
HAL Id: hal-04312262
https://hal.science/hal-04312262

Submitted on 28 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MTD-DS: an SLA-aware Decision Support Benchmark
for Multi-tenant Parallel DBMSs

Shaoyi Yin, Franck Morvan, Jorge Martinez-Gil, Abdelkader Hameurlain

To cite this version:
Shaoyi Yin, Franck Morvan, Jorge Martinez-Gil, Abdelkader Hameurlain. MTD-DS: an SLA-aware
Decision Support Benchmark for Multi-tenant Parallel DBMSs. IRIT/RR–2023–05–FR, IRIT - Insti-
tut de Recherche en Informatique de Toulouse. 2023. �hal-04312262�

https://hal.science/hal-04312262
https://hal.archives-ouvertes.fr


Research Report: IRIT/RR--2023--05--FR Nov. 2023 
 

1 

 

MTD-DS: an SLA-aware Decision Support Benchmark for 
Multi-tenant Parallel DBMSs

Shaoyi Yin 
 Paul Sabatier University, 

Toulouse, France 
 shaoyi.yin@irit.fr 

Franck Morvan 
 Paul Sabatier University,  

Toulouse, France 
 franck.morvan@irit.fr 

Jorge Martinez-Gil 
Software Competence Center 

Hagenberg GmbH, Hagenberg, 
Austria 

 jorge.martinez-gil@scch.at 

Abdelkader Hameurlain 
 Paul Sabatier University, Toulouse, France 

 abdelkader.hameurlain@irit.fr 

ABSTRACT 

Multi-tenant DBMSs are used by Cloud providers for their DBaaS 

(Database-as-a-Service) products. They could be Single-node 

RDBMSs installed in VMs, SQL-on-Hadoop systems running on 

a cluster, or parallel RDBMSs with a shared-nothing or shared-

disk architecture. From a Cloud provider’s point of view, it is 

interesting to measure these systems’ capability of dealing with 

multi-tenant workloads. From a tenant’s point of view, having the 

above information on different providers could be helpful in 

choosing the most suitable one (or several for a multi-cloud 

deployment).  In this paper, we present MTD-DS benchmark 

(with MTD for Multi-Tenant parallel DBMSs and DS for 

Decision Support), which extends TPC-DS by adding a multi-

tenant query workload generator, a performance SLO (Service 

Level Objective) generator, configurable DBaaS pricing models, 

and new metrics to measure the potential capability of a multi-

tenant parallel DBMS in obtaining the best trade-off between the 

provider’s benefit and the tenants’ satisfaction. Example 

experimental results have been produced to show the relevance 

and the feasibility of the MTD-DS benchmark. 

CCS CONCEPTS 

• Information systems➝Data management systems➝Database 

management system engines➝Parallel and distributed 

DBMSs • Information systems➝Data management 

systems➝Database management system engines➝Online 

analytical processing engines. 

KEYWORDS 

Database management systems; Decision support; 

Benchmark; Multi-tenancy; Service level agreement.   

1 INTRODUCTION 

More and more multi-tenant DBMSs have been deployed in the 

Cloud in form of DBaaS (Database-as-a-Service), such as 

Amazon Redshift [2], Google BigQuery [8], MS Azure SQL [13], 

Oracle Cloud [20], Snowflake [23], Cloudera Data Warehouse 

[3], ScaleGrid [22], and many others [6]. The underlying 

implementations vary and they fall mainly into three categories: 

Single-node RDBMSs installed in VMs, SQL-on-Hadoop systems 

(e.g., HIVE, Spark SQL) running on a cluster, and parallel 

RDBMSs with a shared-nothing or shared-disk architecture. These 

Cloud-based systems make it possible to develop new decision-

support applications very quickly [14]. Moreover, they allow the 

tenants to reduce dramatically their monetary costs compared to 

on-premise solutions that run on dedicated servers [14]. 

From a Cloud provider’s point of view, it is interesting to 

measure its system’s capability of dealing with multi-tenant 

workloads which are characterized by: (1) unstable query arrival 

rates, (2) different levels of SLA (Service Level Agreement), and 

(3) heterogeneity of tenants’ requirements (in terms of database 

size, query complexity…). From a tenant’s point of view, having 

the above information on different providers could help in 

choosing the most suitable one (or several for a multi-cloud 

deployment). Therefore, it is important to have a benchmark that 

helps both Cloud providers and tenants in making their choices. 

There exist several TPC (Transaction Processing Performance 

Council) benchmarks in the decision support domain and the most 

popular one is TPC-DS [16][17][18]. It uses multiple snowflake 

schemas containing 24 relations. There are 99 SQL queries that 

cover ad-hoc, reporting, iterative OLAP and data mining type 

workloads. TPC-DS has already been used directly to study the 

behavior of SQL-on-Hadoop systems [1][4]. However, since 

many cloud-related factors, such as the multi-tenant workload 

characteristics and the various possible pricing models, cannot be 

directly integrated into the original TPC-DS benchmark, the 

above evaluations are limited to on-premise settings. 

In this paper, we present MTD-DS benchmark (with MTD for 

Multi-Tenant parallel DBMSs and DS for Decision Support), 

which extends TPC-DS by adding: (1) a multi-tenant query 

workload generator, (2) a performance SLO (Service Level 

Objective, an important component in an SLA) generator which 
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defines a performance SLO for each query in the workload, (3) 

configurable DBaaS pricing models, and (4) new metrics to 

measure the potential capability of the multi-tenant parallel 

DBMS in obtaining the best trade-off between the provider’s 

benefit and the tenants’ satisfaction. We expect to make our 

proposal as an evaluation tool for the following use cases: (1) a 

current DBaaS provider would like to evaluate its system and test 

new ideas (e.g., new query optimization methods) in order to 

increase its economic benefit without hurting the tenants’ 

interests, and (2) a future DBaaS provider would like to choose a 

DBMS product and a corresponding deployment strategy. Our 

target users also include non-profitable DBaaS providers whose 

objective is to self-finance the offered services. Governments who 

hold the data of all public hospitals and federations of multiple 

financially autonomous organizations are potential examples. In 

case of a private Cloud deployment (e.g., inside a single 

organization), the tenants often use the services for free, but 

pricing models remain interesting: the provider can generate 

virtual bills such that the tenants will be aware of what they have 

consumed and thus pay attention to their future utilization. 

The rest of the paper is organized as follows. In section 2, we 

present the related work. In section 3, we explain our SLA-aware 

benchmark in detail. In section 4, we analyze the experimental 

evaluation results and highlight the interest of adopting our 

proposal. Finally, we conclude the paper in section 5. 

2 RELATED WORK 

With the increasing adoption of relational database management 

systems for building Decision Support Systems (DSS) in 1990s 

[10], the TPC council released its first data warehouse benchmark, 

called TPC-D, in 1994. As said in [16], TPC-D was later 

effectively broken due to various technical developments of the 

DBMSs and then replaced by TPC-H (with ad-hoc queries) and 

TPC-R (with business reporting queries) in 1999. The latter had 

never attracted much attention and was decommissioned in 2006. 

