will be integrated into the

benchmark, in order that the provider could instantiate (and

enrich) one of them according to its business requirements. The

details of each pricing model are as follows.

(1) Resource Consumption-Based pricing model

With the Resource Consumption-Based (RCB) pricing model,

the provider fixes a price for each resource (e.g., CPU, RAM, disk

or network). Very often, a certain amount of CPU, RAM and disk

space is capsulated in a physical or virtual machine, whose price

is based on the duration of utilization, in form of money per time

unit (e.g., hour). When the network usage is billed, the price is

computed based on the volume of data transferred during query

executions, in form of money per unit of data volume (e.g.,

megabytes).

Figure 1: Number of query arrivals per time unit of each tenant

Figure 2: Total number of query arrivals per time unit

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100 120N
u

m
b

er
 o

f
q

u
er

y
 a

rr
iv

al
s

p
er

 t
im

e
u

n
it

Elapsed time units

Tenant 1
Tenant 2
Tenant 3
Tenant 4
Tenant 5
Tenant 6
Tenant 7
Tenant 8
Tenant 9
Tenant 10
Tenant 11
Tenant 12
Tenant 13
Tenant 14
Tenant 15
Tenant 16
Tenant 17
Tenant 18
Tenant 19
Tenant 20

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120

T
o

ta
l

n
u

m
b

er
 o

f
q

u
er

y
 a

rr
iv

al
s

p
er

 t
im

e

u
n

it

Elapsed time units

6

Figure 3: Number of query arrivals per time unit of three typical tenants

(2) Input Data Size-Based pricing model

With the Input Data Size-based (IDS) pricing model, the price

of a query depends on the size of the input data, in form of money

per unit of data volume (e.g., megabytes). The latter can be

calculated precisely, so the invoice is fully auditable for the

tenant. With this model, the tenant priority is not considered in the

billing process.

(3) Service Tier-Based pricing model

With the Service Tier-based (STB) pricing model, several

service tiers are proposed to the tenant [15]. In each tier, there are

multiple query types (e.g., simple, complex, medium) and for each

type, one performance SLO in terms of QCT threshold is defined.

The price of a service tier is in form of money per time unit (e.g.,

hour). If a tier proposes a lower QCT threshold, normally it

should consume more resources to meet the SLO and

correspondingly, the price announced for this tier is higher. The

tenant chooses one tier according to the applications’

requirements. When there is an SLO violation, the provider pays a

penalty to the tenant.

(4) Query Level SLO-Aware pricing model

With theQuery Level SLO-Aware (QLSA) pricing model, the

price of each query depends on the performance SLO satisfaction.

The tolerance rate threshold (the factor τ), which varies from one

tenant to another, is also considered. Normally, a tenant with a

higher priority are less tolerant to delays, but are ready to pay

more money when the SLO is met. If the SLO is met strictly, the

tenant pays the full price. If the SLO is not met strictly but in the

tolerance delay, the tenant pays partially the initial price.

Otherwise, the SLO is violated and the provider should pay a

penalty. One possible way is to calculate the final price with a

pricing function (Equation [3]) included in the SLA [27]:

𝑃𝑅𝑆𝐿𝐴 =

{

 𝑃𝑅𝑒𝑥𝑝, 𝑖𝑓𝑄𝐶𝑇 ≤ 𝑄𝐶𝑇𝑒𝑥𝑝

(
𝑄𝐶𝑇𝑒𝑥𝑝
𝑄𝐶𝑇

) × 𝑃𝑅𝑒𝑥𝑝, 𝑖𝑓𝑄𝐶𝑇𝑒𝑥𝑝 < 𝑄𝐶𝑇 ≤ 𝜏 × 𝑄𝐶𝑇𝑒𝑥𝑝

−𝑃𝑅𝑒𝑥𝑝, 𝑖𝑓𝑄𝐶𝑇 > 𝜏 × 𝑄𝐶𝑇𝑒𝑥𝑝

 [3]

Where QCT is the real query completion time and QCTEXP is the

expected query completion time, which has the same meaning as

QCT_SLO previously defined in this paper. PREXP is the expected

price to pay if the SLO is strictly met, and it is supposed to be

calculated by using the query optimizer according to the amount

of resources that would be consumed and the tenant’s priority. In

this benchmark, we assume that the resources are measured in

terms of number of nodes. In a shared-nothing cluster, a node

contains a processor, a certain amount of memory and some

external storage space. For other parallel architectures, the notion

of node should be adjusted. Precisely, the expected price of a

query q for a tenant tn is generated by using Equation [4].

PREXP (q, tn) =

Nb_nd(q, tn) * Price_per_nd * QCTEXP * τmax / τ(tn) [4]

Where Nb_nd(q, tn) is the number of nodes that are assumed to

use for executing the query q of the tenant tn. τ(tn) is the tolerance

rate threshold of the tenant tn. When a tenant’s tolerance rate

threshold is smaller, it is considered as someone with higher

priority, because that tenant’s queries are usually more urgent.

