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Abstract. We propose a new algorithm for reachability controller syn-
thesis with time Petri nets (TPN). We consider an unusual semantics of
time Petri nets in which the firing date of a transition is chosen in its
static firing interval when it becomes enabled. This semantics is moti-
vated i) by a practical concern: it aims at approaching the implementa-
tion of the controller on a real-time target ; ii) by a theoretical concern:
it ensures that in the classical state class graph [6], every state in each
state class is an actual reachable state from the TPN, which is not the
case with the usual interval-based semantics. We define a new kind of
two-player timed game over the state class graph and we show how to ef-
ficiently and symbolically compute the winning states using state classes.
The approach is implemented in the tool Roméo [24]. We illustrate it on
various examples including a case-study from [2].

Keywords: Time Petri nets, state classes, timed games, controller synthesis

1 Introduction

Reactive systems allow multiple components to work and interact together and
with the environment. In order to ensure the correctness of such systems, we
can use controllers to restrict their behavior. Unlike the model-checking prob-
lem in which systems are mainly represented as standalone (open-loop systems),
the control framework models the interaction between a controller and its en-
vironment by using controllable and non-controllable actions. The problem is
to design this controller (or a strategy for the controller) that ensures a given
specification is valid whatever the environment does (closed-loop system).

The theory of control was first defined over discrete event systems in [26]
and then extended to various models. The idea is to model the system and the
properties we are interested in, and to implement a controller that makes sure
the model behaves correctly w.r.t the properties. Some of the basic properties
are reachability and safety. Given a state of the system, the reachability problem
consists in deciding if this good state is reachable in every execution. Dually the
? This work has been partially funded by ANR project ProMiS ANR-19-CE25-0015
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safety problem consists in deciding if we can stay in good states forever for every
execution. These control problems usually use controllable events, for example
transitions in our case, that will be handled by the controller.

Timed games and time Petri nets for control Games on graphs [27] are a classi-
cal and successful framework for controller synthesis in reactive systems. Many
such systems however have strong timing requirements and must therefore be
modelled using timed formalisms such as timed automata [1]. This leads to the
notion of timed games [25], that have been much studied theoretically, and for
which efficient clock based algorithms using the so-called zones [16] have been
devised [15] and implemented, e. g., in the state-of-the art tool Uppaal-Tiga [3].
The clock-zone based algorithm faces a termination problem that can be solved
with an extrapolation/approximation operation. This operation makes things
more complex by adding states that are actually not reachable but, in general,
do not interfere with the properties we are interested in. In [15], for instance,
the authors just assume the clocks to be bounded to avoid dealing with it. And
in some cases the added states do interfere with the property of interest [13, 14].

Another classical formalism for timed models is time Petri nets (TPNs) [6]. It
is possible to apply to TPNs a semantics very close to the one of timed automata
by making clocks appear that measure the duration for which transitions have
been enabled and then a state-space computation can be done in a manner
similar to timed automata [19]. It thus no surprise that the algorithm of [15]
can be lifted to TPNs [18]. It is indeed implemented in the tool Roméo [24], and
even extended to account for timing parameters [23].

The classical semantics for TPNs is not the ń explicit clocks ż one of [19] how-
ever, but rather the interval-based semantics of [6]. The latter semantics leads
naturally to a different kind of abstraction called state classes, which has some
advantages: in particular it does not require the use of an extrapolation/approx-
imation operation to ensure termination.

The control problem for time Petri nets has been studied in [20, 2] with
forward approaches computing the reachable states over a modified state class
graph (SCG) in order to synthesize new constraints to reach winning states. In
[2], no constraints are back propagated but the time constraints of a transition
that remains enabled contain all its past and have the size of the path dur-
ing which it remains enabled. In [20], the new constraints are back-propagated
to previous classes, until the events when transitions were first newly enabled.
Only rectangular constraints are propagated without splitting the state classes,
making it impossible to synthesize a controller with a state where a controllable
action should be done in disjoint intervals.

Controller implementation Implementing a timed controller on a hardware tar-
get such as a microcontroller is not a trivial operation. If a controllable action
is to be performed after waiting for a duration within a time interval [a, b], it is
necessary to first choose a duration d within this interval and then to go into
a non-active wait which is usually achieved by using a timer of duration d that
will trigger an interrupt. The program associated with this interruption then
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executes the controllable action. If an action of the environment occurs in the
meantime that requires a change of the d duration, then the controller must have
the ability to change the timer value. This is implicitly considered in most of
the works on timed controller synthesis for time Petri nets and timed automata
whose computation is based on a backward clock-based algorithm [25, 15, 18].
This implicit re-evaluation of waiting durations makes the implementation of
the controller difficult (unless active waiting, i. e. polling, is used, which is not
acceptable in a real-time context) because it is not known a priori which actions
should cause the re-evaluation of durations.

Contribution We propose an unusual semantics of time Petri nets in which the
firing date of a transition is chosen in its static firing interval when it becomes
enabled. This semantics is motivated by a practical concern: it aims at approach-
ing the implementation of the controller on a real-time target. The choice of the
timer value must be made as soon as the controllable transition is enabled. If
this value is to be re-evaluated then the Petri net must model it explicitly.

It is also motivated by a theoretical concern: there is a tight correspondence
between this semantics and the construction of the state class graph. It en-
sures that in the classical state class graph [6], every state in each state class is
an actual reachable state from the TPN, which is not the case with the usual
interval-based semantics. This semantics was already used in [8], motivated by
the use of dynamic firing dates, that can be chosen again at every firing event.

We then leverage the state class abstraction to solve timed games. We define
a new kind of timed games based on TPNs and we show how to efficiently
and symbolically compute the winning states using state classes. Our method
computes backward winning states on the SCG using predecessor operators to
split the state classes. The approach, implemented in the tool Roméo [24] is
applied on two examples including a case-study from [2].

The rest of this article is organized as follows: Section 2 introduces our new
semantics nets and provides the necessary basic definitions of time Petri nets,
state classes and the two-player game over this graph, Section 3 describes the
computations of winning states for the controller leading to the strategy. Sec-
tion 4 applies our approach to two case studies. We conclude in Section 5.

2 Definitions

2.1 Preliminaries

We denote the set of natural numbers (including 0) by N and the set of real
numbers by R. We note R≥0 the set of non-negative real numbers. For n ∈ N,
we let J0, nK denote the set {i ∈ N | i ≤ n}. For a finite set X, we denote its size
by |X|.

