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Key Points:

• We propose to train neural mapping schemes for real altimeter data from ocean
simulation data.

• The trained neural schemes significantly outperform the operational mapping of
real altimetry data for a Gulf Stream case-study.

• More realistic simulation datasets improve the performance of the trained neural
mapping with a 20% improvement in the spatial scales.
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Abstract
Satellite altimetry combined with data assimilation and optimal interpolation schemes
have deeply renewed our ability to monitor sea surface dynamics. Recently, deep learn-
ing (DL) schemes have emerged as appealing solutions to address space-time interpo-
lation problems. The scarcity of real altimetry dataset, in terms of space-time coverage
of the sea surface, however impedes the training of state-of-the-art neural schemes on
real-world case-studies. Here, we leverage both simulations of ocean dynamics and satel-
lite altimeters to train simulation-based neural mapping schemes for the sea surface height
and demonstrate their performance for real altimetry datasets. We analyze further how
the ocean simulation dataset used during the training phase impacts this performance.
This experimental analysis covers both the resolution from eddy-present configurations
to eddy-rich ones, forced simulations vs. reanalyses using data assimilation and tide-free
vs. tide-resolving simulations. Our benchmarking framework focuses on a Gulf Stream
region for a realistic 5-altimeter constellation using NEMO ocean simulations and 4DVar-
Net mapping schemes. All simulation-based 4DVarNets outperform the operational observation-
driven and reanalysis products, namely DUACS and GLORYS. The more realistic the
ocean simulation dataset used during the training phase, the better the mapping. The
best 4DVarNet mapping was trained from an eddy-rich and tide-free simulation datasets.
It improves the resolved longitudinal scale from 151 kilometers for DUACS and 241 kilo-
meters for GLORYS to 98 kilometers and reduces the root mean squared error (RMSE)
by 23% and 61%. These results open research avenues for new synergies between ocean
modelling and ocean observation using learning-based approaches.

Plain Language Summary

For an artificial intelligence (AI) to learn, one need to describe a task using data
and an evaluation procedure. Here we aim at constructing images related to the ocean
surface currents. The satellite data we use provide images of the ocean surface with a
lot of missing data (around 95% of missing pixels for a given day), and we aim at find-
ing the values of the missing pixels. Because we don’t know the full image, it is challeng-
ing to train an AI on this task using only the satellite data. However, today’s physical
knowledge makes it possible to numerically simulate oceans on big computers. For these
simulated oceans, we have access to the gap-free image, so we can train AI models by
first hiding some pixels and checking if the model fill the gaps with the correct values.
Here, we explore under which conditions AIs trained on simulated oceans are useful for
the real ocean. We show that today’s simulated oceans work well for training an AI on
this task and that training on more realistic simulated oceans improve the performance
of the AI!

1 Introduction

Satellite altimeters have brought a great leap forward in the observation of sea sur-
face height on a global scale since the 80’s.

Altimetry data have greatly contributed to the monitoring and understanding of
key processes such as the sea-level rise and the role of mesoscale dynamics. The scarce
and irregular sampling of the measurements presents a challenge for training deep neu-
ral networks. The retrieval of mesoscale-to-submesoscale sea surface dynamics for hor-
izontal scales smaller than 150 km however remains a challenge for operational systems
based on optimal interpolation (Taburet et al., 2019) and data assimilation (Lellouche
et al., 2021) schemes. This has motivated a wealth of research to develop novel mapping
schemes (Ballarotta et al., 2020; Ubelmann et al., 2021; Guillou et al., 2021).

