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Two Strikes Against the Phage Recombination Problem

The recombination problem is inspired by genome rearrangement events that occur in bacteriophage populations. Its goal is to explain how to transform a bacteriophage population into another using the minimum number of recombinations. Here we show that the general combinatorial problem is NP-Complete, both when the target population contains only one genome of unbounded length, and when the size of the genomes is bounded by a constant. In the first case, the existence of a minimum solution is shown to be equivalent to a 3D-matching problem, and in the second case, to a satisfiability problem. These results imply that the comparison of bacteriophage populations using recombinations will have to rely on heuristics that exploit biological constraints.

Introduction

Genetic recombinations or, more generally, the exchange of DNA material between organisms, have been a source of computational problems since the 1865 report of Gregor Mendel on plant hybridization [START_REF] Abbott | Experiments on Plant Hybrids by Gregor Mendel[END_REF]. Recombinations occur in the reproduction of all living organisms, including asexual reproduction, and are fundamental producers of diversity. In this paper, we study the computational complexity of problems related to modular recombination, which is a form of exchange pervasive in viruses that infect bacteria, called phages.

The biological theory of modular recombination was proposed a few decades ago by Botstein [START_REF] Botstein | A theory of modular evolution for bacteriophages[END_REF], who envisioned " ... viruses as belonging to large interbreeding families, members of which share only a common genome organization consisting of interchangeable genetic elements each of which carries out an essential biological function." The common genome organization that Botstein refers to is the preservation of the order of biological functions, called modules, along the virus genome, although the actual sequences that carry the function may diverge substantially.

The computational models were slower to emerge, since genomic data about "large interbreeding families" were not commonplace until a few years ago. In 2010 a study of a few dozen sequenced strains of Staphyloccoccus aureus was conducted [START_REF] Kahánková | Multilocus pcr typing strategy for differentiation of Staphylococcus aureus siphoviruses reflecting their modular genome structure[END_REF], and a scenario of interbreeding was inferred on the population [START_REF] Swenson | Reconstructing the modular recombination history of staphylococcus aureus phages[END_REF]. The recent availability of other datasets monitoring phage populations evolving through time [START_REF] Kupczok | Rates of Mutation and Recombination in Siphoviridae Phage Genome Evolution over Three Decades[END_REF][START_REF] Lavelle | A decade of streptococcus thermophilus phage evolution in an irish dairy plant[END_REF] or space [START_REF] Chmielewska-Jeznach | Molecular, physiological and phylogenetic traits of lactococcus 936-type phages from distinct dairy environments[END_REF][START_REF] Murphy | Comparative genomics and functional analysis of the 936 group of lactococcal siphoviridae phages[END_REF] suggested the problem of computing the minimum number of recombination events that transforms one population of phages into another. In a previous paper [START_REF] Bergeron | On the comparison of bacteriophage populations[END_REF] we developed a heuristic with approximation bounds based on certain properties of the input and found that, on phages infecting bacteria responsible for cheese fermentation, our heuristic performed well. The question remained, however, as to the computational complexity of the optimization problem.

We answer that question in this article, showing that two basic problems related to the comparison of phage populations are computationally difficult. The first one reduces the problem of finding a perfect 3D-matching to reconstructing a single phage, from a population of phages that represents the triples of the 3D matching instance, with a minimum number of recombinations. The second one reduces a variant of a classic satisfiability problem to the reconstruction of a population of phages, with only 4 modules that represent variables and clauses, with a minimum number of recombinations.

Basic definitions and properties

Phage genomes can adopt either a circular or linear or shape during their life cycle. Genomic data found in databases are linearized by choosing, as a starting point, one module shared by all members of a family, yielding the following representation of phages.