Given a set X, we denote by I(X), the set of non-empty, non necessarily
bounded, real intervals that have their finite end-points in X. We say that an
interval I is non-negative if I ⊆ R≥0.
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Given sets V and X, a V -valuation (or simply valuation when V is clear
from the context) of X is a mapping from X to V . We denote by V X the set
of V -valuations of X. When X is finite, given an arbitrary fixed order on X, we
often equivalently consider V -valuations as vectors of V |X|.

2.2 Time Petri nets

A time Petri net is a Petri net with time intervals associated with each transition.
We propose a slightly different semantics than the one commonly used, in which
firing dates are decided at the moment transitions are newly enabled. We consider
that input tokens are consumed before the firing of a transition and produced
after, so transitions using one of these input tokens have their firing date chosen
again.

Definition 1 (Time Petri net). A time Petri net (TPN) is a tuple N =
(P, T, F, Is) where:

– P is a finite non-empty set of places,
– T is a finite set of transitions such that T ∩ P = ∅,
– F : (P × T ) ∪ (T × P ) is the flow function,
– Is : T → I(N) is the static firing interval function,

We assume T contains at least one transition tinit and P contains at least a
place p0 such that (p0, tinit) ∈ F , Is(tinit) = [0, 0], for all p ∈ P \{p0}, (p, tinit) 6∈ F
and for all t ∈ T , (p0, t) 6∈ F . We also assume that for all t ∈ T there exists
p ∈ P such that (p, t) ∈ F .

Places of a Petri net can contain tokens. A marking is then usually an N-
valuation of P giving the number of tokens in each place.

Remark 1. For the sake of simplicity, we consider only safe nets, i.e., nets in
which there is always at most 1 token in each place and where all arcs have
weight 1. All subsequent developments can be generalised without any difficulty
to more complex discrete dynamics provided the net remains bounded, i.e., there
is a constant K such that all places never contain more than K tokens. Bound-
edness is an appropriate restriction since the control problem is undecidable for
unbounded TPN. The proof of [22] extends directly to our semantics.

We therefore define a marking as the set of the places of P containing a token.
We say those places are marked.

Usually we define an initial marking for the net. Without loss of generality,
we consider here that all places are initially empty except p0 which is marked.
An immediate transition tinit sets the initial marking by firing. By construction,
while it has not fired, no other transition can fire.

Given a transition t, we define the sets of its input places Pre(t) = {p | (p, t) ∈
F} and of its output places Post(t) = {p | (t, p) ∈ F}.
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Definition 2 (Enabled and persistent transitions). A transition t is said
to be enabled by marking m if all its input places are marked: Pre(t) ⊆ m. A
transition t is said to be persistent by firing transition t′ from marking m if it
is not fired and still enabled when removing tokens from the input places of t′:
t 6= t′ and Pre(t) ⊆ m \ Pre(t′). We say that t is newly enabled by firing t′ from
m, if t is enabled before and after the firing of t′ but not persistent. We denote
by en(m), pers(m, t) and newen(m, t) respectively the sets of enabled, persistent
and newly enabled transitions.

Remark 2. The definition of newly enabled transitions uses a reset policy in
which every transition that is disabled by a token taken by Pre(t) is considered
newly enabled even if it is enabled again after putting back tokens from Post(t).
And in particular the fired transition itself is always considered newly enabled.
This is the usual memory policy called intermediate semantics, see [5] for details
and comparison with other semantics

Definition 3 (States and semantics of a TPN). A state of a TPN is a
pair s = (m, θ) with m ⊆ P a marking and θ : T → R≥0 ∪ {⊥} a function that
associates a firing date with every transition t enabled at marking m (t ∈ en(m))
and ⊥ to all other transitions. For any valuation on transitions θ, we denote by
tr(θ) the set of transitions t such that θ(t) 6= ⊥. We will use θi to denote θ(ti).

The semantics of a TPN is a Timed Transition System (S, s0, Σ,→) with:

– S the set of all possible states,
– an initial state s0 = ({p0}, θ0) ∈ S with θ0(tinit) = 0, and ∀t 6= tinit, θ0(t) = ⊥,
– a labelling alphabet Σ divided between two types of letters: tf ∈ T and d ∈

R≥0,
– the transition relation between states −→⊆ S × Σ × S and, (s, a, s′) ∈−→,

denoted by s
a−→ s′:

• either (m, θ)
tf−→ (m′, θ′) for tf ∈ T when:

1. tf ∈ en(m) and θf = 0
2. m′ = (m \ Pre(tf )) ∪ Post(tf )
3. ∀tk ∈ T, θ′k ∈ Is(tk) if tk ∈ newen(m, tf ), θ′k = θk if tk ∈ pers(m, tf ),

and θ′k = ⊥ otherwise
• or (m, θ)

d−→ (m, θ′) when: d ∈ R≥0 \ {0}, ∀tk 6∈ en(m), θk = ⊥, and
∀tk ∈ en(m), θk − d ≥ 0 and θ′k = θk − d.

Remark 3. Had we not assumed a unique transition tinit enabled, with a time
interval reduced to [0, 0], we would have in general an infinity of initial states
corresponding to all possible choices of function θ0 with values in the static
firing intervals of enabled transitions, which is not a problem but is a small
inconvenience. Otherwise for the two-player game construction to follow, we
would have needed a first half turn to reach a correct state before even starting.

A run in the semantics of a TPN is a possibly infinite sequence s0a0s1a1s2a2 · · ·
such for all i, si

ai−→ si+1. We denote by seq(ρ) the subsequence of ρ containing
exactly the transitions a0a1a2 · · · .
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In this semantics the choice of firing date occurs directly when the transition
is newly enabled whereas in the classical semantics of [6] this choice is post-
poned to the moment the transition fires. This is already used in [21] but with
probabilistic choices instead of non-deterministic one.

We have chosen this semantics because it will allow us to more precisely relate
states and state classes as defined in the next section. Such a close relation has
never been achieved with the semantics of [6], leading to further refinements into
so-called atomic state classes [10].