Consequently, more money should be paid if the urgency is

correctly considered. In Equation [4], τmax represents the tolerance

rate threshold of the tenants with the lowest priority (i.e., Basic).

Then τmax / τ(tn) determines the multiplication factor to compute the

query price of the tenant tn.

3.4 Cost-effectiveness Metrics

The proposed benchmark is assumed to be used by a DBaaS

provider to choose a multi-tenant parallel DBMS among several

candidates, or to validate a new version of an existing one. We

define tenant-oriented metrics to assure that the service is

appealing enough for tenants, as well as provider-oriented metrics

for the provider’s internal use.

(1) Tenant-oriented metrics

The DBaaS provider should be interested in the tenants’

satisfaction. Only when the service is appealing to tenants, it will

make sense to improve the provider-oriented metrics. Therefore,

we propose three Tenant-Oriented metrics (TO metrics for short)

which serve as estimators of tenant feedback. We measure them in

the benchmarking process, on behalf of the provider, to estimate

the tenants’ satisfaction after using the service. Later on, when the

system is served by real tenants, the values of the first two metrics

0

2

4

6

8

10

12

14

20 30 40 50 60 70 80

N
u

m
b

er
 o

f
q

u
er

y
 a

rr
iv

al
s

p
er

 t
im

e
u

n
it

Elapsed time units

Tenant 4 Tenant 8 Tenant 16

7

could be obtained statistically and become QoS indicators, while

the value of the third one has no more sense. This could be

understood easily after reading the definition of the three metrics

below.

TO_Metric 1: SSR (SLO Satisfaction Rate), which is the

percentage of the number of queries that have been successfully

executed over the total number of queries. This calculation applies

to the entire workload (Equation [5]).

 𝑆𝑆𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 𝑚𝑒𝑒𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑆𝐿𝑂

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑚𝑖𝑡𝑡𝑒𝑑 𝑞𝑢𝑒𝑟𝑖𝑒𝑠
 [5]

The metric SSR is straight-forward but we choose it not only for

its simplicity. The reason of considering each query equally

regardless of its complexity, urgency and duration is that, these

factors are already considered when defining the SLO, the price

and the potential penalty of the query. Therefore, the rejection of

any query represents the same level of loss for all tenants. In fact,

when the tenant considers that one query is more “important” than

another, a higher price will often be paid for that query, and in

case of SLO violation, the refund is also higher. Thus, there is no

need to add tenant or query level co-efficiencies when we measure

the tenants’ global satisfaction.

TO_Metric 2: FTS (Fairness between the Tenants’

Satisfaction rates). For the same query, a tenant with a lower

priority is ready to pay less money but also ready to have a longer

delay to get the query result. The provider can guide the tenant to

choose the most appropriate priority level, but once the

performance SLOs are established, the provider should be

responsible for meeting them. Therefore, tenants with a low

priority should be treated equally and should have the same level

of satisfaction with regard to what is expected. To measure that,

we compute the SLO satisfaction rate of each tenant and then

calculate the standard deviation, as shown by Equation [6], where

n is the number of tenants chosen for the benchmarking process,

SSRi is the SLO satisfaction rate of the tenant i and 𝑆𝑆𝑅 is the

average SSR of all tenants. If the standard deviation is 0, meaning

that all SSRs are the same, we assign the FTS score to be 1.

Otherwise, we assign the FTS score to be the inverse of the

standard deviation.

 𝐹𝑇𝑆 = {

1, 𝑖𝑓 𝑆𝑆𝑅𝑖 = 𝑆𝑆𝑅𝑗 , ∀ 𝑖 ≠ 𝑗

1/√
1

𝑛
∑ (𝑆𝑆𝑅𝑖 − 𝑆𝑆𝑅)

2𝑛
𝑖 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 [6]

TO_Metric 3: TPAT (Total Payment of All Tenants), which is

simply the sum of the bills of all tenants. This metric is even more

straight-forward and has been naturally used by most of the

benchmarks cited in Section 2. We cannot ignore it: the query

workload is the same for all SUTs, and therefore, the difference

on the final bills has a significant meaning for the tenants,

especially when there are similar results on the other metrics. The

added-value of this metric in the MTD-DS benchmark is that, this

metric is measured by using the pricing model of the DBaaS

provider that is explicitly described and integrated into the

benchmark. When the same pricing model is used for both SUT1

and SUT2, if other metrics show similar scores for both systems,

but the TPAT of the SUT1 is much higher than that of the SUT2,

we could doubt about the capacity of the SUT1 (e.g., the resource

utilization is suboptimal). In other benchmarks, tests are often

made on two DBaaS providers by treating them as black-boxes. In

that case, when the bill of one provider is higher, we cannot guess

it is due to the system capacity or simply caused by the pricing

policy.