Given an alphabet A, a phage p with n modules can be represented by p = p[0..n -1] where p[a] ∈ A. The recombination operation at positions a and b between two phages p and q :

p = p[0..a -1]|p[a..b -1]|p[b..n -1] q = q[0..a -1]|q[a..b -1]|q[b..n -1]
yields new phages c and d:

c = p[0..a -1]|q[a..b -1]|p[b..n -1] d = q[0..a -1]|p[a..b -1]|q[b..n -1].
Positions a and b are called the breakpoints of the recombination. The recombining phages are called parents, and the newly constructed phages, their children. This relation allows us, when several recombinations are considered, to refer to descendants and ancestors, of both phages and positions; each recombination creates two descendants to the two parents, while the each character in each of the children has exactly one ancestral character from the parents. Note that, naturally, ancestor and descendant relationships are transitive through the generations.

A recombination scenario S from P to Q is a sequence of recombinations that constructs all phages of Q using phages of P and their descendants. Note that no phage is discarded in the process, in the sense that P grows until it is a superset of Q.

The problem that we address in this article is the following: Input: Populations P and Q of equal-length phages, and an integer r. Question: Does there exist a recombination scenario S from P to Q of length at most r?

Minimum Phage Population Reconstruction (MinPPR)

A break in a phage q with respect to the set of phages P is a position b such that for all parents p in P,

p[b -1..b] ̸ = q[b -1..b]. A recombination heals a break b of a phage q if it creates a child c such that c[b -1..b] = q[b -1..b].
In order to be healed, a break b must be one of the breakpoints of the recombination.

Since a recombination can heal at most two breaks in a single phage, if a phage q has n breaks with respect to the set of phages P, then the minimum number of recombinations to construct q is n+1 2 . A crucial remark is that, even if all the breaks are healed, the reconstruction of a phage q with n = 2r breaks with respect to a set of parents might require more than r recombinations. This is the case, for example, if two parents p 1 = 10111 and p 2 = 11101 are used to reconstruct q = 11111: phage q has no break with respect to the set {p 1 , p 2 }, but one recombination is necessary to reconstruct q. This recombination must cut an already healed break in p 1 or p 2 , and we say that the break is reused. Definition 1. In a recombination scenario, a break is said to be reused if it is a breakpoint of more than one recombination in the scenario.

Finally, there is an easy upper bound for the number of recombination necessary to reconstruct a phage: Proposition 1. If there exists a scenario that reconstructs a phage q with n modules from a population P, then there exists one of length at most n -1.

Proof. A scenario exists if, for each position b, there exists a phage p b ∈ P such that p b [b] = q[b], otherwise no recombination can produce the value q[b] at position b. We first recombine p 0 and p 1 using breakpoints 1 and 2, to produce a child that equals q on its first 2 positions, and proceed in a similar way up to position n -1.

⊓ ⊔

Here we study the decision problem where one asks if Q can be generated from P using at most r recombinations, for some given r. Let us first argue that the problem is in NP. A given scenario of r recombinations can be verified in time proportional to r, |P|, and |Q|, but this is not polynomial if r is not polynomial in |P| and |Q| (e.g. if r is exponential). However, Proposition 1 gives an upper bound on the number of required recombinations based on the number of modules. Hence, we may assume that r is bounded by a polynomial in |P| and |Q| and a scenario can be verified in polynomial time, and thus the problem is in NP.

Reconstructing one target genome

We first consider the case in which the population Q consists of a single phage of unbounded length. We reduce the 3D-Perfect-Matching problem to it, where we receive a set of triples T = {(i 1 , j 1 , k 1 ), . . . , (i n , j n , k n )} ⊆ [1..m] 3 , where m ≥ 2 is an integer [START_REF] Karp | Reducibility among combinatorial problems[END_REF]. The goal is to find a subset T ′ ⊆ T of size m such that for any two distinct (i, j, k), (i ′ , j ′ , k ′ ) ∈ T ′ , we have i ̸ = i ′ , j ̸ = j ′ , and

k ̸ = k ′ . Such a set T ′ is called a perfect 3D-matching.
Since there is a single phage in Q, the alphabet is the set {0, 1}, and Q = 11111 . . . 1111 will be the only element of the target population. We consider the following phages, each of length 15m + 2, that form the input population P. See example in Figure 1.