2.3 State classes

The number of states from a TPN is not finite in general because of the density
of the static intervals. There are several finite representations abstracting the
state space of a TPN using various methods and one of them is the state class
graph. One of its benefits is to be finite as long as the TPN is bounded, i.e. the
number of tokens in each place is bounded (by 1 in the case of safe nets).

Definition 4 (State class). Let σ = t1...tn be a sequence of transitions. The
state class Kσ is the set of all states obtained by firing σ in order, with all
possible delays before each fired transition. Clearly, all states in Kσ share the
same marking m, and so we write Kσ = (m,D) where D, called the firing
domain, is the union of all possible firing date functions for those states.

The firing domain D is a set of valuations of transitions. With an arbitrary
order on transitions, and ignoring ⊥ values, such a valuation can be seen as a
point in R|en(m)|

≥0 . We will therefore consider such sets of valuations as subsets of
R|en(m)|

≥0 . And as we will see, firing domains are actually a special kind of convex
polyhedra in that space.

As a direct consequence of Definition 4, we have the following lemma:

Lemma 1. Let Kσ = (m,D). Let s = (m, θ); then θ ∈ D if and only if there
exists a run ρ from the initial state s0 to s, such that seq(ρ) = σ and either σ is
empty or ρ ends with a transition firing.

Remark 4. With the usual semantics of [6], only the if part holds [7], because the
timing part of states in that semantics assigns intervals to enabled transition and
an arbitrary interval taken from D does not necessarily correspond to a reachable
state. A state can contain an interval overlapping two adjacent intervals grouped
in a class, but that is not reachable.

We can naturally now extend the notions of enabled, persistent, and newly
enabled transitions to state classes: en((m,D)) = en(m), newen((m,D), t) =
newen(m, t), and pers((m,D), t) = pers(m, t).

We have the following lemma:
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Lemma 2. Let Kσ = (m,D) and Kσ.tf = (m′, D′), with tf ∈ en(m). We have:

θ′ ∈ D′ iff ∃θ ∈ D s. t.

∀i ∈ en(m), θi − θf ≥ 0
∀i ∈ pers(m, tf ), θ

′
i = θi − θf

∀i ∈ newen(m, tf ), θ
′
i ∈ Is(i)

Proof. By Lemma 1, for all states s′ = (m′, θ′) ∈ Kσ.tf there exists a run ρ′ that
goes from the initial state s0 to s′ such that seq(ρ′) = σ.tf . Also ρ ends with the
firing of tf .

Let s = (m, θ) and s′′ = (m, θ′′) be the states in ρ′ such that ∃d.s d−→ s′′
tf−→ s′.

Possibly, we have s = s′′. Let ρ be the prefix of ρ′ ending in s, then seq(ρ) = σ
and ρ does not end with a delay, so s ∈ Kσ by Lemma 1. We thus have θ ∈ D
and Definition 4 directly implies the three expected conditions because, from
top to bottom, tf is firable, we must delay until θf is 0, and the firing dates for
newly enabled transitions are chosen in their static firing intervals. ut

From Lemma 2, D′ is not empty if and only if there exists θ in D such that
for all i ∈ en(m), θi ≥ θf . In that case we say that tf is firable from (m,D).

Algorithm 1 then follows straightforwardly from Lemma 1 to compute K ′ =
(m′, D′) from K = (m,D) by firing firable transition tf .

Algorithm 1 Successor (m′, D′) of (m,D) by firing firable transition tf

1: m′ ← (m \ Pre(tf )) ∪ Post(tf )
2: D′ ← D ∧

∧
i 6=f,i∈en(m) θf ≤ θi

3: for all i ∈ en(m \Pre(tf )), i 6= f , add variable θ′i to D′, constrained by θ′i = θi − θf
4: eliminate (by existential projection) variables θi for all i from D′

5: for all i ∈ newen(m, tf ), add variable θ′′i to D′, constrained by θ′′i ∈ Is(i)

The state class associated with the empty sequence ε contains the set of
initial states, here reduced to a singleton: Kε = (m0, {θ0}).

Algorithm 1 corresponds to the classical state class computation from [6]. The
initial class is also what we would obtain with that construction. It is well-known
that those state classes can be represented and computed using a special kind of
convex polyhedra encoded in the efficient data structure called difference bound
matrix (DBM) [6, 17]. An efficient way to directly compute successor classes is
given in [11, 12].

Definition 5. Starting from Kε, we can construct an infinite directed tree (la-
beled by fired transitions) by inductively computing successors by firable transi-
tions. The State class graph (SCG) G is the graph obtained by quotienting this
tree with the equality relation on state classes (same marking, and same firing
domain).
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2.4 Two-player game on the State Class Graph

Since we are interested in controller synthesis, from now on, the set of transitions
is partitioned between two sets Tc and Tu which contain respectively controllable
and uncontrollable transitions. The controllable transitions are controlled by a
controller, in the sense that it can choose their firing dates, and the order of
firing but uncontrollable transitions can be fired in between.

For short, we define newenu(m, t) = Tu ∩ newen(m, t), newenc(m, t) = Tc ∩
newen(m, t), enu(m) = Tu ∩ en(m) and enc(m) = Tc ∩ en(m). We also extend
these notations to state classes as before.

We now define a game over the TPN N that simulates the behavior of con-
trollable and uncontrollable transitions in order to decide whether a set of states
is always reachable by choosing the right controllable firing dates or not. And if
this is the case, a strategy for the controller will be constructed.

A round in the game is in three steps:

1. the controller chooses a firable transition tc ∈ Tc that he wants to fire first;
2. the environment chooses either to fire a firable transition tu ∈ Tu or to let

the controller fire tc;
3. both choose independently the firing dates of their newly enabled transitions.

Definition 6. Let N = (P, T, F, Is), a time Petri net with T = Tc ∪ Tu and
Tc ∩ Tu = ∅ and (S, s0, Σ,→), its semantics, an arena is a tuple A = (S,→
, P l, (Movti)i∈Pl, (Movfi)i∈Pl,Trans) with:

– Pl = (Plu, P lc) the two players of the game: the environment (Plu) and the
controller (Plc). The controller plays over controllable transitions, whereas
the environment plays over uncontrollable transitions.