(2) Provider-oriented metrics

The main objective of a DBaaS provider is to maximize its

long-term economic benefit. However, simply compute a final

gain is not enough to show that a multi-tenant parallel DBMS

adapts well to query workload variations and resource limitations.

In other words, if a system allows a high benefit for a fixed query

workload by using a fixed amount of resources, we cannot deduce

if it can bear changing workloads without losing money.

Therefore, we first define two Provider-Oriented metrics (PO

metrics for short) that need to be measured by stressing the system

progressively, representing two kinds of saturation thresholds:

PO_Metric 1: MNN (Minimum Number of Nodes required

before a system saturation) under the reference query arrival rate.

PO_Metric 1 Bis: HARF (Highest Arrival Rate Factor before

a system saturation) under the reference number of nodes.

A system saturation stands for the situation where the LUBF

(Long-term Unit Benefit Factor, Equation [7]) becomes negative,

due to excessive SLO violations, or the SLO satisfaction rate

(SSR defined above) is lower than a certain value (SSRMIN).

LUBF = Total economic benefit / Total elapsed time [7]

In [8], the total economic benefit is computed by removing the

resource consumption costs and the penalties from the sum of the

income brought by all queries. The total elapsed time is the time

elapsed from the arrival of the first query and the completion of

the last query of the complete query workload.

In the definition of these two metrics, the reference query

arrival rate corresponds to an initial target query arrival rate that

the system is designed for, while the reference number of nodes

corresponds to the number of nodes that the DBaaS provider

would like to start with. Very often, only one of these two values

can be imposed by the provider when performing the benchmark,

and only one of the two metrics (MNN and HARF) is of interest.

In addition to MNN and HARF which test the behaviors of the

SUT under pressure, we also propose another two PO metrics

which indicates the potential of the SUT to maximize the

provider’s long-term benefit.

PO_Metric 2: ONN (Optimal Number of Nodes) which gives

the highest LUBF under the reference query arrival rate (if it is

known).

PO_Metric 2 Bis: OARF (Optimal Arrival Rate Factor) which

gives the highest LUBF under the reference number of nodes (if it

is known).

Normally, during a benchmarking process, either MNN and

ONN are measured, or HARF and OARF are measured, along

with the corresponding LUBFs. Moreover, in case that HARF and

OARF are measured, one of them could be more important than

the other. For example, for a commercial DBaaS provider, the

OARF is more meaningful for it to regulate the number of

accepted tenants in order to fit the optimal query arrival rate. In

contrast, for a non-profitable DBaaS provider (e.g., a government

or a multi-organization federation), the objective is to serve all

eligible tenants without loosing money. Therefore, the HARF is a

more important indicator in its decision-making process.

8

(3) All together for comparing SUTs

When there are several SUTs to compare, we normalize the

values of all metrics into the interval [ARFmin, ARFmax] and show

them together within a radar chart. For the ARF dimension, we

preserve the original values. For the SSR, FTS and LUBF

dimensions, we divide the original value of each SUT by the

maximum one of all SUTs and then multiply with the maximum

value of all ARF. For the TPAT dimension, we divide the

minimum value of all SUTs by the original value of each SUT

respectively and multiply with the maximum value of all ARF. In

this case, in each dimension, the best SUT gets the full score.

We expect that, there is at least one SUT that outperforms all

others in all dimensions and it will be the “winner”. In section 4,

we will demonstrate how this could be technically possible,

especially when comparing two versions of the same original

system. In consequence, the providers are motivated to improve

their systems through innovations, which allows obtaining their

business objectives without hurting the tenants’ interests.

Figure 4 gives an example radar chart for a non-profitable

DBaSS provider, where the HARF metric is used and the

corresponding LUBF is drawn. In this example, System B

outperforms both System A and System C. Therefore, the

provider would finally decide to adopt System B for its DBaaS.

Figure 4. An example radar chart for comparing systems

Figure 5: The MTD-DS benchmark execution rules

3.5 Execution Rules

To run the benchmark, we define the steps to follow as below.

Step 1. Use the TPC-DS tool kit to generate data and queries

for three scale factors SFSMALL, SFMEDIUM, and SFLARGE

respectively. We recall that the exact values of these scale factors

are chosen by the service provider according to its estimated or

real business scale.

Step 2. Create the three databases and load the generated data

into them. Create indexes and auxiliary data structures which

could be used by the reporting queries.

Step 3. Run the TPC-DS queries in the Power Test mode on

each of the three databases and register the QCT of each query for

each chosen scale factor.

Step 4. Run the performance SLO generator to define the

QCT_SLO for each query with respect to each representative scale

factor.

Step 5. Run the multi-tenant query workload generator for the

chosen number of tenants.

Step 6. Launch the query workload on the SUT, similar to the

Throughput Test of the TPC-DS. The difference is that, the query

arrival times are determined in Step 5 by running the multi-tenant

query workload generator. Register the execution traces.

