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Abstract—The SpaceWire network standard is promoted
by the ESA and is scheduled to be used as the sole on-board
network for future satellites. This network uses a wormhole
routing mechanism that can lead to packet blocking in
routers and consequently to variable end-to-end delays. As
the network will be shared by real-time and non real-
time traffic, network designers require a tool to check
that temporal constraints are verified for all the critical
messages.

Network Calculus can be used for evaluating worst-
case end-to-end delays. However, we first have to model
SpaceWire components through the definition of service
curves. In this paper, we propose a new Network Calculus
element that we call the Wormhole Section. This element
allows us to better model a wormhole network than the
usual multiplexer and demultiplexer elements used in the
context of usual Store-and-Forward networks.

I. INTRODUCTION

SpaceWire [1], [2] is an on-board network for satel-
lites designed by the European Space Agency and the
University of Dundee. It uses high-speed serial, point-
to-point links and simple routers to interconnect satel-
lite equipment using arbitrary topologies. In the future,
the ESA plans to use SpaceWire as the sole on-board
network in their satellites. The idea is to use the same
network for both the payload and command/control
traffic. This will simplify the network architecture and
reduce the costs of the satellites.

At the moment, SpaceWire provides enough band-
width (up to 200 Mbps) to carry both types of traffic
at the same time. However, in order to reduce memory
size (radiation-hardened memory is very expensive),
SpaceWire uses wormhole routing to transmit the data
packets across the network. The downside of this tech-
nique is that it can lead to blocked packets and thus
huge variations in the end-to-end delays of those packets.
Furthermore, SpaceWire does not provide built-in real-
time mechanisms that guarantee the timely delivery of
urgent packets.

Thus, network designers need a tool to check that tem-
poral constraints are verified for urgent packets before
SpaceWire can be used to carry command/control traffic.

Using simulations is not possible because covering every
scenario would be very long and costly. A better solution
is to design an analytical model to compute an upper-
bound on the worst-case end-to-end delay of a flow.

We proposed a first model in [3] that allowed us to
compute such an upper-bound for a SpaceWire network.
This model works well in most cases but has some
limitations. As it did not require a specific model of
input traffic, it was pessimistic when the network was
not fully loaded.

As a consequence, we chose to create a new model
based on Network Calculus theory [4]. It is a theory
designed to study deterministic queueing systems which
we have already successfully used in [5] to study the
AFDX network. One strong point of Network Calculus
is that it allows us to model the input traffic precisely
by using traffic envelopes.

However, Network Calculus has been mostly used to
study Internet components and not wormhole routers. As
a consequence, the usual multiplexer and demultiplexer
elements are not adequate to model a wormhole network.
Thus, in Section II, we propose a new network element
we call a ”Wormhole Section”. We can then divide the
path of a flow into a series of Wormhole Sections to
deduce an end-to-end service curve.

Furthermore, existing models are either not suited to
a wormhole network or very pessimistic. In Section III,
we give a new model to compute the delay caused by a
flow when it leaves a Wormhole Section.

Finally, we conclude and discuss future work in Sec-
tion IV.

II. THE WORMHOLE SECTION ELEMENT

A complete overview of Network Calculus would be
beyond the scope of this paper. Readers not familiar with
this theory can refer to [6] for a short introduction.

Here, we just recall this fundamental theorem.
Theorem 1: Concatenation of two systems

Assume that a flow traverses two systems S1 and S2

in sequence. Assume that S1 and S2 offer the service



curves β1 and β2 respectively. Then the concatenation
of the two systems offers the service curve β1 ⊗ β2 to
the flow. β1 ⊗ β2(t) = inf0≤s≤t{β1(t − s) + β2(s)} is
the Min-Plus convolution of β1 and β2.

This allows us to combine the network elements
successively traversed by a flow to obtain an end-to-end
service curve offered to the flow by the network as a
whole.

A. Assumptions

We consider a network composed of SpaceWire
routers and terminals. Each terminal has only one
SpaceWire interface but can be the source and/or desti-
nation of any number of flows. Each flow f is modeled
by a source, a destination, a path through the network
and an arrival curve αf . Usually, the arrival curve is a
staircase function which gives a more precise model of
the input traffic than an affine function.

Since SpaceWire routers use static routing, we con-
sider only a static network. We also assume that the
network is stable, i.e. that no link is required to transfer
more data than its capacity. In Network Calculus terms,
this can be written as follows (see [7]). For each link j,
we note Ij the number of flows traversing that link and
αji the arrival curve of flow fi at link j. The stability
condition is now:

∀j,∀i ∈ {1, . . . , Ij}, lim
t→+∞

[βj −
Ij∑
i=1

αji ](t) = +∞ (1)

B. A new network element

To use Network Calculus theory, we first need to
determine a service curve for each element traversed
by a flow. We can then compute an End-To-End (ETE)
service curve using Theorem 1. However, in a wormhole
network, the service offered by a router is not indepen-
dent from the service offered by downstream routers.
Because of the flow control, a router can output data at
an average rate far inferior to its nominal capacity.