– Movtu : S × Tc → 2T and Movtc : S → 2T rule the choices of transitions:

Movtc(m, θ) = {ti | ti ∈ enc(m) ∧ θi = min
tk∈en(m)

θk}

Movtu((m, θ), tc) = {ti | ti ∈ enu(m) ∧ θi = min
tk∈en(m)

θk} ∪ {tc}

– Movfu : S × T → 2R
Tu
≥0 and Movfc : S × T → 2R

Tc
≥0 rule the choices of firing

dates:

Movfc((m, θ), ti) =

θc ∈ RTc

≥0

∣∣∣∣∣∣∣
θck ∈ Is(tk) if tk ∈ newen(m, ti)

θck = θk − θi if tk ∈ pers(m, ti)

θck = ⊥ otherwise


Movfu((m, θ), ti) =

θu ∈ RTu

≥0

∣∣∣∣∣∣∣
θuk ∈ Is(tk) if tk ∈ newen(m, ti)

θuk = θk − θi if tk ∈ pers(m, ti)

θuk = ⊥ otherwise


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– finally, Trans : S × T × T × RTc

≥0,R
Tu

≥0 → S combines all the choices of the
players and gives the resulting state:

Trans(s, tc, tu, θ
c, θu) = ((m \ Pre(tu)) ∪ Post(tu), θ

c ∪ θu)

when tc ∈ Movtc(s), tu ∈ Movtu(s, tc), θ(tu) = mink(θ(tk)), tu ∈ Tu∨tu = tc,
θc ∈ Movfc(s, tu) and θu ∈ Movfu(s, tu).
Note that θu∪ θc is a disjoint union and is in RT

≥0 because RTu

≥0 and RTc

≥0 are
disjoints and their union is RT

≥0.

A reachability game R = (A,Goal) consists of an arena and a set Goal ⊆ S
of goal states. The objective of Plc, the controller, is to reach a state in Goal and
the objective of Plu, the environment, is to avoid these states.

Definition 7. A play in an arena is a finite or infinite word s0s1...sn over the
alphabet S such that

s0
t1−→ s1

t2−→ s2....
tn−→ sn

with ∀i,∃θui , θci , tci, tui.Trans(si, tci, tui, θci , θui ) = si+1 and tci ∈ Movtc(si), tui ∈
Movtu(si, tci), θui ∈ Movfu(si, tui) and θci ∈ Movfc(si, tui).

Definition 8. A strategy for the environment Plu (resp. the controller Plc) is
a function σu : S × Tc → T × RTu

≥0 (resp. σc : S → Tc × RTc

≥0).1

Definition 9. A play s0s1... conforms to strategy σc (resp. σu) if at each posi-
tion i (except the last in case of a finite play): ∃tci, tui, θci , θui s. t. σc(si) = (tci, θ

c
i )

(resp. σu(si, tci) = (tui, θ
u
i )) and Trans(si, tci, tui, θ

c, θu) = si+1.

Definition 10. A maximal play is a play that is either infinite or finite and
such that from the last state no new marking is reachable.

Definition 11. A maximal play is winning for the controller if there is a posi-
tion n such that sn ∈ Goal. Otherwise, the play is winning for the environment.

A strategy is winning for a player if and only if all plays conforming to this
strategy are winning for that player.

Remark 5. This game is a two-player determined concurrent game and we always
have either Plc wins or Plu wins, but not both.

3 Computing the winning states

The construction of a strategy for the controller is based on the state class graph
G. To construct such a winning strategy over this graph, we will use a backward
process to recursively compute the controllable predecessors of the target states
until a fixed point is reached.
1 Usualy, strategies are defined with the whole trace as memory but we will see in

subsection 3.3 that by construction we only need memoryless strategies.
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A TPN N and its state class graph G are shown in figure 1a and 1b. We use
black squares to depict controllable transitions and white ones for uncontrollable
transitions. In G, dashed arrows are used for uncontrollable transitions. Goal
states are those with a token in place p5. To reach such a state from states in
ClassGt0a, we must fire transition c before b. This is the condition that we will
have to propagate during the backward process.

p0

p1

p2

p3

p4

:)p5

t0 [0, 0]

a [0, 4]

b [3, 4]

c [5, 6]

(1a) Time Petri net N

{p0}
0 ≤ t0 ≤ 0

Kε

{p1, p4}
0 ≤ a ≤ 4
5 ≤ c ≤ 6

Kt0

{p2, p4}
3 ≤ b ≤ 4
1 ≤ c ≤ 6

Kt0a

{p3}
∅

Kt0ab
{p5}
∅

Kt0ac

t0

a

b c

(1b) State class graph G

Definition 12. Let C
tf−→ C ′ be a transition in G and let B be a subset of the

class C ′.
We define the set of predecessors Pred

C
tf−→C′

(B) of B ⊆ C ′ in C by transi-

tion tf : Pred
C

tf−→C′
(B) = {s ∈ C | ∃s′.s tf−→ s′ ∈ B}.

We further define two sets cPred
C

tf−→C′
(B) and uPred

C
tf−→C′

(B) for the con-
trollable and uncontrollable predecessors of a subset B of C ′ in class C and
by firing transition tf . The controllable predecessors correspond to states from
which the controller can force to reach B and the uncontrollable predecessors
correspond to states from which the controller can not force to avoid B.

Definition 13. Without loss of generality we suppose {t1, ..., tn} = newenc(C, tf )
and {tn+1, ..., tn+k} = newenu(C, tf ). We define:

cPred
C

tf−→C′
(B) =


(m, θ) ∈ C

∣∣∣∣∣∣∣∣∣∣∣∣

∀ti ∈ newenc(C, tf ),∃θ′i ∈ Is(ti) s. t.
∀tn+j ∈ newenu(C, tf ),∀θ′n+j ∈ Is(tn+j),

s
tf−→ s′ = (m′, θ′) ∈ B

where ∀i ∈ J1, n+ kK, θ′(ti) = θ′i

and ∀i ∈ J1, lK, θ′(tn+k+i) = θ(tn+k+i)− θ(tf )


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And:

uPred
C

tf−→C′
(B) =


(m, θ) ∈ C

∣∣∣∣∣∣∣∣∣∣∣∣

∀ti ∈ newenc(C, tf ),∀θ′i ∈ Is(ti) s. t.
∀tn+j ∈ newenu(C, tf ),∃θ′n+j ∈ Is(tn+j),

s
tf−→ s′ = (m′, θ′) ∈ B

where ∀i ∈ J1, n+ kK, θ′(ti) = θ′i

and ∀i ∈ J1, lK, θ′(tn+k+i) = θ(tn+k+i)− θ(tf )