1. For each element (i, j, k) ∈ T , we construct a phage P ijk that has three 1's in positions 5i, 5j + 5m and 5k + 10m, and 0's elsewhere. 2. For each element (i, j, k) ∈ T , we associate three phages, P ij-, P -jk , and P i-k

with two 1's respectively in positions 5i + 1 and 5j -1 + 5m, 5j + 1 + 5m and 5k -1 + 10m, 5i -1 and 5k + 1 + 10m, and 0's elsewhere. 3. P has 0's in every position in which one of the above phages has a 1. 

i = 1 i = 2 j = 1 j = 2 k = 1 k = 2 P122 . . . .
Q 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Fig. 1: Example input with T = {(1, 2, 2), (2, 1, 2), (2, 1, 1), (2, 2, 2)} and m = 2.
The 1's related to phage P 222 are in red. Dots are used to represent the value 0, in order to better highlight the relative positions of the 1's.

We show that T has a 3D-matching if and only if P can generate Q with at most 6m recombinations, implying: Theorem 1. The Minimum Phage Population Reconstruction problem is NP-complete, even when population Q has a single phage.

We have already established that the problem is in NP. For NP-hardness, we show that there exists a 3D-matching T ′ ⊆ T if and only if it is possible to reconstruct Q from P using at most 6m recombinations.

The (⇒) direction

Suppose that there is a 3D-matching T ′ ⊆ T . For each (i, j, k) ∈ T ′ , it is possible to apply three recombinations to P ijk , P ij-, P -jk and P i-k to obtain 00 . . . 01110 . . . 01110 . . . 01110, where the first 111 is centered at column i, the second 111 is centered at column j, the third 111 is centered at column k. The genome P has 000 in these three triples of positions, and so with three more recombinations we can bring in these 111 into P . Use Figure 2 as an illustration. This costs 6 events. Since T ′ is a perfect 3D-matching, we can repeat this m times to fill in all the remaining 000's in P , hence achieving cost 6m.

The (⇐) direction

We next show that if Q can be reconstructed from P using at most 6m recombinations, then T admits a 3D-matching. We first establish several properties that hold in general for scenarios that transform P into Q, before proving the main result of the section.

Given a scenario S that reconstructs phage Q, we identify the following subsets of parents:

1. S ijk contains phages of the form P ijk that belong to the scenario. 2. S xy contains phages of the form P ij-, P -jk or P i-k that belong to the scenario.

Let P = S ijk ∪S xy ∪{ P } be the set of parents that initially belong to scenario S. We prove that scenario S reconstructs phage Q in 6m recombinations only if the set S ijk corresponds to a perfect matching.

By construction, phage Q has 12m breaks with respect to the set of phages P. Since a recombination can heal at most two breaks of a single phage, we need at least 6m recombinations to reconstruct Q. In a scenario of length 6m, no break can be reused.

We distinguish two types of breaks: red breaks connect a phage in S xy to a phage in S ijk , and green breaks connect a phage in S xy to phage P , (see Figure 2). We say that a recombination is red when its two breaks are red, and green if they are green. There is an equal number of red and green breaks in Q, thus, in a scenario of length 6m, the number of red recombinations is equal to the number of green recombinations, and is at most 3m, allowing for eventual red-green recombinations. The following easy result links properties of a recombination scenario to the existence of a perfect matching:

•1• •1• •1• •1• •1• •1• •1• •1• •1• 1• 0 0 0 •1 1• 0 0 0 •1 1• 0 0 0 •1 i j k ... ...
Lemma 1. In any scenario that reconstructs Q, |S ijk | ≥ m. If |S ijk | = m, then the set {(i, j, k)|P ijk ∈ S ijk } is a perfect matching.
Proof. In order to reconstruct Q, all values of i, j and k ∈ [1..m] must appear at least once in the indices of elements

P ijk ∈ S ijk , thus |S ijk | ≥ m. If |S ijk | = m,
then all values of i, j and k ∈ [1..m] appear exactly once implying that the set {(i, j, k)|P ijk ∈ S ijk } corresponds to a perfect matching. See Figure 3 for an example.