In this context, data-driven and learning-based approaches (Alvera Azcarate et al.,
2005; Barth et al., 2022; Lguensat et al., 2017; Fablet, Amar, et al., 2021; Martin et al.,
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2023) appear as appealing alternatives to make the most of the available observation and
simulation datasets. Especially, Observing System Simulation Experiments (OSSE) have
stressed the potential of neural schemes trained through supervised learning for the map-
ping of satellite-derived altimetry data (Fablet, Amar, et al., 2021; Beauchamp et al.,
2023). Their applicability to real datasets has yet to be assessed and recent studies have
rather explored learning strategies from real gappy multi-year altimetry datasets (Martin
et al., 2023). Despite promising results, schemes trained with unsupervised strategies do
not reach the relative improvement of the operational processing suggested by OSSE-
based studies.

Here, we go beyond using OSSEs as benchmarking-only testbeds. We explore their
use for the training of neural mapping schemes and address the space-time interpolation
of real satellite altimetry observations. Through numerical experiments on a Gulf Stream
case-study with a 5-nadir altimeter constellation, our main contributions are three-fold.
We demonstrate the relevance of the simulation-based learning of neural mapping schemes
and their generalization performance for real nadir altimetry data. We benchmark the
proposed approach with state-of-the-art operational products as well as neural schemes
trained from real altimetry datasets. We also assess how the characteristics of the train-
ing datasets, especially in terms of resolved ocean processes, drives the mapping perfor-
mance. To ensure the reproducibility of our results, our code is made available through
an open source license along with the considered datasets and the trained models (Febvre,
2023).

The content of this paper is organized as follows. Section 2 offers background in-
formation on related work, Section 3 presents our method, Section 4 reports our numer-
ical experiments, and Section 5 elaborates on our main contributions.

2 Background

2.1 Gridded satellite altimetry products

The ability to produce gridded maps from scattered along-track nadir altimeter mea-
surements of sea surface height is key to the exploitation of altimeter data in operational
services and science studies (Abdalla et al., 2021). As detailed below, we can distinguish
three categories of approaches to produce such maps: reanalysis products (Lellouche et
al., 2021) using data assimilation schemes, observation-based products (Taburet et al.,
2019) and learning-based approaches (Fablet, Amar, et al., 2021).

Reanalysis products such as the GLORYS12 reanalysis (Lellouche et al., 2021) lever-
age the full expressiveness of state-of-the-art ocean models. They aim at retrieving ocean
state trajectories close to observed quantities through data assimilation methods includ-
ing among others Kalman filters and variational schemes (Carrassi et al., 2018). Such
reanalyses usually exploit satellite-derived and in situ data sources. For instance, GLO-
RYS12 reanalysis assimilates satellite altimetry data, but also satellite-derived observa-
tions of the sea surface temperature, sea-ice concentration as well as in situ ARGO data
(Wong et al., 2020).

The second category involves observation-based products. In contrast to reanal-
yses, they only rely on altimetry data and address a space-time interpolation problem.
They usually rely on simplifying assumptions on sea surface dynamics. In this category,
optimal-interpolation-based product DUACS (Data Unification and Altimeter Combi-
nation System) (Taburet et al., 2019) exploits a covariance-based prior, while recent stud-
ies involve quasi-geostrophic dynamics to guide the interpolation scheme (Guillou et al.,
2021; Ballarotta et al., 2020).

Data-driven and learning-based approaches form a third category of SSH mapping
schemes. Similarly to observation-based methods, they are framed as interpolation schemes.
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Especially deep learning schemes have gained some attention. Recent studies have ex-
plored different neural architectures both for real and OSSE altimetry datasets (Archambault
et al., 2023; Beauchamp et al., 2021; Martin et al., 2023). These studies investigate both
different training strategies as well as different neural architectures from off-the-shelf com-
puter vision ones such as convolutional LSTMs and UNets (Ronneberger et al., 2015)
to data-assimilation-inspired ones (Beauchamp et al., 2021; Fablet, Chapron, et al., 2021).