Step 7. Repeat Step 6 by adding or removing one node to the

SUT in each iteration until detecting both the MNN and the ONN.

Step 8. Repeat Step 6 by increasing or decreasing one to the

Arrival Rate Factor (ARF) in each iteration until detecting both

the HARF and the OARF.

Step 9. Based on the results of Step 7 and/or Step 8, calculate

the scores of all metrics.

These steps and their execution order are shown in the Figure

5. We summarize the input parameters of the benchmark

execution in Table 4.

Table 4: Input parameters of the MTD-DS benchmark

Parameter Signification

SFSMALL A representative scale factor of the small databases.

SFMEDIUM
A representative scale factor of the medium size

databases.

SFLARGE A representative scale factor of the large databases.

NbTenants The number of tenants to generate for the benchmarking.

τBASIC The tolerance rate threshold of the “basic” tenants.

τSTANDARD The tolerance rate threshold of the “standard” tenants.

τPREMIUM The tolerance rate threshold of the “premium” tenants.

τREPORTING
The tolerance rate threshold used to generate the deadline

of a reporting query.

0

2

4

6

8

10
HARF

LUBF (normalized)

SSR (normalized)FTS(normalized)

TPAT(normalized)

System A System B System C

9

4 EXAMPLE EXPERIMENTAL RESULTS

In this section, we present some preliminary experiments and

their results in order to: (1) illustrate how the benchmark could be

used; (2) show the feasibility of the benchmark, i.e., its ability to

run on a real system within a reasonable benchmarking duration;

and (3) validate the relevance of the proposed metrics, i.e., to see

if the results can be easily interpreted to draw valuable insights.

First, we describe the experimental environment. Then, we take

two pricing models as examples to show some obtained results.

4.1. Experimental Settings

Since the target users of the MTD-DS benchmark are DBaaS

providers, it is inadequate for us to use directly existing

commercial DBaaS systems, because we can only play the role of

a tenant thus do not have any control on the internal

implementation or configuration of those systems. It would be

preferable to install multi-tenant parallel DBMSs on top of a

Cloud-scale cluster (which can be rented from an IaaS provider).

However, this is too much time and money consuming with

regard to our objective (i.e., to demonstrate the benchmarking

process). Therefore, we chose to configure a tiny but real cluster

with our own materials for a DBaaS deployment. A brief

description of the experimental settings is given below.

(1) Multi-tenant parallel DBMS configuration

 We use Postgres-XL3, a parallel version of PostgreSQL, as the

underlying multi-tenant parallel DBMS of the SUTs. It is installed

on top of 5 virtual machines residing in 2 physical personal

computers connected by a local network. The virtual machines

have their own IP addresses and can access each other by using

the SSH (Secure Shell) protocol. The main characteristics of these

machines can be found in Table 5 and Table 6.

Table 5: Main characteristics of the physical computers

Name CPU RAM Size External Storage OS

PC1 2.30GHz,

16 cores

16 GB SSD, 512 GB Windows 10

PC2

1.70GHz,

8 cores

16 GB SSD, 256 GB Windows 10

Table 6: Main characteristics of the virtual machines

Name Nb.

CPU

cores

RAM

Size

External

Storage

Size

OS Physical

computer

Master 2 4 GB 120 GB Ubuntu PC1
Data1 2 4 GB 60 GB Ubuntu PC1

Data2 2 4 GB 60 GB Ubuntu PC1

Data3 2 6 GB* 60 GB Ubuntu PC2
Data4 2 4 GB 60 GB Ubuntu PC2

*The RAM size of Data3 was increased during our experiments because it was

discovered to be the busiest node and 4GB was not enough to handle multiple

concurrent tenant connections.

 The Postgres-XL cluster contains one GTM (Global

Transaction Manager), one coordinator and 4 data nodes. The

GTM and the coordinator are collocated in the virtual machine

Master. Each data node uses a separate virtual machine. The

global architecture is shown in Figure 6. We used the default

3 Repository: https://git.postgresql.org/gitweb/?p=postgres-xl.git

values for most PostgreSQL configuration parameters, except the

ones listed in Table 7.

Figure 6: Postgres-XL cluster deployment architecture

Table 7: Customized PostgreSQL configuration parameter values4

Parameter Customized value
shared_buffers 512 MB

temp_buffers 64 MB
work_mem 32 MB

effective_io_concurrency 10

enable_material off
enable_nestloop off (except for queries with “Exists”)

random_page_cost 1.1

parallel_setup_cost 100

(2) Benchmark related parameter values

Constrained by the above system deployment and

configuration, we tested the MTD-DS benchmark in a relatively

small-scale setting, such that a benchmarking run lasts no more

than 24 hours. The chosen values could be found in Table 8.