In order to symbolically compute these sets of states, we will need a few

operators on sets of valuations.
In the following, D and D′ are sets of valuations and we denote valuations

by the sequences of their non-⊥ values.
We first define the classical existential projection:

Definition 14. For any set of valuations D s. t. ∀θ ∈ D, tr(θ) = {t1, . . . , tn+k},

π∃
{t1,...,tn}(D) = {(θ1...θn) | ∃θn+1, ..., θn+k, (θ1...θn+k) ∈ D}

We also define a less usual universal projection of D′ inside D:

Definition 15. For any two sets of valuations D and D′ such that D′ ⊆ D and
∀θ ∈ D, tr(θ) = {t1, . . . , tn+k},

π∀
{t1,...,tn}(D,D′) =

(θ1...θn)

∣∣∣∣∣∣∣
∃θn+1, ..., θn+k, (θ1...θn+k) ∈ D

∧ ∀θn+1, ..., θn+k, (θ1...θn+k) ∈ D

=⇒ (θ1...θn+k) ∈ D′


We also need an extension operation:

Definition 16. For any set of valuations D s. t. ∀θ ∈ D, tr(θ) = {t1, . . . , tn},

π−1
{t1,...,tn+k}(D) = {(θ1...θn+k) | (θ1...θn) ∈ D and ∀i, θn+i ≥ 0}

Finally, we define a backward in time operator:

Definition 17. For any set of valuations D s. t. ∀θ ∈ D, tr(θ) = {t1, . . . , tn}
and for tf 6= ti for all i ∈ J1, nK,

D + tf = {(θ′1 . . . θ′nθ′f ) | (θ1 . . . θn) ∈ D, θ′f ≥ 0 and ∀i, θ′i = θi + θ′f}

Remark 6. The universal projection is parameterized by two sets of valuations
unlike the existential projection. The reason for this choice is that we only want
states that after extension are correct regarding the semantics of the TPN .
And since in our construction we will use this projection with {tn+1, ...tn+k} ∈
newen(A, t) we can easily justify this choice
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because choosing a firing date θn+i outside of Is(tn+i) is not relevant for a
newly enabled transition. So it is natural to restrict projections inside a set of
valuations to those that can possibly be extended in some correct and reachable
states, namely states that are part of a class in the SCG.

Note that for now the extension operation gives us this kind of irrelevant
valuations, therefore we will need to intersect them with the domain of a state
class from the graph beforehand.

The universal projection is expressible with set complements and existential
projections only, as stated in the following proposition. We denote by D the
complement of D, i. e., D = {s | s 6∈ D}.

Proposition 1. Let τ = {t1, ..., tn} ∀τ ⊆ T, π∀
τ (D,D′) = π∃

τ (D) ∩ π∃
τ (D

′ ∩D).

Due to the lack of space we ommit the proof.

Example 1. A graphical way to see the intuition behind the universal projection
in two dimensions is given in figure 2. We use for this example the TPN in
figure 1a, with D′ being the part of the domain of the state class Kσ for the
firing sequence σ = t0.a, that allows to put a token in p5.
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(a) Set D′ in blue in the rectangle of Dt0a
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(b) Dt0a ∩D′
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(c) π∃
{c}(Dt0a ∩D′)
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(d) π∃
{c}(Dt0a) ∩ π∃

{c}(Dt0a ∩D′) =

π∀
{c}(Dt0a, D

′)

Fig. 2: Example of universal projection
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3.1 Symbolic computation for Pred ()

We now have the necessary operations on sets of valuations to be able to sym-
bolically compute the predecessors of a subset of a class. In the following we
always assume that B ⊆ C ′ and in particular we thus have en(C ′) = en(B).

We will use the projection operators as building blocks for the cPred() and
uPred() predecessor operators.
Proposition 2 (cPred

C
tf−→C′

(B) computation). Let C = (m,D) and C ′ =

(m′, D′). Consider B = (m′, D′′) ⊆ C ′, and let cPred
C

tf−→C′
(B) = (m,Dp).

Then:
Dp = D ∩ π−1

en(C)

(
π∃
pers(C,tf )

(
π∀
newenc(C,tf )
∪pers(C,tf )

(D′, D′′)
)
+ tf

)
Proof. As in the definition of cPred(), we have chosen without loss of gen-
erality that newenc(C, tf ) = {t1, ..., tn}, newenu(C, tf ) = {tn+1, ..., tn+k} and
pers(C, tf ) = {tn+k+1, ..., tn+k+l}.

→: First suppose s = (m, θ) ∈ cPred
C

tf−→C′
(B). By Definition 13, we have

s ∈ C and ∀ti ∈ newenc(C, tf ),∃θ′i ∈ Is(ti) s. t. ∀tn+j ∈ newenu(C, tf ),∀θ′n+j ∈

Is(tn+j), s
tf−→ s′ = (m′, θ′) ∈ B where ∀i ∈ J1, n + kK, θ′(ti) = θ′i and ∀i ∈

J1, lK, θ′n+k+i = θn+k+i − θf .
Since B ⊆ C ′, we also have s′ ∈ C ′. Let θ1 be the valuation such that

∀i ∈ J1, nK, θ1i = θ′i and ∀i ∈ J1, lK, θ1n+k+i = θn+k+i − θf and ∀i ∈ J1, kK, θ1n+i =
⊥, i. e., we have removed uncontrollable newly enabled transitions from θ′′.
Then from Definition 15, θ1 ∈ π∀

newenc(C,tf )
∪pers(C,tf )

(D′, D′′) because the only way to

assign values to newly enabled transitions within D′ is to take them in their
static firing interval, and because those intervals are all non-empty. Further
define θ2 from θ1 by removing controllable newly enabled transitions: ∀ti ∈
newenc(C, tf ), θ

2
i = ⊥ and ∀ti 6∈ newenc(C, tf ), θ

2
i = θ1i . Then by construction,

θ2 ∈ π∃
pers(C,tf )

({θ1}), and hence θ2 ∈ π∃
pers(C,tf )

(π∀
newenc(C,tf )
∪pers(C,tf )