⊓ ⊔

In order to show that |S ijk | = m, we first introduce three lemmas that constrain the order of recombinations contained in a scenario of length 6m. The first one concerns the red interval of a phage in S xy , which contains the 0's adjacent to its red breaks, along with the (circularly) intervening columns that are all 0's. See Figure 4 for an example of a red interval.

Lemma 2 (red interval). All descendants of a phage p ∈ S xy must heal red breaks shared with p before acquiring a 1 in p's red interval.

Proof. Consider a descendant of p where one of its red breaks b is not yet healed, along with the first recombination producing a child c that contains b and a 1 in p's red interval. If this recombination does not heal b, then it must first heal a break between b and the 1 in p's red interval, thereby creating a phage c containing both the 1, and the break b. This implies that the second break β of this recombination must be in p's red interval, which is a contradiction since the second break cannot be healed in an interval with all 0's. See Figure 4 for an illustration.

⊓ ⊔

The second lemma establishes the property that all four breaks spanning two consecutive groups of 1's in P will be healed in the same ancestral lineage of Q. ...0 0 0 Lemma 3 (sticky breaks). Consider a break that is healed when phage p is produced by a recombination in a scenario of length 6m. Any adjacent break must be healed in a descendant of p.

i = 1 i = 2 j = 1 j = 2 k = 1 k = 2 P122 
Q 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
•1• •1•0 0•0 0 0... b 1• ...•1...
Proof. Consider the 1 in column x that is adjacent to a single healed break in phage p, so that p[x -1..x + 1] = 110, or p[x -1..x + 1] = 011. Consider the 1 that is put in column x + 1, or x -1, while healing the remaining break with column x, producing some child c. Since any break is healed exactly once, the 1's to either side of a healed break must be ancestors of 1's in Q. Therefore, the 1 in column x of both phages p and c must be the ancestor of a 1 in Q, which is only possible if c is a descendant of p. ⊓ ⊔ Lemma 4 (independent S xy ). Consider phages p 1 and p 2 in S xy . There cannot exist a descendant of both phages with an unhealed red break from both p 1 and p 2 .

Proof. Define the green interval of a phage p ∈ S xy to be the interval containing the 0's next to the green breaks in p, along with the (circularly) intervening columns that are all 0's. If the green intervals of p 1 and p 2 do not intersect, the red interval lemma gives the result, since there can be no 1 in either red interval before both of the red breaks in a phage are healed. Suppose their green intervals intersect and, without loss of generality, that the green interval for p 1 starts to the left of the green interval of p 2 . Say that there is a descendant containing the left 1 of p 1 and the left 1 of p 2 . The red interval lemma implies that a recombination happened directly to the left of the 1 in p 2 , which healed that red break. Say that there is a descendant with the left 1 of p 1 and the right 1 of p 2 . Due to the red interval lemma, this implies a recombination happened directly to the right of the 1 in p 2 , which healed that red break. By symmetry, the other cases are covered by those already listed. ⊓ ⊔

The next lemma states a desirable property of recombination scenarios of length 6m, saying that if a phage is in S xy , then its two -unique -siblings are also in S xy . We say that phages p and p ′ eventually recombine in a scenario S if there exists a recombination in S between p, or one of its descendants, and p ′ , or one of its descendants.

Lemma 5. In a scenario S of length 6m, if a phage P ijk ∈ S ijk eventually recombines using the red breaks of a phage in S xy , then all three phages P ij-, P -jk and P i-k eventually recombine with P ijk using both of their red breaks. Proof. Consider the first time that a phage P ijk appears in scenario S, and suppose that this recombination involves a phage in S xy , or its descendant. Without loss of generality we may assume this phage is P i-k , due to the circularity of the genomes and symmetry of our construction. We will show that both P ij- and P -jk must eventually recombine with P ijk in the scenario, using both of their red breaks.