2.2 Ocean Modeling and OSSE

Advances in modeling and simulating ocean physics have largely contributed to a
better understanding of the processes involved in the earth system and to the develop-
ment of operational oceanography (Barnier et al., 2006; Ajayi et al., 2020). High-resolution
simulations used in Observing System Simulation Experiments (OSSE) also provide a
great test-bed for the design and evaluation of new of ocean observation systems (Benkiran
et al., 2021). The availability of numerical model outputs enables the computation of in-
terpretable metrics directly on the quantities of interest. This avoids challenges met when
working solely with observation data that may be incomplete, noisy or indirectly related
to the desired quantity. For example, in the case of the recently launched SWOT mis-
sion, OSSEs combined ocean and instrument simulations to address calibration issues
and interpolation performance for SWOT altimetry data (Dibarboure et al., 2022). Such
OSSEs have also promoted novel developments for the interpolation of satellite altime-
try such as the BFN-QG and 4DVarNet schemes (Guillou et al., 2021; Beauchamp et al.,
2023).

In OSSE settings, we can train learning-based mapping schemes in a supervised
manner using model outputs as the ”ground truth” during the training phase. Nonethe-
less, these training methods cannot be straightforwardly applied to Observing System
Experiments (OSEs) due to a lack of comprehensive groundtruthed observation datasets.
Applied machine learning practitioners often grapple with insufficient amount of labelled
data during the training of supervised learning schemes, as the collection of large anno-
tated datasets for a specific task can be costly or unattainable. Proposed solutions in-
cludes the exploitation of large existing datasets (such as ImageNet Deng et al. (2009))
to train general purpose models (like He et al. (2016)). Another approach involves the
generation of synthetic datasets to facilitate the creation of groundtruthed samples (Gomez Gon-
zalez et al., 2017; Dosovitskiy et al., 2015). OSSEs, which combine ocean model outputs
and observing system simulators (Boukabara et al., 2018), can deliver such large syn-
thetic groundtruthed datasets. We propose to investigate how OSSE-based training strate-
gies apply to the analysis of real satellite altimetry datasets. Recent results of SSH super-
resolution model trained on simulation datasets and evaluated on real ones (Buongiorno Nardelli
et al., 2022) support the relevance of such strategies.

2.3 Physics-aware deep-learning

In the last decades, DL advances combined with the rise in computational resources
and amount of data have shown the power of extracting knowledge from data in domains
ranging from computer vision to language processing (LeCun et al., 2015). Yet, despite
to the universality of DL architectures (Hornik et al., 1989), a central challenge persists
in learning from data: the generalization performance beyond the distribution of the train-
ing data. To tackle this problem, the literature includes a variety of strategies such as
data augmentation (Shorten & Khoshgoftaar, 2019) and regularization techniques, in-
cluding dropout layers (Srivastava et al., 2014) and weight decay schemes (Krizhevsky
et al., 2012). This is of critical importance for physical systems, where models trained
on past data will be challenged when the system evolves and reaches dynamics absent
from the training data. We can see evidence of this shortcoming in the instability chal-
lenges faced by neural closures for climate models (Brenowitz et al., 2020).

–4–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

There have been a variety of approaches to harness physical priors within learn-
ing schemes to address this issue. Some injects trainable components in classical inte-
gration schemes of physical models such as Yin et al. (2021). Others leverage physical
priors within their learning setups which can been used in the training objective (Raissi
et al., 2019; Greydanus et al., 2019), as well as in the architecture (Li et al., 2020; Wang
et al., 2020). However most of these works have focused on relatively simple physical mod-
els and it remains challenging to combine current state-of-the-art ocean models with such
methods. Obstacles include the complexity and cost of running the physical models, the
differences in programming tools and the computing infrastructures used in each domain,
as well as the availability of automatic differentiation tools for state-of-the-art ocean mod-
els.

The proposed simulation-based training strategy offers another way to benefit from
the advances in high-resolution ocean modeling in the design of deep neural models for
ocean reanalysis problems.