In contrast, TPC-H won a great success very soon because it is 

closer to the requirements of the industrial decision support 

applications, and it is still challenging enough today to motivate 

technical innovations of the DBMS manufacturers. Meanwhile, 

decision support systems evolved a lot in the 2000’s by adopting 

new relational schemas (e.g., star schema) and mixing various 

types of queries (e.g., ad-hoc, reporting, iterative and extraction 

queries). All of these industrial needs could not be covered by 

TPC-H. Therefore, the TPC council developed another generation 

of decision support benchmark, called TPC-DS, released in 2006 

[16]. TPC-DS extended the data model of TPC-H with multiple 

snowflake schemas, designed 99 queries (instead of 22 in TPC-H) 

representing different types of business questions, and overcame 

several deficiencies of TPC-H in order to be more realistic (e.g., 

using more representative skewed database content, sub-linear 

scaling of non-fact tables, and ETL-like data maintenance). TPC-

DS has been updated twice [18] and it remains very relevant for 

current decision support systems. 

In the 2010’s, with the Big Data movement, efforts were made 

to integrate as many V’s (e.g., volume, velocity, variety, …) as 

possible into decision support benchmarks. In this context, the 

TPC council released the TPCx-BB benchmark, which came from 

the BigBench paper [5]. In this benchmark, not only structured 

data are considered, but also semi-structured and non-structured 

data are generated and queried. On the one hand, some machine 

learning and natural language processing queries are added into 

the benchmark, and on the other hand, only a subset of the TPC-

DS queries are conserved (30 of them) to make the benchmark not 

so heavy. In our paper, rather than targeting all Big Data 

applications, we focus on how relational parallel DBMSs tackle 

the multi-tenancy problem when processing decision support 

queries. In paper [19], the authors addressed similar issues and 

they considered the unstable query arrival rates by using a hidden 

Markov model to simulate the transition between busy and quiet 

periods. They proposed a new metric based on SLAs and included 

monetary costs in the evaluation results. Since the paper 

concentrated on defining a metric to measure the elasticity, the 

authors made several assumptions for simplification, for example: 

(1) they treat the workload as a whole without distinguishing 

individual tenants; (2) the SLAs for all queries are generated in 

the same way so there is no distinction between urgent and 

ordinary queries or between premium and basic tenants; (3) the 

pricing models are not formulated, thus we cannot measure how 

the DBMS’s behaviors change according to different pricing 

policies. In our paper, we would like to pay more attention on 

these multi-tenancy related issues. In addition, we will propose 

more intuitive metrics to guide providers and tenants in making 

their decisions. 

During the writing of this paper, we noticed the publication of 

the Cloud Analytics Benchmark (CAB) [21]. CAB chose the 

TPC-H as a foundation and enrich it by adding multi-tenancy 

concerns, based on an analysis of a real-world query trace. In our 

paper, we choose to extend TPC-DS due to the aforementioned 

reasons, but this is not the most important difference compared to 

CAB. Although having similar observations and objectives, we 

adopt a different approach for query workload generation, 

consider the performance SLO in a finer way, and propose new 

benchmark metrics which serve more directly the service 

providers to improve their systems. CAB integrates “pay-as-you-

go” pricing models in evaluations, while we aim to measure a 

system’s ability to “go-as-you-pay” as well. Here, by using “go-

as-you-pay”, we refer to the system’s ability to adjust the resource 

consumption for a query according to the tenant’s expectation on 

the response time and the negotiated price. Overall speaking, our 

work is complementary to CAB. 

It is worth mentioning that, the TPC council has an add-on 

specification called TPC-Pricing [25], which is a consistent set of 

pricing procedures and methodologies for all TPC benchmarks. 

For example, for TPC-DS, a Price-Performance metric 

($/kQphDS@SF) should be measured. This metric considers the 

global monetary cost of the System Under Test (SUT), but for us, 

this cost is independent of the SLA satisfaction and it is not 

necessarily correlated to the provider’s economic benefit. 

Therefore, new metrics could be interesting for multi-tenant 

parallel DBMS evaluations.  

3 MTD-DS BENCHMARK PROPOSAL 

In this section, we present the MTD-DS benchmark proposal, 

which extends the TPC-DS benchmark on several aspects. First, 

with regard to the query workload, we generate queries for each 

tenant by considering various tenant specific factors, such as the 

tenant’s priority, database size and queries’ complexity. Multiple 

tenants arrive simultaneously and the aggregation of all arrived 
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queries constitute the entire query workload which itself is 

fluctuating and thus very challenging for multi-tenant parallel 

DBMSs. Second, for each query of each tenant, we propose a 

Query Completion Time (QCT for short, meaning the time 

elapsed between the query submission and completion) threshold 

as a performance SLO, based on a real execution of the query on 

the tenant’s database. Note that it is different from methods used 

by DBaaS providers to define the performance SLOs with their 

tenants, because in that case, it often requires an additional 

module of the DBMS that interacts with the query optimizer’s 

cost model to get reasonable performance estimates [15][27]. For 

benchmarking purpose, it is necessary to use the same 

performance SLOs for all SUTs (Systems Under Test) in order to 

be fair. Since we are allowed to really execute the TPC-DS 

queries sequentially and register the execution traces, we prefer 

designing a benchmark-specific performance SLO generator 

based on these execution traces rather than pure estimations. The 

third extension is about the DBaaS pricing models that will be 

used to deduce the economic income and costs. Finally, we 

present our new metrics and the benchmark execution rules. 

3.1  Multi-tenant Query Workload Generator 

To simulate the continuously varying query arrival rates, Poggi et 

al. [19] consider the entire workload as a whole (i.e., without 

distinguishing individual tenants) and propose to use a hidden 

Markov model with a series of n discrete levels. At a given point 

in time, the arrival rate is represented by a series of parameters, 

describing the probability of being in each level (1 to n), along 

with the probabilities of transitioning to each of the other levels. 

As for the workload generation, [19] adapted the notion of 

streams employed in TPC benchmarks, where for a given number 

of streams m, one instance of each query appears in each stream. 

In our proposal, for simulating query arrival rates, instead of 

considering directly the queries of all tenants as a whole, we 

simulate the query arrivals of each tenant separately. The reasons 

are as follows: (1) tenant specific characteristics (e.g., the tenant’s 

priority, database size, and queries’ complexity) can be 

considered, (2) the number of tenants can be represented as a 

variable so that the service provider can choose the number and 

will have a more intuitionistic view of the simulated query 

workload, and (3) tenant-level metrics (e.g., SLO satisfaction rate 

for each tenant and the fairness between tenants) can be measured. 