By the lemma statement, both red breaks of P i-k were healed in this recombination producing some child c, having only 0's between columns i and k, with the exception of column j. See Figure 5 for an illustration. Now, the recombination healing the remaining red break adjacent to column i must be in a descendant of c, due to the sticky breaks lemma. Aside from the descendant of c, the other parent p in this recombination must be a descendant of some phage P ij ′ -∈ S xy , for some j ′ .

In the following, we show that the only possible companion breakpoint for this recombination occurs when P ij ′ -= P ij-. Since every recombination must heal two breaks, there is a companion breakpoint between columns i and j, between columns j and k, or (circularly) between columns k and i.

If the companion breakpoint lies (circularly) between k and i, this implies that p has a 1 in the red interval of P ij ′ -, which is impossible by Lemma 2.

Say the companion breakpoint lies between columns i and j. In order to heal two breakpoints, there must be a break b between columns i and j in a descendant p ′ of c. If b is adjacent to j, then it can only be healed using a 1 descending from a phage in S xy . If this phage is not P ij-, then the independent S xy lemma prohibits a common descendant between this phage and P ij ′ -, a contradiction. Say b is not adjacent to j, but rather in the zone of all 0's in c. Then the existence of b implies that there has been a recombination at the breakpoint adjacent to column j in an ancestor of p ′ . This leads to the same contradiction as in the previous case.

The same argument applies to a breakpoint occurring between j and k. Now consider the symmetric case, where a recombination heals the remaining break adjacent to column k in phage c. The same reasoning shows that both red breaks of P -jk are used to recombine with a descendant of P ijk .

⊓ ⊔ The previous lemma depends on the assumption that the first recombination with a phage in S ijk heals the two red breaks of a phage in S xy . The following lemma show that this must be the case. Lemma 6. In a scenario S of length 6m, the first recombination using P ijk ∈ S ijk must heal both red breaks of a phage in S xy , be it P ij-, P -jk , or P i-k .
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Proof. Since a phage P ijk ∈ S ijk has only red breaks, it must eventually recombine using exactly two red breaks, b 1 and b 2 . Suppose that P ijk does not eventually recombine with a single phage of S xy , then b 1 and b 2 are breaks on different phages p 1 and p 2 of S xy . This implies that p 1 and p 2 eventually recombine to produce a child containing both b 1 and b 2 . Such a recombination is impossible, due to Lemma 2.

⊓ ⊔

Thus we have the result:

Proposition 2.
A scenario S reconstructs Q in 6m recombinations only if the set S ijk is a perfect matching.

Proof. Lemma 5 shows that for each P ijk in S ijk , the three corresponding P ij-, P -jk and P i-k must belong to the scenario. Since there are 3m pairs of red breaks, the maximum number of elements of S ijk is m. Lemma 1 gives the result. ⊓ ⊔

NP-hardness for genomes of length 4

In the preceding section, we showed that the Minimum Phage Population Reconstruction was hard when the length of the genomes was unbounded. Is it still the case for genome of bounded length? The answer is yes, and we dedicate the remainder of the section to the proof of the following statement:

Theorem 2. The Minimum Phage Population Reconstruction problem is NP-complete, even when the genomes of P and Q have length 4.

We reduce from the Balanced-4Occ-SAT problem, where we are given a boolean formula ϕ in conjunctive normal form, such that each variable has exactly two positive occurrences in the clauses of ϕ, and exactly two negative occurrences [START_REF] Berman | Approximation hardness of short symmetric instances of max-3sat[END_REF].

Consider an instance ϕ of Balanced-4Occ-SAT with variables x 1 , . . . , x n and clauses C 1 , . . . , C m . We construct a corresponding instance (P, Q, r) of the phage problem. See Figure 6 for an example with 3 variables and 4 clauses, and Figure 7 for a more abstract view.

The alphabet for the phages of P and Q has, for each variable x i , a corresponding symbol i ∈ [1..n], and for each clause C j , a corresponding symbol c j . We also add two unique symbols '-' and '•' to the alphabet.