(D′, D′′)). In θ2,

exactly all persistent transitions have a value different from ⊥, so if we add
θf to all of those, we obtain a new valuation θ3, with θ3 = θ2i = (θi − θf ) +
θf = θi for all persistent transition ti, and θ3i = ⊥ for all other transitions. By
construction, θ3 ∈ π∃

pers(C,tf )
(π∀

newenc(C,tf )
∪pers(C,tf )

(D′, D′′)) + tf . Finally, we can extend

θ3 with values for the transitions in en(m) \ pers(C, tf ) in the following manner:
let θ4 defined by θ4i = θ3i for all persistent transitions ti, θ4i = θi for all ti ∈
en(m) \ pers(C, tf ) and θ4i = ⊥ for all other transitions. Then clearly, θ4 ∈
π−1
en(C)

(
π∃
pers(C,tf )

(
π∀
newenc(C,tf )
∪pers(C,tf )

(D′, D′′)
)
+ tf

)
. But since θ4 has exactly all the

same values for transitions as θ, we have the expected result.
⇐: consider θ ∈ D ∩ π−1

en(C)

(
π∃
pers(C,tf )

(
π∀
newenc(C,tf )
∪pers(C,tf )

(D′, D′′)
)
+ tf

)
. Let s =

(m, θ). By definition of π−1, there exists a θ1 in π∃
pers(C,tf )

(π∀
newenc(C,tf )
∪pers(C,tf )

(D′, D′′))+
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tf such that for all persistent transitions ti, θ1i = θi, and θf 6= ⊥, and for all
other transitions ti, θ1i = ⊥. By definition of the extension operator, there exists
a valuation θ2 ∈ π∃

pers(C,tf )
(π∀

newenc(C,tf )
∪pers(C,tf )

(D′, D′′)), such that for all persistent

transitions ti, θ2i + θf = θi, and for all other transitions ti, θ2i = ⊥.
By definition of π∃, there exists a valuation θ3 ∈ π∀

newenc(C,tf )
∪pers(C,tf )

(D′, D′′) such

that for all persistent transitions ti, we still have θ3i = θ2i = θi − θf , and for all
newly enabled controllable transitions ti we have θ3i 6= ⊥.

By definition of π∀, there exists a valuation θ4 ∈ D′′ such that for all per-
sistent transitions ti, we still have θ4i = θi − θf , and for all newly enabled
(controllable and uncontrollable) transitions ti we have θ4i 6= ⊥. In addition, we
know that for any other valuation θ5 ∈ D′ that equals θ4 on all but the newly
enabled uncontrollable transitions, we also have θ5 ∈ D′′.

By construction, we have tr(θ4) = en(m′) (persistent plus all newly enabled
transitions) and since θ4 ∈ D′′ ⊆ D′, we have for all newly enabled transitions ti,
θ4i ∈ Is(ti), and s = (m, θ)

tf−→ (m′, θ4) and we have the same properties for all θ5
as defined above. This, with θ5 ∈ D′′ implies that s = (m, θ) ∈ cPred

C
tf−→C′

(B).
ut

Proposition 3 is similar to Proposition 2 and its proof follows the same steps
so we omit it.

Proposition 3 (uPred
C

tf−→C′
(B) computation). Let C = (m,D) and C ′ =

(m′, D′). Consider B = (m′, D′′) ⊆ C ′, and let uPred
C

tf−→C′
(B) = (m,Dp).

Then:

Dp = D ∩ π−1
en(C)

(
π∀
pers(C,tf )

(
π∃
newenu(C,tf )
∪pers(C,tf )

(D′), π∃
newenu(C,tf )
∪pers(C,tf )

(D′′)
)
+ tf

)

3.2 Predecessor computations with DBMs

First recall that a DBM is a matrix in which coefficient (dij ,≺) in row i and
column j encodes a diagonal constraint θi − θj ≺ dij , with ≺∈ {≤, <}. Variable
θ0 is assumed to always be equal to 0 so this also encodes rectangular constraints
of the form θi ≺ di0 and −θi ≺ d0i. DBMs can be put in a canonical form so
that the DBM for a given set of valuations is unique [4].

The formulas we have given for cPred() and uPred() can be implemented
with DBM operations. Indeed, existential projection and intersection on DBMs
are classical operations and can be performed efficiently [4].

Universal projection is more complex. Most importantly, we need to com-
plement a DBM. This can be done easily by creating, for each (non-redundant)
constraint θi − θj ≺ dij of the DBM, a new DBM with only negated constraint
θj − θi ≺′ −dij , with ≺′ being strict if ≺ was weak and vice-versa. Then we take
the union of all those DBMs. The result is therefore not a single DBM but a
finite union of those. The rest of the operations is classical. This is kind of similar
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to subtraction between DBMs that are involved in computing the controllable
predecessors for timed automata [3].

The extension operator just consists in resizing the DBM and initializing the
new variables so they are not constrained.

Finally, the backward in time operator is more tricky: we need to add a new
variable θ′f (the delay) and do changes of variables for all other variables θi as
follows: θ′i = θi + θ′f . Then we existentially project out the θi variables. This is
actually easier than it sounds because, assuming the DBM is in canonical form,
diagonal constraints θi − θj ≺ dij are left unchanged by the transformation, the
θ′f cancelling each other, while rectangular constraints θi ≺ di0 or −θi ≺ d0i just
become diagonal constraints: θ′i − θ′f ≺ di0 or θ′f − θ′i ≺ d0i respectively.

All these operations are straightforwardly extended to finite unions of DBMs,
though at a price in terms of computation cost.

3.3 Winning states

The aim of this part is to define the set Win of winning states for the controller.
We will start by defining inductively Winn for strategies in less than n steps and
we then show that it admits a fixpoint that corresponds to the full set of winning
states.