3 Method

3.1 Overview

We designate our approach as ”simulation-based”, it consists in leveraging ocean
models and simulations of observing systems to design supervised training environments.
In this section, we describe the proposed method for assessing the potential of simulation-
based neural schemes for the mapping real altimetry tracks. We describe the architec-
ture considered in our study, as well as the different datasets used for training purposes.
We also detail our simulation-based training setup and the proposed evaluation frame-
work on real altimetry.

Figure 1: Overview of the experimental setup. On the left side we display the
simulation-based training strategy based on an ocean simulation which will be used for
1) generating synthetic observation and 2) computing the training objective of the neu-
ral mapping scheme. On the right side we show the evaluation principle of splitting the
available satellite observations to evaluate the method on data that were not used for the
inference.
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3.2 Neural mapping scheme

The neural mapping scheme considered for this study is the 4DVarNet framework(Fablet,
Amar, et al., 2021). We choose this scheme due to the performance shown in the OSSE
setup. As reported in Beauchamp et al. (2023), it significantly outperforms the DUACS
product (Taburet et al., 2019) in the targeted Gulf stream region. 4DVarNet relies on
a variational data assimilation formulation. The reconstruction results from the mini-
mization of a variational cost. This cost encapsulates a data fidelity term and a regu-
larization term. It exploits a prior on the space-time dynamics through a convolutional
neural network inspired from (Fablet et al., 2018), and an iterative gradient-based min-
imization based on a recurrent neural network as introduced by Andrychowicz et al. (2016).
The overall architecture and components are similar to those presented in Beauchamp
et al. (2023). We adapt some implementation details based on cross-validation exper-
iments to improve the performance and reduce the training time. We refer the reader
to the code for more details (Febvre, 2023).

3.3 SSH Data

Resolution Reanalysis Tide DAC

NATL60 (Ajayi et al., 2020) 1/60◦ No No No
eNATL60-t (Brodeau et al., 2020) 1/60◦ No Yes Yes
eNATL60-0 (Brodeau et al., 2020) 1/60◦ No No Yes
GLORYS12-r (Lellouche et al., 2021) 1/12◦ Yes No No
GLORYS12-f (Lellouche et al., 2021) 1/12◦ No No No
ORCA025 (Barnier et al., 2006) 1/4◦ No No No

Table 1: Summary table of the different synthetic SSH fields used for training.
The last column indicate whether the Dynamic Atmospheric Correction was applied on
the synthetic SSH. It justify the presence of both eNATL60-0 and NATL60 to isolate the
impacts of resolution and tide.

We use numerical simulations of ocean general circulation models (OGCM) to build
our reference SSH datasets. Such simulations involve a multitude of decisions that af-
fect the resulting simulated SSH. Here we consider NEMO (Nucleus for European Mod-
elling of the Ocean) (Gurvan et al., 2022) which is among the state-of-the art OGCM
in operational oceanography (Ajayi et al., 2020) as well as in climate studies (Voldoire
et al., 2013). The selected SSH datasets reported in Table 1 focus on three main aspects:
the added-value of high-resolution eddy-rich simulations, the impact of reanalysis datasets
and the relevance of tide-resolving simulations.

In order to evaluate the impact of eddy-rich simulations, we consider NATL60, GLORYS12-
f and ORCA025 free runs, respectively with a horizontal grid resolution of 1/60◦, 1/12◦,
and 1/4◦. Finer grids allow for more processes to be simulated. We therefore expect higher-
resolution simulations to exhibit structures closer to the real ocean and the associated
trained deep learning model to perform better. Regarding the impact of reanalysis data,
we compare numerical experiments with the GLORYS12-r reanalysis and the associated
free run GLORYS12-f. This reanalysis dataset relies on the assimilation of temperature,
sea level and sea ice concentration observations. Besides, the recent eNATL60 twin sim-
ulations eNATL60-t and eNATL60-0 allow us to evaluate the impact of tide-resolving
simulations. We summarize in Table 1 the characteristics of the different datasets.
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3.4 OSSE-based training setup