Each tenant is modeled as a tuple <TnID, TnPriority, DBsize, 

QueriesComplexity, TnArrivalTime, NbQueries, Lambda, 

IdleRatio, PeakRatio, f_peak>. Table 1 shows the meaning of 

these parameters. Their values differ from one tenant to another, 

and the simple aggregation of all tenants’ queries forms naturally 

the entire query workload (see Table 3). First, we differentiate the 

tenants according to the priority, the database size and the queries 

complexity. Three levels of tenant priority will be considered: 

basic, standard and premium. They differ from each other in terms 

of performance SLOs and prices of their queries, which will be 

explained in Section 3.2 and Section 3.3. With regard to the 

database size, we use three different scale factors to represent 

small, medium and large databases. As for the query complexity1, 

                                                                 
1 For simplicity, we define the query complexity only based on the number of binary 

operators (joins, unions, etc.) in the query. 

the following workload streams can be generated: (1) simple 

workload streams, consisting only of the simple queries with less 

than 4 binary operators; (2) complex workload streams, consisting 

only of the complex queries with more than 6 binary operators; 

and (3) mixed workload streams, consisting of all the original 

TPC-DS benchmark queries. The list of queries in each 

complexity category can be found in Table 2. 

Based on the above characteristics, 27 combinations (with 

respect to TnPriority, DBSize and QueriesComplexity) could 

appear in the complete generated workload. In the benchmark, we 

treat the total number of tenants as a variable whose value will be 

chosen by the benchmark user. To be more realistic, we suggest 

that the proportion of standard tenants reaches at least 50%. 

Table 1: Parameters used to characterize a tenant 

Parameter Signification 
TnID The tenant’s identifier 

TnPriority The priority of the tenant 
DBSize The size of the database used for the tenant 

(small, medium or large) 

QueriesComplexity The complexity of the tenant’s queries 
(simple, medium or complex) 

TnArrivalTime The arrival time of the tenant’s first query 

NbQueries Total number of queries launched by the 
tenant 

Lambda The expected value of the number of query 

arrivals per time unit 
IdleRatio The ratio between the number of idle intervals 

and the total number of time intervals 

occupied by the tenant 
PeakRatio The ratio between the number of peak 

intervals and the total number of time 

intervals occupied by the tenant 
f_peak The multiplication factor for the parameter 

Lambda during the peak time 

Table 2:  Simple, medium and complex queries 

Query 

complexity 

Query IDs 

 

Simple 

 

3, 12, 15, 20, 21, 22, 28, 36, 37, 41, 42, 43, 52, 53, 

55, 63, 80, 81, 82, 86, 89, 93, 96, 97, 98 (25 queries) 
 

Medium 1, 2, 5, 6, 7, 10, 16, 19, 26, 27, 30, 32, 34, 35, 38, 40, 

45, 47, 50, 51, 57, 62, 67, 68, 70, 71, 73, 79, 84, 90, 
91, 92, 94, 95, 99 (35 queries) 

 

Complex 4, 8, 9, 11, 13, 14, 17, 18, 23, 24, 25, 29, 31, 33, 39, 
44, 46, 48, 49, 54, 56, 58, 59, 60, 61, 64, 65, 66, 69, 

72, 74, 75, 76, 77, 78, 83, 85, 87, 88 (39 queries) 

 

The number of queries launched by each tenant is a random 

value between 10 and 100. To amplify the instability of the query 

arrival rates, we distinguish idle, peak and normal periods for each 

tenant. During an idle period, no query arrives, while during a 

peak period, queries arrive very frequently. For each normal 

period, we assume a Poisson distribution for the query arrivals, 

with Lambda the expected value of the number of query arrivals 

per time unit. More precisely, the arrival times of N queries are 

generated with the following process [9]: First, simulate 

exponential random variables X1, X2, …, XN-1 representing 
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interarrival times, based on the value of Lambda. Then, set Y1 = 

TnArrivalTime, Y2 = Y1 + X1, …, YN = YN-1 +XN-1, where the 

variables Y1, …, YN, represent the arrival times of the tenant’s N 

queries. Note that, during a peak period, the number of queries 

arrived per time unit is multiplied by a factor f_peak. Concerning 

the distribution of idle, peak and normal periods, we fix a specific 

ratio for each tenant (e.g., 10% idle time, 10% peak time and 80% 

normal time for tenant T). The tenant arrival time itself is 

generated in the way that the tenant arrivals also follow a Poisson 

distribution, with 3 tenant arrivals per time unit in average.  

In Table 3, we show the first six tenants of the generated 

workload. Figure 1 shows the query arrivals per time unit of 20 

tenants, and Figure 2 gives the aggregative query arrival trend for 

the complete query workload. Finally, in Figure 3, we focus on 

three representative tenants: Tenant 4 has more idle periods (40%) 

than peak periods (12%), Tenant 8 has more peak periods (49%) 

than idle periods (12%), while Tenant 16 differs less in peak 

(54%) and idle periods (37%). 

Table 3: Examples of tenants’ information 

TnID TnPriority DB Size Queries Complexity  TnArrivalTime NbQueries Lambda IdleRatio PeakRatio f_peak 

1 Standard Medium Simple  0 26 8 29 23 2 

2 Basic Small Mixed  13.58 73 8 39 53 3 

3 Basic Medium Simple  20.76 38 6 48 13 2 

4 Premium Small Complex  25.01 48 2 40 12 2 

5 Standard Large Simple  27.32 36 3 14 36 2 

6 Standard Medium Mixed  28.17 69 6 29 47 2 

 

3.2  Performance SLO Generator 

Most of the commercial DBaaS providers do not define 

performance SLOs for individual queries yet, and the bills 

received by the tenants are independent of QCTs (different billing 

policies will be discussed in section 3.3). Nevertheless, many 

tenants expect strongly to have some performance guarantees 

along with a pricing policy which pushes the provider to meet the 

performance SLOs as much as possible. Some existing research 

work [15] [27] proposes different ways to define personalized 

SLAs for DBaaS tenants. We believe that including performance 

SLOs in an SLA is a reasonable requirement and will be realized 

in the near future, even though many efforts still need to be made 

in this direction, as we will show later on in detail. In fact, to 

some extent, this requires predictable performance of the system, 

which has been recognized to be a major research challenge for 

the serverless computing paradigm to come true [24].  

In this paper, our focus is not to propose another method for 

defining SLAs, but to evaluate multi-tenant parallel DBMSs by 

assuming that performance SLOs will exist and they should 

consequently have an economic impact. For evaluation and 

comparison purposes, in order to be fair, we design a performance 

SLO generator which provides a QCT threshold for each 

benchmark query, and this threshold should be considered by the 

SUT, because a penalty needs to be paid in case of violation. For 

fixing this threshold, we distinguish two types of queries: ad-hoc 

queries and reporting queries. The former expects an immediate 

response and the latter has a fixed deadline that is not necessarily 

urgent but often rigid. For ad-hoc queries, we assume that the 

tenant has an expected QCT. However, the tenant could tolerate 

some delay if the price is reduced accordingly and each priority 

level has its own tolerance rate. Therefore, as in [12], we 

introduce a factor τ (Tolerance rate threshold) such that a penalty 

is only paid if the real QCT of the query q running on a database 

of scale factor sf is larger than τ times of the QCT threshold in the 

SLO, i.e., QCTq,sf > τ * QCT_SLOq,sf. As for the reporting queries, 

a hard deadline is defined, which is a precise clock time. A 

penalty should be paid in case of any delay.  