For this reason, we do not propose a classic multi-
plexer/demultiplexer model of each router. Instead, we
adopt a macroscopic view of the network which tries
to optimize the ETE service curve of each flow while
accounting for the interdependency between routers.

When a flow encounters interferences with other
flows, the impact of each conflict is twofold. First,
there is a delay when the flow is multiplexed with the
interfering flow. Then, when the interfering flow is de-
multiplexed, the flow control mechanism will propagate
its own delays backward to the studied flow.

To properly model this, we propose a new network
element that we call a ”Wormhole Section”. The basic

idea is to divide the path followed by a flow into a
serie of sections. Each section is composed of a set of
successive output ports shared by the same flows. Thus,
a Section corresponds to the arrival or the departure of
an interfering flow from the path of the studied flow.

Each wormhole section offers a service curve that
depends on the arrival curves of the interfering flows.
Once we have computed the service curve of every
section in the path of a flow, we can deduce the end-
to-end service curve by using Theorem 1.

Of course, once an interfering flow has left the path of
the studied flow, it will go through other wormhole sec-
tions before reaching its destination. The delays caused
in those sections are those that will be carried over to
the studied flow.

S1

S2 S3

D2,3

  D1,4

S4

Section S1 Section S2

Section S3

Section S4

Figure 1. A network divided into wormhole sections

As an example, consider the network in Figure 1. Each
flow fi goes from its source Si to its destination Di.
When a destination is shared by two flows i and j it is
denoted Di,j .

Let us take a closer look at f1. f1 has to go through
three wormhole sections (S1, S2, S4) to reach D1,4 with
sections S1 and S4 shared with other flows. S1 and
S4 are thus the two sources of direct delays for f1. In
addition, since after leaving S1, f2 traverses section S3

which it shares with f3, S3 will be another source of
delay for f1 but only indirectly.

As can be seen in this example, the wormhole section
network element makes it easier to analyse the conflicts
in a wormhole network. In the next section, we present
a detailed model of this new network element.

C. Section sharing

We will present the model when there is only one
interfering flow. We note f1 the studied flow. f2 is the
interfering flow. fi has αSin

i as an arrival curve at the
entrance of section S. Let us assume that section S
comprises M routers.

For j = 1, . . . ,M , βj is the service curve offered by
the output port of router Rj to the two flows. Because of
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the flow control mechanism, the amount of data which
is transmitted by the port may actually be inferior to βj .
Thus, βj should be seen as an intermediate parameter
used to determine the service guaranteed to a given flow
by this section of the network. Once we have analysed
the conflicts in each output port traversed by a flow,
we can use Theorem 1 to compute a service curve for
the section, then for the complete path. This end-to-end
curve is now valid because it takes into account the
influence of all the ports used by a flow, including the
indirect delays. As a consequence, it represents the real
end-to-end output of the network.

Since all the routers in the section are shared between
the two flows and no other interference occurs, we can
view these routers as a single router with service curve
βS =

⊗M
j=1 β

j .

SpaceWire routers use a simplified Round-Robin ac-
cess scheme that guarantees that each input port gets
a fair acces to each output port. However, each packet
can use the output port for an unlimited duration. The
usual round-robin model attributes some weight to each
flow and shares the bandwidth in proportion to those
weights. Since the SpaceWire standard does not define
such weights, we have no way of using this model and
have to rely on the more pessimistic ”blind multiplexing”
model [4], Theorem 6.2.1.

Thus, the service curve offered by the section to f1 is

βS1 = (

M⊗
j=1

βj − αSin
2 )↑. (2)

(β)↑ is the positive and non-decreasing upper closure
of β defined as (β)↑ = max(sup0≤s≤t β(s), 0).
βS1 is a worst-case service curve that implies that all

the interfering flows have a higher priority than f1 and
can instantly preempt it. Of course, in reality the packets
are not interrupted but this model ensures that we have
a worst-case service curve for any possible scheduling
of the packets.

III. SECTION DEMULTIPLEXING

A. Limits of existing models

In a classic Store-And-Forward network model, the
packets are instantaneously demultiplexed. Furthermore,
once a packet has left the router, the delays it can endure
are not propagated backward on the network. Thus, the
demultiplexer has no impact on the delay (see [7] for
example).

However, this is not true for a wormhole network. In
fact, after two flows f1 and f2 have been demultiplexed,
f2 can still have an impact on f1. This is because the

flow control mechanism will carry over the delays caused
to f2 on the end of its path backward to f1.