We sketch the proposed OSSE-based training setup on the left side of the Figure
1. In order to fairly evaluate the datasets’ quality as a training resource, we standard-
ize the training procedure. We regrid all simulations to the same resolution (1/20°) and
we use daily-averaged SSH fields as training targets. We generate noise-free pseudo-observations
by sampling values of the daily-averaged fields corresponding to realistic orbits of a 5 altimeter-
constellation. We train all models from a one-year dataset in a Gulfstream domain from
(66°W, 32°N) to (54°W, 44°N) in which we keep the same two months for validation. The
hyper-parameters of the model and training procedure such as the number of epoch, learn-
ing rate scheduler are the same for all the experiments. The detailed configuration can
be found by the reader in the available implementation. As training objective, we com-
bine the mean square errors for the SSH fields and the amplitude of the gradients as well
as a regularization loss for the prior model.

3.5 OSE-based evaluation setup

As sketched on the right side of the Figure 1, the evaluation setup relies on real al-
timetry data from the constellation of 6 satellites from 2017 (SARAL/Altika, Jason 2,
Jason 3, Sentinel 3A, Haiyang-2A and Cryosat-2 ). We apply the standardized setup pre-
sented in a data-challenge https://github.com/ocean-data-challenges/2021a SSH

mapping OSE. We use the data from the first five satellites as inputs for the mapping
and the last one (Cryosat-2) for computing the performance metrics. We compute these
metrics in the along-track geometry. The evaluation domain spans from (65°W, 33°N)
to (55°W, 43°N) and the evaluation period from January 1st to December 31st 2017. Given
ηc2 and η̂ the measured SSH and the reconstructed SSH respectively, we compute the
following two metrics:

• µssh is a score based on the normalized root mean squared (nRMSE) error com-

puted as 1− RMS(η̂ − ηc2)

RMS(ηc2)

• λx is the wavelength at which the power spectrum density (PSD) score 1−PSD(η̂ − ηc2)

PSD(ηc2)
crosses the 0.5 threshold, which characterize the scales resolved by the reconstruc-
tion (the error below that wavelength makes up for more than half of the total sig-
nal)

In Table 3, we also consider the root mean square error (RMSE) as well as the nRMSE
score of the sea level anomaly µsla obtained by subtracting the mean dynamic topog-
raphy to the SSH. Lastly, we assess the performance degradation resulting from the tran-
sition from simulated to real data by quantifying the improvement relative to DUACS
in the resolved scale λx on our OSE setup as well as on the OSSE benchmarking setup
proposed in Guillou et al. (2021). This benchmarking setup relies on NATL60-CJM165
OSSE dataset. We refer the reader to https://github.com/ocean-data-challenges/

2020a SSH mapping\ NATL60 for a detailed description of this experimental setup.
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I

II

IV

V

VI

III

Figure 2: Samples Kinetic energy and relative vorticity of the training and re-
construction data of January 6th . The reconstructed year is 2017 while the training
year vary depending on the simulation. The first two columns (a) and (b) show the train-
ing data while columns (c) and (d) show the associated 4DVarNet reconstruction. The
kinetic energy is displayed in columns ((a) and (c)) and the relative vorticity normalized
by the local Coriolis parameter in columns ((b) and (d)). Each row shows the experiment
using respectively: ORCA025 (I), GLORYS12-f (II), GLORYS12-r (III), NATL60 (IV),
eNATL60-t (V) and eNATL60-0 (VI)
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4 Results

This section details our numerical experiments for the considered real altimetry case-
study for a Gulf Stream region as described in Section 3.5. We first report the bench-
marking experiments to assess the performance of the proposed learning-based strategy
with respect to (w.r.t.) state-of-the-art mapping schemes. We then analyse how the char-
acteristics of the training datasets drive the mapping performance.