 In TPC-DS, ad-hoc queries are those concerning the Store and 

Web sales, while reporting queries are the remaining ones which 

concern the Catalog channel2 . In our proposal, it is logical to 

distinguish both types of queries in the same way. To generate the 

performance SLOs, we first run the TPC-DS queries in the Power 

Test mode (i.e., running the queries sequentially without 

concurrent sessions) under a System of Reference (SOR) on a 

database of scale factor SFSMALL, SFMEDIIM, and SFLARGE 

respectively and register the QCT of each query with each scale 

factor. Here, an SOR is defined as a multi-tenant parallel DBMS 

installed on top of a hardware infrastructure by the provider with 

an initial configuration. For example, in our experimental 

demonstration, we use a parallel version of PostgreSQL running 

on a cluster of 5 virtual machines. Then, SFSMALL, SFMEDIUM, and 

SFLARGE correspond to the possible values of the DBSize 

parameter of the simulated tenants. In fact, both the SOR and the 

three SF values depend on the business scale of the provider. Each 

user of the benchmark should decide them according to the actual 

or potential needs of their tenants. 

 Based on the obtained numbers through the Power Tests, we 

define the QCT_SLO for a query q running on a database of scale 

factor sf by Equation [1], where 𝜏𝑅𝐸𝑃𝑂𝑅𝑇𝐼𝑁𝐺  needs to be fixed 

before running the benchmark. 

𝑄𝐶𝑇_𝑆𝐿𝑂𝑞,𝑠𝑓

= {
𝑄𝐶𝑇𝑞,𝑠𝑓,               𝑖𝑓 𝑞 𝑖𝑠 𝑎𝑛 𝑎𝑑 − ℎ𝑜𝑐 𝑞𝑢𝑒𝑟𝑦

𝑄𝐶𝑇𝑞,𝑠𝑓 ∗  𝜏𝑅𝐸𝑃𝑂𝑅𝑇𝐼𝑁𝐺,   𝑖𝑓 𝑞 𝑖𝑠 𝑎 𝑟𝑒𝑝𝑜𝑟𝑡𝑖𝑛𝑔 𝑞𝑢𝑒𝑟𝑦
[1] 

 In the case of comparing different SUTs, we generate a set of 

QCT_SLO for each SUT separately and then apply the following 

principles for each query: (1) in an isolated environment (i.e., 

single tenant, fixed amount of resources), at least one SUT can 

meet the SLO strictly, without any delay; and (2) there should 

exist situations in which the SLO is not met strictly but within the 

tolerance threshold (i.e., the QCT is between QCT_SLOq,sf  and 

τmin * QCT_SLOq,sf), such that the performance differences 

between systems could be observed. Here, the value of τmin is the 

                                                                 
2 We recall that the TPC-DS imitates the business activity of a large retail company 

and tracks its store, web and catalog sales channels. 
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tolerance rate threshold of the tenants with the highest priority 

(i.e., Premium). Equation [2] defines the final QCT_SLO, in 

which X represents the set of SUTs to compare. 

𝑄𝐶𝑇_𝑆𝐿𝑂𝑞,𝑠𝑓

= 𝑚𝑎𝑥(𝑚𝑎𝑥
𝑥∈𝑋

(
𝑄𝐶𝑇𝑆𝐿𝑂𝑞,𝑠𝑓,𝑥

𝜏𝑚𝑖𝑛
) ,𝑚𝑖𝑛

𝑥∈𝑋
(𝑄𝐶𝑇𝑆𝐿𝑂𝑞,𝑠𝑓,𝑥))           [2] 

3.3  Configurable Pricing Models  

The pricing models used by commercial DBaaS providers fall 

into two categories. In the first category, dedicated resources can 

be allocated to a tenant for executing queries and the price 

depends on the resource amount and the query duration. In the 

second category, the price of a query is based on the input data 

size. Academic researchers believe that the performance SLOs 

should be included in the SLA and the bills for the tenants should 

be computed based on the real performance with respect to the 

SLO satisfaction[15][27]. Therefore, we introduce another two 

pricing models. All these models will be integrated into the 

benchmark, in order that the provider could instantiate (and 

enrich) one of them according to its business requirements. The 

details of each pricing model are as follows.  

(1) Resource Consumption-Based pricing model 

With the Resource Consumption-Based (RCB) pricing model, 

the provider fixes a price for each resource (e.g., CPU, RAM, disk 

or network). Very often, a certain amount of CPU, RAM and disk 

space is capsulated in a physical or virtual machine, whose price 

is based on the duration of utilization, in form of money per time 

unit (e.g., hour). When the network usage is billed, the price is 

computed based on the volume of data transferred during query 

executions, in form of money per unit of data volume (e.g., 

megabytes).

 

 
Figure 1: Number of query arrivals per time unit of each tenant 

 

  

Figure 2: Total number of query arrivals per time unit 
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Figure 3: Number of query arrivals per time unit of three typical tenants 

(2) Input Data Size-Based pricing model 

With the Input Data Size-based (IDS) pricing model, the price 

of a query depends on the size of the input data, in form of money 

per unit of data volume (e.g., megabytes). The latter can be 

calculated precisely, so the invoice is fully auditable for the 

tenant. With this model, the tenant priority is not considered in the 

billing process. 

(3) Service Tier-Based pricing model 

With the Service Tier-based (STB) pricing model, several 

service tiers are proposed to the tenant [15]. In each tier, there are 

multiple query types (e.g., simple, complex, medium) and for each 

type, one performance SLO in terms of QCT threshold is defined. 

The price of a service tier is in form of money per time unit (e.g., 

hour). If a tier proposes a lower QCT threshold, normally it 

should consume more resources to meet the SLO and 

correspondingly, the price announced for this tier is higher. The 

tenant chooses one tier according to the applications’ 

requirements. When there is an SLO violation, the provider pays a 

penalty to the tenant.  

(4) Query Level SLO-Aware pricing model 

With theQuery Level SLO-Aware (QLSA) pricing model, the 

price of each query depends on the performance SLO satisfaction. 

The tolerance rate threshold (the factor τ), which varies from one 

tenant to another, is also considered. Normally, a tenant with a 

higher priority are less tolerant to delays, but are ready to pay 

more money when the SLO is met. If the SLO is met strictly, the 

tenant pays the full price. If the SLO is not met strictly but in the 

tolerance delay, the tenant pays partially the initial price. 