Definition 18. We start by defining the following sets of states that we will
need in order to construct Wink+1 using Wink:

uGoodk(C) =
⋃

(C
tf−→C′)∈G,

tf∈enu(C)

(
cPred

C
tf−→C′

(Wink ∩ C ′)
)

cGoodk(C) =
⋃

(C
tf−→C′)∈G,

tf∈enc(C)

(
cPred

C
tf−→C′

(Wink ∩ C ′)
)

uBadk(C) =
⋃

(C
tf−→C′)∈G,

tf∈enu(C)

(
uPred

C
tf−→C′

(Wink ∩ C ′)
)

cBadk(C) =
⋃

(C
tf−→C′)∈G,

tf∈enc(C)

(
uPred

C
tf−→C′

(Wink ∩ C ′)
)

Intuitively, a state is in cGoodk(C) if there is a controllable transition that
can be fired, for which when arriving in C ′ we can choose a firing date for
newly enabled controllable transitions such that no matter what firing date the
environment chooses for its newly enabled uncontrollable transitions, we end up
in Wink. The set uGoodk(C) is the same except the transition that is fired is
uncontrollable.
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Conversely, a state is in uBadk(C) if there is an uncontrollable transition
that can be fired, for which when arriving in C ′, no matter what firing dates
for newly enabled controllable transitions we choose, we cannot be sure to end
up in Wink. The set cBadk(C) is the same except the transition that is fired is
controllable.

From those sets of states, we can inductively define the set Winn that contains
exactly the states from which the controller has a winning strategy in at most
n steps:

Win0 = Goal

Wink+1 = Wink ∪
⋃
C∈G

([(
uGoodk(C) \ cBadk(C)

)
∪ cGoodk(C)

]
\ uBadk(C)

)
Lemma 3. For all state s of N , s ∈ Winn if and only if from s the controller
has a strategy to reach Goal in at most n steps.

Proof. Proof by induction on n the number of steps.
The base case, n = 0, is straightforward, so we focus on the induction step.
Suppose that for some k we have ∀s′, s′ ∈ Wink if and only if the controller

has a strategy from s′ to reach Goal in at most k steps. Let s be a state of the
TPN.

⇒: Let s ∈ Wink+1. The case s ∈ Wink is trivially true by the induction
hypothesis. Assume therefore that s is in some class C and either s ∈ uGoodk(C)\
(cBadk(C) ∪ uBadk(C)) or s ∈ cGoodk(C) \ uBadk(C).

– In the first case, since s ∈ uGoodk(C), then Definition 13 ensures that
the controller can choose firing dates θc to force that all its successors
by an uncontrollable transition tu are in Wink. We also have that s 6∈
(cBadk(C) ∪ uBadk(C)), hence Definition 13 gives us that no other con-
trollable or uncontrollable transition that could lead to Wink can be fired
before one of the above-mentioned favorable uncontrollable transitions.

– In the second case, s is in cGoodk(C) and not in uBadk(C). The same argu-
ments as before allows us to say that the controller has a way to choose firing
dates to force that all its successors by a controllable transition are in Wink
and that no unfavorable uncontrollable transition can be fired before. Note
that there is no need to guard against unfavorable controllable transition
firing because we are in the case where the transition choice is made by the
controller.

Clearly in both cases from s the controller has a strategy to choose tc and θc

such that Trans(s, tc, tu, θc, θu) ∈ Wink,∀tu, θu. And so it has a strategy to reach
some s′ ∈ Wink in a single step. The induction hypothesis allows us to conclude
that from any state in Wink+1, the controller has a strategy to reach Goal in at
most k + 1 steps.

⇐: If there is a strategy to reach Goal in (strictly) less than k + 1 steps
from a state s, then there is a strategy in at most k steps and by the induction
hypothesis, s ∈ Wink ⊆ Wink+1.
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So we focus on the case in which the controller has a strategy to reach Goal
in exactly k + 1 steps from a state s. To begin with, the controller can choose
tc and θc such that from all states s′ ∈ Trans(s, tc, tu, θ

c, θu) it can still force to
reach Goal in at most k steps, for all permitted choices of tu and θu. These states
s′ are each in C ′ ∩ Wink for some class C ′ and not in C ′′ ∩ Wink for any class
C ′′. There is two main cases: either the environment lets the controller play tc
or it chooses to play some other tu ∈ Tu.

– If tu has been played, then the choices of firing dates in θc were such that
whatever the environment chooses for θu, the successor of s by firing of tu
with these firing dates for newly enabled transitions is in Wink. So using
Definition 13 we get that s ∈ uGoodk(C). And the environment had no way
to let another transition (uncontrollable or not) fire that would have led to
Wink and would thus have been unfavorable to the controller. Definition 13
ensures that s 6∈ (uBadk(C) ∪ cBadk(C)).

– If tc has been played, then the environment had no way to have a dis-
advantageous uncontrollable transition fire first, then using Definition 13,
s 6∈ uBadk(C). And since the resulting state s′ is in Wink regardless of the
environment choices, it follows from Definition 13 that s ∈ cGoodk(C).

Bringing all these sets together we have that all such states s are in:([(
uGoodk(C) \ cBadk(C)

)
∪ cGoodk(C)

]
\ uBadk(C)

)
This leads us to conclude that s ∈ Wink+1. ut

Proposition 4. For all N such that G is finite (i.e. N is bounded as proved
in [9]), ∃n,Winn = Winn+l,∀l > 0

Proof. Let b ∈ N and M a DBM in canonical form. Let us call a b-DBM a DBM
in which all finite coefficients are smaller or equal to b in absolute value. We
have shown in Subection 3.2, that all uPred() and cPred() computations done on
DBMs give finite unions of DBMs. And furthermore, these operations preserve
b-DBMs. It is well-known for the intersection because each coefficient of the
result is the minimum of the corresponding coefficients in the operands [4]. The
other operations are immediate using the constructions described above.

Now, let bmax be the greatest of the finite coefficients in the DBMs represent-
ing the domains of all classes in the state class graph. Since that graph is finite,
this maximum is well-defined. Then all those DBMs in the state class graph are
bmax-DBMs.

It follows that all uGoodk(C) and its three variants, which are computed from
them, are finite unions of bmax-DBMs, and so are then all the Wink’s. Clearly,
there is a finite number of bmax-DBMs because DBM coefficients are non-negative
integers. By enforcing that a given union does not contain twice the same DBM,
we also make sure that there are only a finite number of different finite unions
of bmax-DBMs.
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Since Wink is clearly non-decreasing with k, we can then conclude that there
must be an n such that Winn+1 = Winn and, by a simple induction, that all
subsequent Winn+l, for l ≥ 0, are also equal to Winn. ut

We can now define the set of winning states for the controller: Win = Winn
for the smallest n such that we have reached a fixpoint in the construction of
Winn (i.e. Winn = Winn+1).