4.1 Benchmarking against the state of the art

We report in Table 2 the performance metrics of state-of-the-art approaches includ-
ing both operational observation products (Taburet et al., 2019; Ubelmann et al., 2021),
deep-learning-based schemes trained on observation data (Archambault et al., 2023; Mar-
tin et al., 2023) as well as methods using explicitly a model-based prior on sea surface
dynamics (Guillou et al., 2021; Ballarotta et al., 2020; Lellouche et al., 2021). We com-
pare those methods with a 4DVarNet trained on eNATL60-0 OSSE dataset. The latter
outperforms all other methods on the two metrics considered (22% improvement in RMSE
w.r.t. the DUACS product and 33% improvement in the resolved scale). We report a
significantly worse performance for GLORYS12 reanalysis. This illustrates the challenge
of combining large ocean general circulation models and observation data for the map-
ping of the SSH.

The last column indicates that the 4DVarNet scheme leads to the best mapping
scores for both the OSE and OSSE setups. For the latter, the reported improvement of
47% is twice greater than the second best at 22%. The performance of the 4DVarNet
drops by 11% when considering the former. By contrast, other methods do not show such
differences between the OSE and OSSE case-studies. This suggests that the finer-scale
structures that are well reconstructed in the OSSE setup are not as beneficial in the OSE
setup. While one could question the representativeness of the OSSE datasets for the fine-
scale patterns in the true ocean, real nadir altimetry data may also involve multiple pro-
cesses which could impede the reconstruction and evaluation of horizontal scales below
100km.

Figure 3: Space-time spectral densities of the training datasets (first row)
and of their associated reconstruction (second row). Darker blue in the lower
left corner indicates higher energy at larger wavelength and periods. The different SSH
fields exhibit different energy cascades when moving to finer temporal (upward) or spatial
(rightward) scales.
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SSH Deep Calibrated on Physical rmse µssh λx 1− λx

λref

Only Learning data from Model (cm) () (km) (% ose, osse)

(a) 4DVarNet Yes Yes Simulation – 5.9 0.91 100 33, 47
(b) MUSTI No Yes Satellite – 6.3 0.90 112 26, 22
(c) ConvLstm-SST No Yes Satellite – 6.7 0.90 108 28, –
(d) ConvLstm Yes Yes Satellite – 7.2 0.89 113 25, –
(e) DYMOST Yes No Satellite QG 6.7 0.90 131 13, 11
(f) MIOST Yes No Satellite – 6.8 0.90 135 11, 10
(g) BFN-QG Yes No Satellite QG 7.6 0.89 122 19, 21
(h) DUACS Yes No Satellite – 7.7 0.88 151 0, 0
(i) GLORYS12 No No Satellite NEMO 15.1 0.77 241 -60, –

Table 2: SSH reconstruction performance of the benchmarked methods (a)
4DVarNet from this study trained on eNATL60-0 (b) Archambault et al. (2023), (c and
d) ConvLstm-SST and ConvLstm from Martin et al. (2023), (e) DYMOST from Bal-
larotta et al. (2020), (f) MIOST from Ubelmann et al. (2021), (g) BFN-QG from Guillou
et al. (2021), (h) DUACS from Taburet et al. (2019), (i) GLORYS12 from Lellouche et
al. (2021. The columns indicate from left to right: whether athe mapping schemes rely
only on SSH data or also exploit additional data such as gap free SST products; if the
method uses deep learning architectures; the data used to calibrate (or train) the mapping
scheme; the numerical model of the ocean used for the mapping if any (QG stands for
quasi-geostrophic); µ and λx are the metrics as described in Section 3.5

Training Data RMSE µssh µsla λx 1− λx

λref

(cm) (km) (% ose, osse)

NATL60 5.9 0.91 0.80 98 (35, –)
eNATL60-t 5.9 0.91 0.80 100 (33, 48)
eNATL60-0 5.9 0.91 0.80 100 (33, 47)
GLORYS12-r 6.3 0.90 0.78 106 (30, 28)
GLORYS12-f 6.7 0.90 0.77 119 (21, 23)
ORCA025 7.1 0.89 0.76 126 (17, 17)

Table 3: Performance of 4DVarNet mapping schemes trained on different simu-
lated datasets. The first column shows the source of the training dataset as described in
Table 1; the subsequent columns indicate the reconstruction metrics described in Section
3.5. Note that the NATL60 could not be evaluated on the OSSE setup since the evalua-
tion data were used for validation during the training stage.