Table 8: Benchmark related parameter values

Parameter Value used for the experimentation

SFSMALL 1

SFMEDIUM 2

SFLARGE 3*

NbTenants 6*

τBASIC 100

τSTANDARD 50

τPREMIUM 10

τREPORTING 1000

*We were not able to use larger values for these two parameters, because each

tenant has its own database and the concurrent execution of queries from multiple

tenants requires a lot of RAM, or extremely long execution times caused by heavy

swapping.

(3) Tenants’ placement

 In fact, the example shown in Table 3 (in Section 3.1) contains

the real values produced by the query workload generator.

Therefore, we have 2 tenants (Tenant 2 and Tenant 4) with small

databases, 3 tenants (Tenants 1, 3 and 6) with medium size

databases, and 1 tenant (Tenant 5) with a relatively large database.

4 The signification of these parameters could be found here:

https://www.postgresql.org/docs/11/runtime-config.html, mainly in “Resource

Consumption” and “Query Planning” sections.

https://git.postgresql.org/gitweb/?p=postgres-xl.git
https://www.postgresql.org/docs/11/runtime-config.html

10

The placement of these tenants is done as follows: (1) the number

of nodes for each tenant corresponds to the scale factor of its

database; (2) when there are 2 or 3 data nodes needed by a tenant,

we take at least one data node from each physical computer; (3)

globally, the data nodes are allocated to the tenants of each scale

in a round-robin way. The resulting tenant placement matrix is

given in Table 9.

Table 9: Tenant placement matrix

 DN1

(on PC1)

DN2

(on PC1)

DN3

(on PC2)

DN4

(on PC2)

Tenant 1 × ×
Tenant 2 ×

Tenant 3 × ×

Tenant 4 ×
Tenant 5 × × ×

Tenant 6 × ×

 For each tenant, the fact tables are partitioned by using the hash

partitioning method, while the dimension tables are replicated on

all nodes allocated to the tenant.

(4) SUTs description

 We have implemented a driver program which submits the

queries of all tenants to Postgres-XL according to the arrival times

defined in the generated query workload. When Postgres-XL is

too busy and refuses a query, this query will be queued by the

driver and resubmitted later on. Interestingly but not surprisingly,

the way how these queries are queued has a big impact on the

final benchmarking scores. Based on this observation, we have

implemented two different ways to order concurrent queries and

treat them as two SUTs (SUT1 and STU2) for comparison. We

choose to do this in the driver level rather than modifying the

parallel DBMS kernel, because the latter is much more

complicated and itself is actually a challenging research topic. We

are actually working on that in parallel of the benchmark proposal

[7]. In the current paper, we do not seek the optimality but only

the diversity when choosing the SUTs. Below, we highlight the

differences of the chosen SUTs.

 In SUT1, if a query cannot be accepted immediately by

Postgres-XL, it is added to the end of the waiting queue. Then, the

FIFO (First-In-First-Out) policy is applied. The number of

allowed concurrent queries by Postgres-XL is set to 3, due to the

resource limitation.

 In SUT2, we maintain a second queue for the long-running

queries, in order to avoid disproportionally long waiting time of

the short-running queries. The number of allowed concurrent

queries by Postgres-XL is also set to 3, but at any moment, at

most 1 long-running query is handled by Postgres-XL. therefore,

2 or 3 short-running queries could execute concurrently.

4.2. Execution Traces Analysis

 For each of the 290 queries in the generated workload, we

create a threading timer in the driver program to control the

launch time. When a query is accepted by Postgres-XL, it starts

executing. When the execution is finished, Postgres-XL returns a

success message to the driver program. Therefore, we were able to

register the execution traces of all queries in a file according to the

following format <TenantId, QueryId, TimerId, Event,

Timestamp>. The Event element corresponds to Launched,

Started or Finished. After executing all queries, we transform the

traces into another format that will be used by the billing process

and the visualization. In the transformed traces, we have

<SUT_Name, ClusterSize, ArrivalRateFactor, TenantId, QueryId,

TimerId, LaunchTime, StartTime, FinishTime> and we can

deduce the Wating time and the Execution duration of each query.

(a) ARF = 2

(b) ARF = 10

Figure 7. Waiting time and execution duration of each query

for the SUT2 under 2 different query arrival rates

00:51:50 00:54:43 00:57:36 01:00:29 01:03:22 01:06:14 01:09:07

q62

q18

q11

q58

q39

q86

q53

q90

q88

q31

q80

q37

q28

q96

q89

q21

q12

q3

q86

q20

te
n
an

t2
te

n
an

t3

Waiting Execution

00:10:05 00:10:48 00:11:31 00:12:14 00:12:58 00:13:41

q62

q18

q11

q58

q39

q86

q53

q90

q88

q31

q80

q37

q28

q96

q89

q21

q12

q3

q86

q20

te
n
an

t2
te

n
an

t3

Waiting Execution

11

 In Figure 7, we visualize the execution traces of SUT2 under 2

different query arrival rate factors. For a better readability, we will

not show the traces of all queries but only zoom on several queries

of Tenant2 and Tenant3. We can observe that, when the query

arrival rate factor is high (Figure 7(b)), many queries should wait

in the queues before being executed. However, we cannot

conclude that it represents a worse scenario than that in Figure

7(a) without considering precisely the performance SLOs. If the

tenants do not feel very disappointed regardless of the delay, the

provider would prefer the scenario in Figure 7(b), because the

resources are fully utilized during the query arrival period.