Using this set of winning states, the controller has a winning strategy if and
only if the initial state in is Win. A strategy for the controller is then to choose
firing dates and transitions to fire in order to stay in the set Win. Therefore, if the
current state s is in some Wini+1 for i ≥ 0, the controller will choose a successor
of s that is in Wini \Wini+1 in order to avoid infinite loops. As long as s 6∈ Goal,
it is always possible by construction of Win. To make this choice deterministic,
we could assume states are ordered, e.g. in lexicographic order, and that the
controller will always choose the smaller one first. Successors by a controllable
transition tc will be given priority (in this order) because the controller has to
propose a transition first. Then the new valuation θc will be chosen depending
of the transition tu selected by the environment (tu might be the transition tc).
The current state is the only information used to make the choices. Hence the
strategy is memoryless since no information from the previous turns are needed.

4 Case studies

In the two following examples, for the sake of readability, we omit the immediate
initialization transition and start the net directly in the initial marking.

Note that for these two examples, the classical clock-based method of [25,
15, 18], does not provide a winning strategy since the firing of an uncontrollable
transition is needed to reach the goal state. A solution in this case is to add a
controllable transition with firing interval [b, b] in parallel of an uncontrollable
transition whose firing interval is [a, b].

4.1 Supply chain

We consider the model of Figure 3 of two production lines starting respectively
in p1 and p4 associated with a sorting and assembly cell. The two lines start
by bringing products to p2 + p3 and p5, respectively with transitions t1 and t6.
The products in p5 are either discharged through transition t7 or assembled with
the products in p2 or p3. The products in p5 assembled with the products in p3
are unloaded through transition t4. The products in p3 which are not assembled
with p5 are supplied through transition t3 to another line W3. The products in p5
assembled with the products in p2 are supplied through transition t5 to another
line W2. The products in p2 which are not assembled with p5 are supplied to
another line W1 through transition t2.

Transition t2 is the only controllable transition. We wish to synthesize a con-
troller that will enforce the products reaching places W1, W2 or W3, depending
on the case we consider.
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p1

p2
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p3

p4

p5

W2

W3

t1, [0,∞)

t2, [5, 10]

t3, [2, 2]

t4, [0, 0]

t5, [1, 1]

t6, [12, 12]

t7, [2, 2]

3.a Petri Net model

p4p1

pw

t6, [6, 18]t1 [0,∞)

tw

[0, 0]

3.b Reinitializing the firing date of t1
when t6 is fired

Fig. 3: Production lines

Our approach is implemented in the tool Roméo [24]. We ask for a controller
to reach one of the goal states chosen successively among W1, W2 and W3, and
we obtain three winning strategies that consists in initializing the firing date of
t1 in the initial state. The results are as follows:

– If the goal is W1, initialize t1 such that: θ1 ∈ [0, 3) or θ1 ∈ (10,+∞)
– If the goal is W2, initialize t1 such that: θ1 ∈ (0, 3)
– If the goal is W3, initialize t1 such that: θ1 ∈ (10, 12) or θ1 ∈ (12, 14)

If we extend the firing interval of t6 to [6, 18] then there is no strategy for
obtaining a token in W3 with our method and our semantics because the choice
of the firing date of t1 has to be re-evaluated depending on what the environment
does.

Indeed, we are looking for controllers that can be implemented with classical
real-time methods and in particular with timer-triggered interrupts. We therefore
need to explicitly specify which action of the environment should cause the
controller to re-evaluate the firing dates of its transitions. This can be done
easily with a widget that allows to disable and then re-enable a given controllable
transition (here t1) when a given transition of the environment (here t6) is fired
as shown in Figure 3.b.

We then obtain a winning strategy to reach a marking with a token in W3

as follows:
In the initial state, initialize t1 such that: t1 ∈ (16,+∞)
After the firing of t6 (and then of tw), initialize t1 such that: t1 ∈ [0, 2).

4.2 AGV

We now consider the TPN proposed in [2] that models a materials handling
system with two Automated Guided Vehicle (AGV) systems and a workstation.
Places p1 and p10 are associated with the AGVs starting positions, and the other
places in each AGV subnet correspond to the presence of the AGV in a section.
Transitions t1 and t9 represent the start commands of the respective missions, t7
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is the start of a cycle of the workstation, and the other transitions of each AGV
subnet (except t5) correspond to the movement of the vehicle from one section
to another. Finally, transition t5 is the unloading of a part into the workstation
input buffer.

Transitions t1, t7 and t9 are controllable actions (commands can be activated
at any time), t6 is controllable since the speed of the AGV in this section can be
set so that the time spent in the section is within the interval [30, 40], while the
other transitions are uncontrollable, and their static intervals are given in [2].

Places p3 and p12 represent a shared zone between the two AGVs where only
one vehicle at a time can stay. We then add a transition bad that remove the
tokens in p3 and p12 when two vehicles are in this zone.

The goal of the control problem proposed in [2] is to first reach a state with
a marking {p5, p7, p10} in the time interval [30, 65] and then to reach the goal
state with {p1, p8, p13} or {p6, p9, p13} in the time interval [90, 135]. To express
this goal we can use an observer as defined in [28] such that there is a token in
a place WIN iff the goal is achieved within the constraints.

We then ask for a controller to reach a state with a token in the place WIN
and we obtain the following winning strategy:

– In the initial state, initialize t1, t7 and t9 such that: t1 ∈ [0, 5), t7 ∈ (45, 55),
t9 ∈ (50, 55), 45 < t7 − t1, 50 < t9 − t1 and 0 ≤ t9 − t7 < 5

– when the marking is p1 p8 p12, arriving with t6, initialize t1 such that: t1 ∈
(10,+∞) t8 ∈ [35, 55], t11 ∈ [10, 40], t8 − t1 < 35, t11 − t1 < 0, −35 ≤
t11 − t8 < 0

5 Conclusion

We have defined a new kind of two-player reachability timed games over the
state class graph of time Petri nets. This allows to synthesize a controller that
chooses, as soon as a new transition is enabled, the date on which this transition
will be fired. The interest of this type of controller is that it can be implemented
in real-time context with interrupts triggered by timers whose durations are fixed
as soon as the associated actions are planned.

In our future work, we will study how well this semantics fits to the problem of
partial observation. Moreover we plan to study the controller synthesis problem
for safety and for ω-regular properties. We will also consider the question of joint
timing parameters and controller synthesis.
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