–10–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

4.2 Eddy-present datasets versus eddy-rich ones

Figure 4: Spectral analysis of the training and reconstructed SSH datasets. We
display the PSD of the training dataset (left plot), reconstructed SSH field (center plot)
as well as the associated PSD score (right plot)

We analyse here in more detail the impact of the spatial resolution of the training
dataset onto the reconstruction performance. In Table 3, as expected, the higher reso-
lution grid in the ocean run simulation leads to a better mapping with a 22% improve-
ment in λx and a 17% improvement in the RMSE score between the experiments with
the coarsest (ORCA025) and finest (NATL60) resolutions. We also observe qualitative
differences in the relative vorticity fields in Figure 2. Residual artifacts due to the al-
timetry tracks appear (60°W, 39°N) for the two lower-resolution training datasets. They
are greatly diminished when considering the NATL60 dataset. Despite these differences,
the reconstructed vorticity and kinetic energy fields in Figure 2 look very similar for the
different 4DVarNet schemes, whatever the training datasets. By contrast, the vorticity
and kinetic energy fields in the training datasets clearly depict fewer fine-scale structures
and weaker gradients for the lower-resolution simulation datasets, namely ORCA025 and
GLORYS12-f. These results support the generalization skills of 4DVarNet schemes to
map real altimetry tracks despite being trained on SSH sensibly different from the re-
construction.

We draw similar conclusions from the analysis of the spectral densities shown in
Figure 4. The differences in the energy distribution of the training data significantly re-
duce in the reconstructions. 4DVarNet schemes trained from higher-resolution datasets
however result in more faithful reconstruction at all scales. The patterns observed for
the temporal PSD are slightly different in Figure 3. We do not observe the same homog-
enization as for the spatial PSD. Lower-resolution training datasets involve a significant
drop of an order of magnitude for periods greater than 10 days and wavelength greater
than 200km.

4.3 Forced simulation datasets versus reanalysis ones

Looking in more specifically at the effect of ocean reanalysis between the two ex-
periments GLORYS12-f and GLORYS12-r. We can first note the impact of observation
data assimilation in Figure 3 where we see how the power spectrum of the reanalysis is
significantly raised compared to the free run. The spectrum is closer to ones of the higher
resolution simulations. Visually we also clearly see stronger gradients in the kinetic en-
ergy in Figure 2.
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Figure 5: Spectral impact of model reanalysis. We display the PSD of the training
dataset (left plot), reconstructed SSH field (center plot) as well as the associated PSD
score (right plot)

We can observe a similar behavior as in Section 4.2 in Figure 5 with the gap of in
spectral density being diminished between the training and reconstruction data, and the
PSD score indicating a lower energy of the error at all scales for the reanalysis-based ex-
periment.

Quantitatively in Table 1 we see an improvement of 11% in both the RMSE and
the scale resolved, besides training on a reanalysis increase the relative gain w.r.t. DU-
ACS significantly more on real data (+9%) than on simulated data (+5%) as we can see
in the right most column. This suggests that the reanalysis dataset conveys information
on real world observations which improves the generalization performance.

4.4 Tide-free datasets versus tide-resolving ones

We assess here the impact of tide-resolving simulation used as training data. We
use the twin eNATL60 runs eNATL60-t and eNATL60-0. Contrary to other runs, those
simulations contain barometric and wind forcing, we therefore remove the Dynamic At-
mospheric Correction (Carrere et al., 2016) from the SSH fields. Additionally since the
barotropic tide signals are removed from real altimetry tracks prior to interpolation, we
also remove the signal from the training data by subtracting the spatial mean over the
training domain for each hourly snapshot before calculating the daily averages.