Therefore, carefully chosen metrics are necessary for the provider

to adjust its business ambition with regard to the invested

resources, or to calibrate the resources with regard to its business

scale. Below, we will examine if our proposed metrics could help

facilitating the provider’s decision making, by instantiating two

different pricing models: RCB and QLSA.

4.3. Results with the RCB Pricing Model

We start by using the RCB pricing model, meaning that the

tenants’ bills are calculated based on the amount and the duration

of resource consumption during their query executions, as

described in Section 3.3. With this model, we compare SUT1 and

SUT2. The global trend is that the LUBF increases when the

query arrival rate factor is higher, even though the tenants’

satisfaction rate and the fairness factor decrease (see Figure 8 and

Figure 9). Therefore, the conflict of interests between the provider

Figure 8: Global trend of the main metrics for SUT1 (RCB)

Figure 9: Global trend of the main metrics for SUT2 (RCB)

and the tenants is obvious. In this case, the threshold for the

tenants’ SLO satisfaction rate (SSRMIN) should be declared

explicitly. In our example, we use SSRMIN = 70%. Based on this

threshold, we can deduce that, both the HARF and OARF values

for SUT1 is 2, and those for SUT2 is 10. Putting all metrics

together, we get the radar chart in Figure 10, showing that SUT2

gives better results on all metrics.

Figure 10: Comparison of SUT1 and SUT2 (RCB)

 Independent of system comparing, an interesting observation is

that, with the same SUT, the total amount of the tenants’ payment

increases sometimes while the SLO satisfaction rate decreases, as

shown in Figure 11 for SUT2. This is somehow illogical: when

the provider receives too many concurrent queries, the execution

time of each query may be longer than expected due to

interference from other queries; instead of receiving recompense

from the provider, the affected tenants need to pay a higher bill. It

represents a kind of unfairness in the tenants’ point of view.

Therefore, we argue that this pricing model is inappropriate for

billing database queries, where the resource consumption does not

only depend on the problem complexity (e.g., the query type and

the database size, etc.), but also depends on the quality of the

solution (e.g., query execution plan selection and performance

isolation, etc.) which is under the provider’s responsibility.

Figure 11: TPAT vs. SSR for SUT2 (RCB)

4.4. Results with the QLSA Pricing Model

 With the QLSA pricing model, the price of each query is

independent of the resource consumption during the real

execution. It is calculated based on a baseline resource

consumption, as well as the discrepancy between the real QCT

and the expected QCT. The aim is that the tenants do not pay

more if it is the provider who fails to execute a query in an

optimal way and they could even receive a refund when the

performance SLO is not met. Figure 12 shows this consistency for

SUT2 by using the QLSA pricing model.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

-400

-200

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S
S

R
 (

S
L

O
 S

at
is

fa
ct

io
n
 R

at
e)

 /
 F

T
S

 (
F

ai
rn

es
s

b
et

w
ee

n
 t

h
e

T
en

an
ts

' S
at

is
fc

ac
ti

o
n
)

L
U

B
F

 (
L

o
n
g

-t
er

m
 U

n
it

 B
en

ef
it

 F
ac

to
r

(c
en

ts
/s

ec
o

n
d
)

ARF (Arrival Rate Factor)

LUBF SSR FTS

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

-300

-200

-100

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S
S

R
 (

S
L

O
 S

at
is

fa
ct

io
n
 R

at
e)

 /
 F

T
S

 (
F

ai
rn

es
s

b
et

w
ee

n
 t

h
e

T
en

an
ts

' S
at

is
fc

ac
ti

o
n
)

L
U

B
F

 (
L

o
n
g

-t
er

m
 U

n
it

 B
en

ef
it

 F
ac

to
r

(c
en

ts
/s

ec
o

n
d
)

ARF (Arrival Rate Factor)

LUBF SSR FTS

0

5

10
ARF

LUBF (normalized)

SSR (normalized)FTS(normalized)

TPAT(normalized)

SUT1-HARF/OARF SUT2-HARF/OARF

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1220

1240

1260

1280

1300

1320

1340

1360

1380

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S

S
R

 (
S

L
O

 S
at

is
fa

ct
io

n
 R

at
e)

T
P

A
T

 (
T

o
ta

l
P

ay
m

en
t

o
f

A
ll

 T
en

an
ts

)

in
 c

en
ts

ARF (Arrival Rate Factor)

TPAT SSR

12

 In Figure 13, we can see another change about the LUBF

evolution trend (compared to Figure 9): when the ARF grows, the

LUBF increases at the beginning because of the system’s higher

resource utilization ratio, but it decreases later due to penalties

caused by SLO violations. In this case, the provider’s benefit is

more directly linked to the tenants’ SLO satisfaction.