Otherwise, the SLO is violated and the provider should pay a 

penalty. One possible way is to calculate the final price with a 

pricing function (Equation [3]) included in the SLA [27]: 

𝑃𝑅𝑆𝐿𝐴 =

{
 
 

 
 𝑃𝑅𝑒𝑥𝑝, 𝑖𝑓𝑄𝐶𝑇 ≤ 𝑄𝐶𝑇𝑒𝑥𝑝

(
𝑄𝐶𝑇𝑒𝑥𝑝
𝑄𝐶𝑇

) × 𝑃𝑅𝑒𝑥𝑝, 𝑖𝑓𝑄𝐶𝑇𝑒𝑥𝑝 < 𝑄𝐶𝑇 ≤ 𝜏 × 𝑄𝐶𝑇𝑒𝑥𝑝

−𝑃𝑅𝑒𝑥𝑝, 𝑖𝑓𝑄𝐶𝑇 > 𝜏 × 𝑄𝐶𝑇𝑒𝑥𝑝

 [3] 

Where QCT is the real query completion time and QCTEXP is the 

expected query completion time, which has the same meaning as 

QCT_SLO previously defined in this paper. PREXP is the expected 

price to pay if the SLO is strictly met, and it is supposed to be 

calculated by using the query optimizer according to the amount 

of resources that would be consumed and the tenant’s priority. In 

this benchmark, we assume that the resources are measured in 

terms of number of nodes. In a shared-nothing cluster, a node 

contains a processor, a certain amount of memory and some 

external storage space. For other parallel architectures, the notion 

of node should be adjusted. Precisely, the expected price of a 

query q for a tenant tn is generated by using Equation [4]. 

PREXP (q, tn) =  

Nb_nd(q, tn) * Price_per_nd * QCTEXP * τmax / τ(tn)            [4] 

Where Nb_nd(q, tn) is the number of nodes that are assumed to 

use for executing the query q of the tenant tn. τ(tn) is the tolerance 

rate threshold of the tenant tn. When a tenant’s tolerance rate 

threshold is smaller, it is considered as someone with higher 

priority, because that tenant’s queries are usually more urgent. 

Consequently, more money should be paid if the urgency is 

correctly considered. In Equation [4], τmax represents the tolerance 

rate threshold of the tenants with the lowest priority (i.e., Basic). 

Then τmax / τ(tn) determines the multiplication factor to compute the 

query price of the tenant tn. 

3.4  Cost-effectiveness Metrics 

The proposed benchmark is assumed to be used by a DBaaS 

provider to choose a multi-tenant parallel DBMS among several 

candidates, or to validate a new version of an existing one. We 

define tenant-oriented metrics to assure that the service is 

appealing enough for tenants, as well as provider-oriented metrics 

for the provider’s internal use. 

(1) Tenant-oriented metrics 

The DBaaS provider should be interested in the tenants’ 

satisfaction. Only when the service is appealing to tenants, it will 

make sense to improve the provider-oriented metrics. Therefore, 

we propose three Tenant-Oriented metrics (TO metrics for short) 

which serve as estimators of tenant feedback. We measure them in 

the benchmarking process, on behalf of the provider, to estimate 

the tenants’ satisfaction after using the service. Later on, when the 

system is served by real tenants, the values of the first two metrics 
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could be obtained statistically and become QoS indicators, while 

the value of the third one has no more sense. This could be 

understood easily after reading the definition of the three metrics 

below.     

TO_Metric 1: SSR (SLO Satisfaction Rate), which is the 

percentage of the number of queries that have been successfully 

executed over the total number of queries. This calculation applies 

to the entire workload (Equation [5]). 

 𝑆𝑆𝑅 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 𝑚𝑒𝑒𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑆𝐿𝑂

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑚𝑖𝑡𝑡𝑒𝑑 𝑞𝑢𝑒𝑟𝑖𝑒𝑠
   [5] 

The metric SSR is straight-forward but we choose it not only for 

its simplicity. The reason of considering each query equally 

regardless of its complexity, urgency and duration is that, these 

factors are already considered when defining the SLO, the price 

and the potential penalty of the query. Therefore, the rejection of 

any query represents the same level of loss for all tenants. In fact, 

when the tenant considers that one query is more “important” than 

another, a higher price will often be paid for that query, and in 

case of SLO violation, the refund is also higher. Thus, there is no 

need to add tenant or query level co-efficiencies when we measure 

the tenants’ global satisfaction.  

TO_Metric 2: FTS (Fairness between the Tenants’ 

Satisfaction rates). For the same query, a tenant with a lower 

priority is ready to pay less money but also ready to have a longer 

delay to get the query result. The provider can guide the tenant to 

choose the most appropriate priority level, but once the 

performance SLOs are established, the provider should be 

responsible for meeting them. Therefore, tenants with a low 

priority should be treated equally and should have the same level 

of satisfaction with regard to what is expected. To measure that, 

we compute the SLO satisfaction rate of each tenant and then 

calculate the standard deviation, as shown by Equation [6], where 

n is the number of tenants chosen for the benchmarking process, 

SSRi is the SLO satisfaction rate of the tenant i and 𝑆𝑆𝑅 is the 

average SSR of all tenants. If the standard deviation is 0, meaning 

that all SSRs are the same, we assign the FTS score to be 1. 

Otherwise, we assign the FTS score to be the inverse of the 

standard deviation. 

 𝐹𝑇𝑆 = {

1, 𝑖𝑓 𝑆𝑆𝑅𝑖 = 𝑆𝑆𝑅𝑗 , ∀ 𝑖 ≠ 𝑗

1/√
1

𝑛
∑ (𝑆𝑆𝑅𝑖 − 𝑆𝑆𝑅)

2𝑛
𝑖 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    [6] 

TO_Metric 3: TPAT (Total Payment of All Tenants), which is 

simply the sum of the bills of all tenants. This metric is even more 

straight-forward and has been naturally used by most of the 

benchmarks cited in Section 2. We cannot ignore it: the query 

workload is the same for all SUTs, and therefore, the difference 

on the final bills has a significant meaning for the tenants, 

especially when there are similar results on the other metrics. The 

added-value of this metric in the MTD-DS benchmark is that, this 

metric is measured by using the pricing model of the DBaaS 

provider that is explicitly described and integrated into the 

benchmark. When the same pricing model is used for both SUT1 

and SUT2, if other metrics show similar scores for both systems, 

but the TPAT of the SUT1 is much higher than that of the SUT2, 

we could doubt about the capacity of the SUT1 (e.g., the resource 

utilization is suboptimal). In other benchmarks, tests are often 

made on two DBaaS providers by treating them as black-boxes. In 

that case, when the bill of one provider is higher, we cannot guess 

it is due to the system capacity or simply caused by the pricing 

policy. 