Given those processing steps, the two training datasets exhibit very similar wavenum-
ber spectra as shown in Figures 3. We also find that training on those two datasets pro-
duce little differences in the reconstructions both quantitatively (see Table 3) and qual-
itatively (Fig. 2). The resulting performance is comparable to that of the NATL60 ex-
periment.

We identify two hypotheses for explaining why tide-resolving simulation do not lead
to better mapping schemes:

• The preprocessing applied on the training field remove the main tide signals. We
therefore effectively measure the impact of tide modeling on other ocean processes
that may be less significant;

• The evaluation procedure applied on altimetry tracks on which the barotropic tide
has been filtered may not be interpretable enough to measure the reconstruction
of residual tide signals. New instruments like the KaRIN deployed in the SWOT
mission may provide new ways to better quantify those effects.
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These findings provide motivation for carefully considering the purpose of the learning-
based model when making decisions about the training data. In our case, explicitly mod-
eling tide processes that are removed from the observations in the evaluation setup added
overheads in the computational cost of running the simulation as well as in the prepro-
cessing of the training data. Additionally given the considered evaluation data and met-
rics, we were not able to quantify any significant differences between the two trained map-
ping schemes.

5 Discussion

This study has been greatly facilitated by the standardized tasks and evaluation
setups proposed in data-challenges https://ocean-data-challenges.github.io/. Data-
challenges are used to specify a targeted problem of interest to domain experts through
datasets and relevant evaluation metrics. This preliminary work have been instrumen-
tal in constituting the comprehensive benchmark and combining methods from differ-
ent teams and institution around the world. Additionally, it also constitutes a strong ba-
sis for a trans-disciplinary collaboration between the ocean and machine learning research
communities.

Moreover, the results presented in this study introduce a use of ocean simulations
for developing altimetry products. This opens new ways for ocean physicist, modelers
and operational oceanographers to collaborate. In order to assess the range of these new
synergies, it would be interesting to explore if the approach proposed here of training
neural schemes using simulation data would generalize to other tasks such as forecast
or sensor calibration and to other quantities like surface temperature, currents, salinity
or biochemical tracers.

If the simulation-based training approach introduced here is successfully extended
to other ocean problems, one could envision training large foundation deep learning mod-
els (Brown et al., n.d.) capturing the inner structure of high resolution ocean simulations
which could then be used in many downstream applications. This could be the way to
capitalize on all the advancement in ocean modeling without having to run OGCM nu-
merical simulation for each downstream products.

Furthermore, we would like to highlight the cost consideration when running nu-
merical simulation intended for training learning based schemes. Indeed given that the
eNATL60 run took 2700x CPU hours and 350x memory compared to the ORCA025 run
for a smaller domain, a trade-off arises between generating multiple ”cheap” trajecto-
ries versus generating a single more realistic trajectory.

To conclude, we have shown in this study that training machine learning models
on simulations datasets leads good performance on real altimetry data mapping and out-
performs current state of the art approaches. The model trained on NATL60 reduces the
RMSE by 18% compared neural schemes trained on observation data and improves the
scales resolved by 33% compared to the DUACS operational product. Even the coars-
est simulation considered ORCA025 provides competitive results with current operational
methods. We have shown that using a more realistic SSH fields using reanalysis or higher
resolution simulations increases the performances of the trained model. This is an ex-
citing result that shows the potential for training operational products from ocean sim-
ulations and how advances in ocean modeling in operational oceanography can be ben-
eficial. The results shown here are limited to the interpolation problem on a regional do-
main but the robustness of the performance shown are encouraging for further develop-
ing these results using a larger domain.
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