Figure 12: TPAT vs. SSR for SUT2 (QLSA)

Figure 13: Global trend of the main metrics for SUT2 (QLSA)

Finally, we draw the radar chart for comparing SUTs under

the QLSA pricing model in Figure 14. This time, the HARF and

OARF have different values for the SUT2. In fact, SUT2 can

sustain an ARF of 10 without disappointing too much the tenants

(SSR > 70%), but the optimal ARF is 9, where it gives the best

LUBF as well as a much better SSR (87%) but with a slightly

higher bill for the tenants (2%).

Figure 14: Comparison of SUTs (QLSA)

4.5. Lessons Learned

Below, we summarize some lessons that we have learned through

the design of the benchmark and the experiments.

Lesson 1. As a multi-tenant parallel DBMS user, facing the

inherent conflict between its benefit and the tenants’ performance

SLOs, the provider should choose carefully its pricing model in

order to allow better trade-offs and fair negotiations (ref. Figures

9 and 13).

Lesson 2. When the provider chooses a multi-tenant parallel

DBMS among several candidates, it should be confident that,

technically, it is possible that a system (or a version of a system,

or even a special way to use a system) could give better results

than another one on both tenant-oriented and provider-oriented

metrics (ref. Figures 10 and 14).

Lesson 3. Based on the preliminary system comparisons, we

believe that, a large spectrum of work could be done on the

internal implementations of multi-tenant parallel DBMSs (e.g.,

admission control, workload management, query optimization and

lower level resource allocation) in order to improve both the

provider’s benefit and the tenants’ performance SLOs.

5 CONCLUSION

 In this paper, we presented MTD-DS benchmark for multi-

tenant parallel DBMSs by extending TPC-DS, in order to include

multi-tenancy considerations. Concretely, we have added a multi-

tenant query workload generator, a performance SLO (Service

Level Objective) generator, some configurable DBaaS pricing

models, and new metrics to measure the potential capability of a

multi-tenant parallel DBMS in obtaining the best trade-off

between the provider’s benefit and the tenants’ satisfaction.

 We conducted experiments with a small but real system to run

the proposed benchmark on two variations of the system, in order

to demonstrate the feasibility of the benchmark and the relevance

of the proposed metrics. Two pricing models were instantiated

and examined along with the systems under test. Interesting

observations have been made, which allow us a better

understanding of what a provider and a multi-tenant parallel

DBMS designer could do to offer a better DBaaS product.

ACKNOWLEDGMENTS

This work has been funded by both the MCD project of the LabEx CIMI and

the project number 44086TD of the Amadeus program 2020 (French-Austrian

Hubert Curien Partnership – PHC). The Amadeus program 2020 is supported

by the French Ministries of Foreign and European Affairs and of Higher

Education and Research, as well as the International Cooperation & Mobility

(ICM) of the Austrian Agency for International Cooperation in Education and

Research (OeAD-GmbH).

REFERENCES

[1] Victor Aluko, Sherif Sakr: Big SQL systems: an experimental evaluation.

Clust. Comput. 22(4): 1347-1377 (2019).

[2] Amazon Redshift. https://aws.amazon.com/redshift/.

[3] Cloudera Data Warehouse.

https://www.cloudera.com/products/data-warehouse.html.

[4] Avrilia Floratou, Umar Farooq Minhas, Fatma Özcan: SQL-on-Hadoop: Full

Circle Back to Shared-Nothing Database Architectures. Proc. VLDB Endow.

7(12): 1295-1306 (2014).

[5] Ahmad Ghazal, Tilmann Rabl, Minqing Hu, Francois Raab, Meikel Poess,

Alain Crolotte, Hans-Arno Jacobsen: BigBench: towards an industry standard

benchmark for big data analytics. SIGMOD Conference 2013: 1197-1208.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2300

2400

2500

2600

2700

2800

2900

3000

3100

3200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S

S
R

 (
S

L
O

 S
at

is
fa

ct
io

n
 R

at
e)

T
P

A
T

 (
T

o
ta

l
P

ay
m

en
t

o
f

A
ll

 T
en

an
ts

)
in

ce
n

ts

ARF (Arrival Rate Factor)

TPAT SSR

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S
S

R
 (

S
L

O
 S

at
is

fa
ct

io
n
 R

at
e)

 /
 F

T
S

 (
F

ai
rn

es
s

b
et

w
ee

n
 t

h
e

T
en

an
ts

' S
at

is
fc

ac
ti

o
n
)