(2) Provider-oriented metrics 

The main objective of a DBaaS provider is to maximize its 

long-term economic benefit. However, simply compute a final 

gain is not enough to show that a multi-tenant parallel DBMS 

adapts well to query workload variations and resource limitations. 

In other words, if a system allows a high benefit for a fixed query 

workload by using a fixed amount of resources, we cannot deduce 

if it can bear changing workloads without losing money. 

Therefore, we first define two Provider-Oriented metrics (PO 

metrics for short) that need to be measured by stressing the system 

progressively, representing two kinds of saturation thresholds:  

PO_Metric 1: MNN (Minimum Number of Nodes required 

before a system saturation) under the reference query arrival rate. 

PO_Metric 1 Bis: HARF (Highest Arrival Rate Factor before 

a system saturation) under the reference number of nodes. 

A system saturation stands for the situation where the LUBF 

(Long-term Unit Benefit Factor, Equation [7]) becomes negative, 

due to excessive SLO violations, or the SLO satisfaction rate 

(SSR defined above) is lower than a certain value (SSRMIN).  

LUBF = Total economic benefit / Total elapsed time  [7] 

In [8], the total economic benefit is computed by removing the 

resource consumption costs and the penalties from the sum of the 

income brought by all queries. The total elapsed time is the time 

elapsed from the arrival of the first query and the completion of 

the last query of the complete query workload. 

In the definition of these two metrics, the reference query 

arrival rate corresponds to an initial target query arrival rate that 

the system is designed for, while the reference number of nodes 

corresponds to the number of nodes that the DBaaS provider 

would like to start with. Very often, only one of these two values 

can be imposed by the provider when performing the benchmark, 

and only one of the two metrics (MNN and HARF) is of interest.  

In addition to MNN and HARF which test the behaviors of the 

SUT under pressure, we also propose another two PO metrics 

which indicates the potential of the SUT to maximize the 

provider’s long-term benefit.  

PO_Metric 2: ONN (Optimal Number of Nodes) which gives 

the highest LUBF under the reference query arrival rate (if it is 

known). 

PO_Metric 2 Bis: OARF (Optimal Arrival Rate Factor) which 

gives the highest LUBF under the reference number of nodes (if it 

is known). 

Normally, during a benchmarking process, either MNN and 

ONN are measured, or HARF and OARF are measured, along 

with the corresponding LUBFs. Moreover, in case that HARF and 

OARF are measured, one of them could be more important than 

the other. For example, for a commercial DBaaS provider, the 

OARF is more meaningful for it to regulate the number of 

accepted tenants in order to fit the optimal query arrival rate. In 

contrast, for a non-profitable DBaaS provider (e.g., a government 

or a multi-organization federation), the objective is to serve all 

eligible tenants without loosing money. Therefore, the HARF is a 

more important indicator in its decision-making process. 
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(3) All together for comparing SUTs 

When there are several SUTs to compare, we normalize the 

values of all metrics into the interval [ARFmin, ARFmax] and show 

them together within a radar chart. For the ARF dimension, we 

preserve the original values. For the SSR, FTS and LUBF 

dimensions, we divide the original value of each SUT by the 

maximum one of all SUTs and then multiply with the maximum 

value of all ARF. For the TPAT dimension, we divide the 

minimum value of all SUTs by the original value of each SUT 

respectively and multiply with the maximum value of all ARF. In 

this case, in each dimension, the best SUT gets the full score. 

We expect that, there is at least one SUT that outperforms all 

others in all dimensions and it will be the “winner”. In section 4, 

we will demonstrate how this could be technically possible, 

especially when comparing two versions of the same original 

system.  In consequence, the providers are motivated to improve 

their systems through innovations, which allows obtaining their 

business objectives without hurting the tenants’ interests.  

Figure 4 gives an example radar chart for a non-profitable 

DBaSS provider, where the HARF metric is used and the 

corresponding LUBF is drawn. In this example, System B 

outperforms both System A and System C. Therefore, the 

provider would finally decide to adopt System B for its DBaaS. 

 

Figure 4. An example radar chart for comparing systems

 

 

Figure 5: The MTD-DS benchmark execution rules 

3.5  Execution Rules 

To run the benchmark, we define the steps to follow as below. 

Step 1. Use the TPC-DS tool kit to generate data and queries 

for three scale factors SFSMALL, SFMEDIUM, and SFLARGE 

respectively. We recall that the exact values of these scale factors 

are chosen by the service provider according to its estimated or 

real business scale. 

Step 2. Create the three databases and load the generated data 

into them. Create indexes and auxiliary data structures which 

could be used by the reporting queries. 

Step 3. Run the TPC-DS queries in the Power Test mode on 

each of the three databases and register the QCT of each query for 

each chosen scale factor. 

Step 4. Run the performance SLO generator to define the 

QCT_SLO for each query with respect to each representative scale 

factor. 

Step 5. Run the multi-tenant query workload generator for the 

chosen number of tenants. 

Step 6. Launch the query workload on the SUT, similar to the 

Throughput Test of the TPC-DS. The difference is that, the query 

arrival times are determined in Step 5 by running the multi-tenant 

query workload generator. Register the execution traces. 

 

Step 7. Repeat Step 6 by adding or removing one node to the 

SUT in each iteration until detecting both the MNN and the ONN. 

Step 8. Repeat Step 6 by increasing or decreasing one to the 

Arrival Rate Factor (ARF) in each iteration until detecting both 

the HARF and the OARF. 

Step 9.  Based on the results of Step 7 and/or Step 8, calculate 

the scores of all metrics. 

These steps and their execution order are shown in the Figure 

5. We summarize the input parameters of the benchmark 

execution in Table 4. 

Table 4: Input parameters of the MTD-DS benchmark 

Parameter Signification 

SFSMALL A representative scale factor of the small databases. 

SFMEDIUM 
A representative scale factor of the medium size 

databases. 

SFLARGE A representative scale factor of the large databases. 

NbTenants The number of tenants to generate for the benchmarking. 

τBASIC The tolerance rate threshold of the “basic” tenants. 

τSTANDARD The tolerance rate threshold of the “standard” tenants. 

τPREMIUM The tolerance rate threshold of the “premium” tenants. 

τREPORTING 
The tolerance rate threshold used to generate the deadline 

of a reporting query. 
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4  EXAMPLE EXPERIMENTAL RESULTS 

In this section, we present some preliminary experiments and 

their results in order to: (1) illustrate how the benchmark could be 

used; (2) show the feasibility of the benchmark, i.e., its ability to 

run on a real system within a reasonable benchmarking duration; 

and (3) validate the relevance of the proposed metrics, i.e., to see 

if the results can be easily interpreted to draw valuable insights. 

First, we describe the experimental environment. Then, we take 

two pricing models as examples to show some obtained results. 

4.1.  Experimental Settings 

Since the target users of the MTD-DS benchmark are DBaaS 

providers, it is inadequate for us to use directly existing 

commercial DBaaS systems, because we can only play the role of 

a tenant thus do not have any control on the internal 

implementation or configuration of those systems. It would be 

preferable to install multi-tenant parallel DBMSs on top of a 

Cloud-scale cluster (which can be rented from an IaaS provider). 