βτ2

βτ1

β1

β2

flow control

flow control

f1,α1

f2,α2

Figure 2. Demultiplexing of two flows in a wormhole network

A possible way to model this phenomenon is given
in [8]. In this paper, the authors consider the situation
described on Figure 2. In this network, after they have
been demultiplexed both flows f1 and f2 have to go
through a flow controller. Flow controller τi models the
impact of the flow control on the downstream output link
on flow fi with a service curve βτi . In turn, βτi depends
on the service curve of the downstream router.

The authors consider that, as far as the aggregate
flow f{1,2} is concerned, τ1 and τ2 are parallel traffic
regulators. As a consequence, the service offered to the
aggregate flow f{1,2} is β{1,2} = min(βτ1 , βτ2). This
aggregate service is then shared between the two flows
to derive the service offered to each individual flow.

This service is valid but is is very pessimistic. Let us
consider the example in Figure 2. The arrival curves are
affine: αi(t) = ri.t+bi and the service curves are linear:
βi(t) = Ci.t We use the following values:

f1 f2
ri (Mbps) 50 10
bi (bits) 1000 200
Ci (Mbps) 100 20

On the one hand, the service offered to f{1,2} is
β{1,2}(t) = min(C1, C2).t = C2.t. On the other hand,
the arrival curve of f{1,2} is α{1,2}(t) = α1(t)+α2(t) =
r1,2.t + b1,2 with r1,2 = r1 + r2 = 60 Mbps and
b1,2 = b1 + b2 = 1200 bits.

The horizontal distance h(α{1,2}, β{1,2}) between the
two curves is clearly infinite and we have to conclude
that the network cannot carry both flows. This is very
pessimistic because it is easy to see that this network
can handle both flows.

Thus we need a new, more precise network model of
wormhole demultiplexer.

B. A new model of demultiplexing

Since both flows go in different directions in the
network, we cannot determine an exact service for the
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aggregated flow. Each flow receives its own service but
can still cause delays to the other flow thanks to the flow
control mechanism.

The delay actually caused to an individual packet of
f1 is hard to determine because it depends on which
exact conflicts occur farther on the path of f2. However,
we can determine an upper-bound on this delay.

In fact, the maximum delay caused by f2, which we
will denote d2, is at most the maximum delivery delay
from the demultiplexer to the destination of f2. Thus,

d2 = h(αSout
2 , βdest2 ) (3)

where αSout
2 is the arrival curve of f2 at the end of S

and βdest2 the service curve offered to f2 between the
end of S and its destination.

Here, since we have assumed a blind multiplexing
with f2 as the higher priority flow,

αSout
2 = αSin

2 �
M⊗
j=1

βj (4)

where (α � β)(t) = sups≥0{α(t + s) − β(s)} is the
Min-Plus deconvolution of α and β.

With this model, in the example in Figure 2 the delay
caused by f2 to f1 is only h(α2, β2) = 200

107 s = 10µs.
As can be seen, this model is far less pessimistic than
the model from [8].

C. Complete service curve offered by a Wormhole Sec-
tion

We can combine the results from Subsection II-C and
III-B to obtain the complete service curve offered by
section S. When two flows share Section S, the service
curve offered to f1 is

βS1 = (

M⊗
j=1

βj − αSin
2 )↑ ⊗ δh(αSout

2 ,βdest
2 )

(5)

with the delay function δT (t) = 0 if t ≤ T and δT (t) =
+∞ if t ≥ T for any T ≥ 0.

This formula can be easily generalized when there are
more than one interfering flow.

D. Computing an end-to-end service curve

Once we can compute a service curve for each Worm-
hole Section, we have to combine them to determine an
end-to-end service curve. When interfering flows arrive
and depart in various routers along the path of a flow,
we cannot directly use the model presented here.

We would have to use a Section for each router
crossed by the flow which would give us a suboptimal
result. Rather, we try to optimize the ETE service curve

by combining a set of flows sharing several consecutive
routers as an aggregate flow. We can then determine
Wormhole Sections for this aggregate flow and deduce
the service curves offered to it. Those service curves will
then be shared between the individual flows composing
the aggregate flow.

To automate this, we plan to use the three interference
patterns defined in [8] to determine the order in which
the residual services are computed.

IV. CONCLUSION

In this paper, we have defined a new Network Calculus
element that can be used to model a SpaceWire network
more accurately than the usual multiplexer and demulti-
plexer elements. We call this new element a Wormhole
Section since it represents a part of the path followed by
a flow. The Wormhole Section should allow us to obtain
tighter bounds by considering successive routers as only
one element.

Furthermore, we also described a new way to compute
the delay caused by a flow leaving a wormhole section.
We showed on a simple example that our method is a
lot less pessimistic than existing demultiplexer models
for a wormhole network.

We plan to implement a software tool based on the
Wormhole Section element and the interference patterns
defined in [8] to study some industrial configurations
provided by Thales Alenia Space.
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