L
U

B
F

 (
L

o
n
g

-t
er

m
 U

n
it

 B
en

ef
it

 F
ac

to
r

(c
en

ts
/s

ec
o

n
d
)

ARF (Arrival Rate Factor)

LUBF

SSR

FTS

0
2
4
6
8

10
ARF

LUBF (normalized)

SSR (normalized)FTS(normalized)

TPAT(normalized)

SUT1-HARF/OARF SUT2-HARF SUT2-OARF

https://aws.amazon.com/redshift/
https://www.cloudera.com/products/data-warehouse.html

13

[6] Henry Cook, Merv Adrian, Rick Greenwald, Xingyu Gu. 2022 Gartner Magic

Quadrant for Cloud Database Management Systems. December 13, 2022.

[7] Mira El Danaoui, Shaoyi Yin, Abdelkader Hameurlain, Franck Morvan. A

Cost-Effective Query Optimizer for Multi-tenant Parallel DBMSs. ADBIS

2023: 25-34.

[8] Google BigQuery. https://cloud.google.com/bigquery/.

[9] Randolph W. Hall. Queueing methods: for services and manufacturing.

Englewood Cliffs (N.J.): Prentice Hall; 1991.

[10] William H. Inmon. EIS and the data warehouse: A simple approach to building

an effective foundation for EIS, Database Programming and Design, 5(11):70-

73, 1992.

[11] Shrainik Jain, Dominik Moritz, Daniel Halperin, Bill Howe, Ed Lazowska:

SQLShare: Results from a Multi-Year SQL-as-a-Service Experiment.

SIGMOD Conference 2016: 281-293.

[12] W. Lang, S. Shankar, J. M. Patel, and A. Kalhan. Towards multi-tenant

performance SLOs. In ICDE, pages 702–713, 2012.

[13] Microsoft Azure SQL. https://azure.microsoft.com/en-us/products/azure-sql/.

[14] Vivek R. Narasayya, Surajit Chaudhuri. Multi-Tenant Cloud Data Services:

State-of-the-Art, Challenges and Opportunities. SIGMOD Conference 2022:

2465-2473.

[15] Jennifer Ortiz, Victor Teixeira de Almeida, Magdalena Balazinska: Changing

the Face of Database Cloud Services with Personalized Service Level

Agreements. CIDR 2015.

[16] Raghunath Othayoth Nambiar, Meikel Poess: The Making of TPC-DS. VLDB

2006: 1049-1058.

[17] Meikel Pöss, Raghunath Othayoth Nambiar, David Walrath. Why You Should

Run TPC-DS: A Workload Analysis. VLDB 2007: 1138-1149.

[18] Meikel Poess, Tilmann Rabl, Hans-Arno Jacobsen: Analysis of TPC-DS: the

first standard benchmark for SQL-based big data systems. SoCC 2017: 573-

585.

[19] Nicolás Poggi, Víctor Cuevas-Vicenttín, Josep Lluis Berral, Thomas Fenech,

Gonzalo Gómez, Davide Brini, Alejandro Montero, David Carrera, Umar

Farooq Minhas, José A. Blakeley, Donald Kossmann, Raghu Ramakrishnan,

Clemens A. Szyperski: Benchmarking Elastic Cloud Big Data Services Under

SLA Constraints. TPCTC 2019: 1-18.

[20] Oracle Cloud. https://www.oracle.com/cloud/.

[21] Alexander van Renen, Viktor Leis. Cloud Analytics Benchmark. Proc. VLDB

Endow. 16(6): 1413-1425 (2023).

[22] ScaleGrid. https://scalegrid.io/

[23] Snowflake. https://www.snowflake.com.

[24] Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandelwal, João Carreira,

Neeraja Jayant Yadwadkar, Raluca Ada Popa, Joseph E. Gonzalez, Ion Stoica,

David A. Patterson. What serverless computing is and should become: the next

phase of cloud computing. Commun. ACM 64(5): 76-84 (2021).

[25] TPC Pricing specification.

https://www.tpc.org/tpc_documents_current_versions/pdf/pricing_v2.8.0.pdf.

[26] Adrian Vogelsgesang, Michael Haubenschild, Jan Finis, Alfons Kemper,

Viktor Leis, Tobias Mühlbauer, Thomas Neumann, Manuel Then: Get Real:

How Benchmarks Fail to Represent the Real World. DBTest@SIGMOD 2018:

1:1-1:6.

[27] Shaoyi Yin, Abdelkader Hameurlain, Franck Morvan: SLA Definition for

Multi-Tenant DBMS and its Impact on Query Optimization. IEEE Trans.

Knowl. Data Eng. 30(11): 2213-2226 (2018).

https://cloud.google.com/bigquery/
https://azure.microsoft.com/en-us/products/azure-sql/
https://www.oracle.com/cloud/
https://scalegrid.io/
https://www.snowflake.com/