However, this is too much time and money consuming with 

regard to our objective (i.e., to demonstrate the benchmarking 

process). Therefore, we chose to configure a tiny but real cluster 

with our own materials for a DBaaS deployment.  A brief 

description of the experimental settings is given below. 

(1) Multi-tenant parallel DBMS configuration 

 We use Postgres-XL3, a parallel version of PostgreSQL, as the 

underlying multi-tenant parallel DBMS of the SUTs. It is installed 

on top of 5 virtual machines residing in 2 physical personal 

computers connected by a local network. The virtual machines 

have their own IP addresses and can access each other by using 

the SSH (Secure Shell) protocol. The main characteristics of these 

machines can be found in Table 5 and Table 6. 

Table 5: Main characteristics of the physical computers 

Name CPU RAM Size External Storage OS 

PC1 2.30GHz, 

16 cores 

16 GB SSD, 512 GB Windows 10 

PC2 

 

1.70GHz, 

8 cores 

16 GB SSD, 256 GB Windows 10 

Table 6: Main characteristics of the virtual machines 

Name Nb. 

CPU 

cores 

RAM 

Size 

External 

Storage 

Size 

OS Physical 

computer 

Master 2 4 GB 120 GB Ubuntu  PC1 
Data1 2 4 GB 60 GB Ubuntu  PC1 

Data2 2 4 GB 60 GB Ubuntu  PC1 

Data3 2 6 GB* 60 GB Ubuntu  PC2 
Data4 2 4 GB 60 GB Ubuntu  PC2 

*The RAM size of Data3 was increased during our experiments because it was 

discovered to be the busiest node and 4GB was not enough to handle multiple 

concurrent tenant connections. 

 The Postgres-XL cluster contains one GTM (Global 

Transaction Manager), one coordinator and 4 data nodes. The 

GTM and the coordinator are collocated in the virtual machine 

Master. Each data node uses a separate virtual machine. The 

global architecture is shown in Figure 6. We used the default 

                                                                 
3 Repository: https://git.postgresql.org/gitweb/?p=postgres-xl.git 

values for most PostgreSQL configuration parameters, except the 

ones listed in Table 7. 

 

Figure 6: Postgres-XL cluster deployment architecture 

Table 7: Customized PostgreSQL configuration parameter values4 

Parameter Customized value 
shared_buffers 512 MB 

temp_buffers 64 MB 
work_mem 32 MB 

effective_io_concurrency 10 

enable_material off 
enable_nestloop off (except for queries with “Exists”) 

random_page_cost 1.1 

parallel_setup_cost 100 

(2) Benchmark related parameter values 

Constrained by the above system deployment and 

configuration, we tested the MTD-DS benchmark in a relatively 

small-scale setting, such that a benchmarking run lasts no more 

than 24 hours. The chosen values could be found in Table 8. 

Table 8: Benchmark related parameter values 

Parameter  Value used for the experimentation 

SFSMALL 1 

SFMEDIUM 2 

SFLARGE 3* 

NbTenants 6* 

τBASIC 100 

τSTANDARD 50 

τPREMIUM 10 

τREPORTING 1000 

*We were not able to use larger values for these two parameters, because each 

tenant has its own database and the concurrent execution of queries from multiple 

tenants requires a lot of RAM, or extremely long execution times caused by heavy 

swapping. 

(3) Tenants’ placement 

 In fact, the example shown in Table 3 (in Section 3.1) contains 

the real values produced by the query workload generator. 

Therefore, we have 2 tenants (Tenant 2 and Tenant 4) with small 

databases, 3 tenants (Tenants 1, 3 and 6) with medium size 

databases, and 1 tenant (Tenant 5) with a relatively large database. 

                                                                 
4 The signification of these parameters could be found here: 

https://www.postgresql.org/docs/11/runtime-config.html, mainly in “Resource 

Consumption” and “Query Planning” sections. 

https://git.postgresql.org/gitweb/?p=postgres-xl.git
https://www.postgresql.org/docs/11/runtime-config.html
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The placement of these tenants is done as follows: (1) the number 

of nodes for each tenant corresponds to the scale factor of its 

database; (2) when there are 2 or 3 data nodes needed by a tenant, 

we take at least one data node from each physical computer; (3) 

globally, the data nodes are allocated to the tenants of each scale 

in a round-robin way. The resulting tenant placement matrix is 

given in Table 9. 

Table 9: Tenant placement matrix 

 DN1 

(on PC1) 

DN2 

(on PC1) 

DN3 

(on PC2) 

DN4 

(on PC2) 

Tenant 1 ×  ×  
Tenant 2    × 

Tenant 3  ×  × 

Tenant 4   ×  
Tenant 5 × × ×  

Tenant 6 ×  ×  

 For each tenant, the fact tables are partitioned by using the hash 

partitioning method, while the dimension tables are replicated on 

all nodes allocated to the tenant. 

(4) SUTs description 

 We have implemented a driver program which submits the 

queries of all tenants to Postgres-XL according to the arrival times 

defined in the generated query workload. When Postgres-XL is 

too busy and refuses a query, this query will be queued by the 

driver and resubmitted later on. Interestingly but not surprisingly, 

the way how these queries are queued has a big impact on the 

final benchmarking scores. Based on this observation, we have 

implemented two different ways to order concurrent queries and 

treat them as two SUTs (SUT1 and STU2) for comparison. We 

choose to do this in the driver level rather than modifying the 

parallel DBMS kernel, because the latter is much more 

complicated and itself is actually a challenging research topic. We 

are actually working on that in parallel of the benchmark proposal 

[7]. In the current paper, we do not seek the optimality but only 

the diversity when choosing the SUTs. Below, we highlight the 

differences of the chosen SUTs. 

 In SUT1, if a query cannot be accepted immediately by 

Postgres-XL, it is added to the end of the waiting queue. Then, the 

FIFO (First-In-First-Out) policy is applied. The number of 

allowed concurrent queries by Postgres-XL is set to 3, due to the 

resource limitation.  

 In SUT2, we maintain a second queue for the long-running 

queries, in order to avoid disproportionally long waiting time of 

the short-running queries. The number of allowed concurrent 

queries by Postgres-XL is also set to 3, but at any moment, at 

most 1 long-running query is handled by Postgres-XL. therefore, 

2 or 3 short-running queries could execute concurrently.  

4.2.  Execution Traces Analysis  

 For each of the 290 queries in the generated workload, we 

create a threading timer in the driver program to control the 

launch time. When a query is accepted by Postgres-XL, it starts 

executing. When the execution is finished, Postgres-XL returns a 

success message to the driver program. Therefore, we were able to 

register the execution traces of all queries in a file according to the 

following format <TenantId, QueryId, TimerId, Event, 

Timestamp>. The Event element corresponds to Launched, 

Started or Finished. After executing all queries, we transform the 

traces into another format that will be used by the billing process 

and the visualization. In the transformed traces, we have 

<SUT_Name, ClusterSize, ArrivalRateFactor, TenantId, QueryId, 

TimerId, LaunchTime, StartTime, FinishTime> and we can 

deduce the Wating time and the Execution duration of each query.  

 

(a) ARF = 2 

 

(b) ARF = 10 

Figure 7. Waiting time and execution duration of each query 

for the SUT2 under 2 different query arrival rates  
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  In Figure 7, we visualize the execution traces of SUT2 under 2 

different query arrival rate factors. For a better readability, we will 

not show the traces of all queries but only zoom on several queries 

of Tenant2 and Tenant3. We can observe that, when the query 

arrival rate factor is high (Figure 7(b)), many queries should wait 

in the queues before being executed. However, we cannot 

conclude that it represents a worse scenario than that in Figure 

7(a) without considering precisely the performance SLOs. If the 

tenants do not feel very disappointed regardless of the delay, the 

provider would prefer the scenario in Figure 7(b), because the 

resources are fully utilized during the query arrival period. 

Therefore, carefully chosen metrics are necessary for the provider 

to adjust its business ambition with regard to the invested 

resources, or to calibrate the resources with regard to its business 

scale. Below, we will examine if our proposed metrics could help 

facilitating the provider’s decision making, by instantiating two 

different pricing models: RCB and QLSA.  

4.3.  Results with the RCB Pricing Model  

We start by using the RCB pricing model, meaning that the 

tenants’ bills are calculated based on the amount and the duration 

of resource consumption during their query executions, as 

described in Section 3.3. With this model, we compare SUT1 and 

SUT2. The global trend is that the LUBF increases when the 

query arrival rate factor is higher, even though the tenants’ 

satisfaction rate and the fairness factor decrease (see Figure 8 and 

Figure 9). Therefore, the conflict of interests between the provider 

 

Figure 8: Global trend of the main metrics for SUT1 (RCB) 

 

Figure 9: Global trend of the main metrics for SUT2 (RCB) 

and the tenants is obvious. In this case, the threshold for the 

tenants’ SLO satisfaction rate (SSRMIN) should be declared 

explicitly. In our example, we use SSRMIN = 70%. Based on this 

threshold, we can deduce that, both the HARF and OARF values 

for SUT1 is 2, and those for SUT2 is 10. Putting all metrics 

together, we get the radar chart in Figure 10, showing that SUT2 

gives better results on all metrics. 

  

Figure 10: Comparison of SUT1 and SUT2 (RCB) 

 Independent of system comparing, an interesting observation is 

that, with the same SUT, the total amount of the tenants’ payment 

increases sometimes while the SLO satisfaction rate decreases, as 

shown in Figure 11 for SUT2. This is somehow illogical: when 

the provider receives too many concurrent queries, the execution 

time of each query may be longer than expected due to 

interference from other queries; instead of receiving recompense 

from the provider, the affected tenants need to pay a higher bill. It 

represents a kind of unfairness in the tenants’ point of view. 

Therefore, we argue that this pricing model is inappropriate for 

billing database queries, where the resource consumption does not 

only depend on the problem complexity (e.g., the query type and 

the database size, etc.), but also depends on the quality of the 

solution (e.g., query execution plan selection and performance 

isolation, etc.) which is under the provider’s responsibility.  

 

Figure 11: TPAT vs. SSR for SUT2 (RCB) 

4.4.  Results with the QLSA Pricing Model 

 With the QLSA pricing model, the price of each query is 

independent of the resource consumption during the real 

execution. It is calculated based on a baseline resource 

consumption, as well as the discrepancy between the real QCT 

and the expected QCT. The aim is that the tenants do not pay 

more if it is the provider who fails to execute a query in an 

optimal way and they could even receive a refund when the 

performance SLO is not met. Figure 12 shows this consistency for 

SUT2 by using the QLSA pricing model.  
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 In Figure 13, we can see another change about the LUBF 

evolution trend (compared to Figure 9): when the ARF grows, the 

LUBF increases at the beginning because of the system’s higher 

resource utilization ratio, but it decreases later due to penalties 

caused by SLO violations. In this case, the provider’s benefit is 

more directly linked to the tenants’ SLO satisfaction. 

 

Figure 12: TPAT vs. SSR for SUT2 (QLSA) 

 

Figure 13: Global trend of the main metrics for SUT2 (QLSA) 

Finally, we draw the radar chart for comparing SUTs under 

the QLSA pricing model in Figure 14. This time, the HARF and 

OARF have different values for the SUT2. In fact, SUT2 can 

sustain an ARF of 10 without disappointing too much the tenants 

(SSR > 70%), but the optimal ARF is 9, where it gives the best 

LUBF as well as a much better SSR (87%) but with a slightly 

higher bill for the tenants (2%).  

  

Figure 14: Comparison of SUTs (QLSA) 

4.5.  Lessons Learned 

Below, we summarize some lessons that we have learned through 

the design of the benchmark and the experiments.  

Lesson 1. As a multi-tenant parallel DBMS user, facing the 

inherent conflict between its benefit and the tenants’ performance 

SLOs, the provider should choose carefully its pricing model in 

order to allow better trade-offs and fair negotiations (ref. Figures 

9 and 13).  

Lesson 2. When the provider chooses a multi-tenant parallel 

DBMS among several candidates, it should be confident that, 

technically, it is possible that a system (or a version of a system, 

or even a special way to use a system) could give better results 

than another one on both tenant-oriented and provider-oriented 

metrics (ref. Figures 10 and 14). 

Lesson 3. Based on the preliminary system comparisons, we 

believe that, a large spectrum of work could be done on the 

internal implementations of multi-tenant parallel DBMSs (e.g., 

admission control, workload management, query optimization and 

lower level resource allocation) in order to improve both the 

provider’s benefit and the tenants’ performance SLOs. 

5  CONCLUSION 

 In this paper, we presented MTD-DS benchmark for multi-

tenant parallel DBMSs by extending TPC-DS, in order to include 

multi-tenancy considerations. Concretely, we have added a multi-

tenant query workload generator, a performance SLO (Service 

Level Objective) generator, some configurable DBaaS pricing 

models, and new metrics to measure the potential capability of a 

multi-tenant parallel DBMS in obtaining the best trade-off 

between the provider’s benefit and the tenants’ satisfaction.  

 We conducted experiments with a small but real system to run 

the proposed benchmark on two variations of the system, in order 

to demonstrate the feasibility of the benchmark and the relevance 

of the proposed metrics. Two pricing models were instantiated 

and examined along with the systems under test. Interesting 

observations have been made, which allow us a better 

understanding of what a provider and a multi-tenant parallel 

DBMS designer could do to offer a better DBaaS product. 
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