Consider a variable x i , where i ∈ [1.

.n]. Let C g , C h be the clauses in which x i occurs positively, and C r , C s those in which x i occurs negatively. Add the following phages to P:

X i = i • i i X + i = c g i c h - X - i = c r i c s -

The (⇒) direction

Suppose that ϕ is satisfied by an assignment α : {x 1 , . . . , x n } → {true, f alse} of the variables. Let us produce Q from P. For each i ∈ [1.

.n], if α(x i ) = true, then recombine X i with X + i by exchanging 2nd positions:

Xi = i • i i X + i = cg i c h - X * i = i i i i p = cg • c h - This produces children X * i and p = c g •c h -,
where C g and C h are the clauses that are satisfied by setting x i to true. At this point, if D * g is not already in Q, then recombine D g,1 = -c g c g with p = c g •c hby exchanging positions 1 and 2, thereby producing D * g :

Dg,1 = --cg cg p = cg • c h - D * g = cg • cg cg --c h -
For an illustration of the previous two recombinations, see the black edges in Figure 7. In the same way, if

D * h is not already in Q, recombine D h,2 = c h --c h with c j •c h -by
exchanging positions 2 and 3, which produces D * h . If instead α(x i ) = f alse, recombine X i with X - i by exchanging 2nd positions. This creates X * i and c r • c s -, where C r and C s are satisfied by setting x i to f alse. Produce D * r and D * s , if not already there, as in the previous case. Since every clause C j is satisfied by α, for each D * j , there will be some X i in the above procedure that produces D * j . Moreover, there are exactly n + m recombinations: one to produce each X * i , and one to produce each D * j .

The (⇐) direction

Suppose that there exists a sequence S = (R 1 , . . . , R r ) of at most r ≤ n + m recombinations that reconstructs Q. Let X = {X 1 , . . . , X n } and D = {D 1 , . . . , D m } where D j is either D j,1 or D j,2 , whichever contains the character c j that is the ancestor of the c j in the 4th position of D * j . We define a function f : X ∪ D → S in the following way: set f (X i ) to the first recombination that creates X * i , or an ancestor of X * i , with [1..n] in the 2nd position and i in the 4th. Note that the parent used by f (X i ), having i in the 4th position, must also have {-, •} in the 2nd position, as otherwise there would be a previous recombination with the required properties for being f (X i ).

Set f (D j ) to the first recombination that creates D * j , or an ancestor of D * j , with [1..n] ∪ {•} in the 2nd position and c j in the 4th. As previously, note that one of the parents used by f (D j ) contains '-' in the 2nd position and c j in the 4th position. × symbol. In black, X i and X + i first recombine to produce q = c j • c h -, which then recombines with D j,1 to produce D * j (and some other unused phage). Notice that q can also be used to produce D * h in a similar manner. In dark gray, an alternate way to produce X * i and D * j is depicted. Here, X + i is first recombined with D j,1 to produce p = c j ic j c j . Phage p is not in Q, but can be recombined with X i to produce both X * i and D * j in one operation. Proposition 3. The function f is a bijection.

Proof. We prove that f is injective, and since there can be at most n + m recombinations in S, we conclude that f is a bijection.

If i ̸ = k, then f (X i ) ̸ = f (X k ) since equality implies a recombination where at least one parent has an element of {-, •} in 2nd position, and both children have an element of [1..n].

If g ̸ = h, then f (D g ) ̸ = f (D h ) since equality implies a recombination where at least one parent has a '-' in 2nd position, and both children do not.

Finally, f (X i ) ̸ = f (D j ) since equality implies a recombination where one parent has a '-' in 2nd position, and both children do not.

⊓ ⊔

The crucial consequences of Proposition 3 are the three following results:

Proposition 4. There is exactly one element of X ∪ D in each recombination of S.

Proof. Since all phages of X ∪ D are necessary to produce Q, then each one must be used by at least one recombination. We show that the image of f contains no recombination between two of these phages.

Suppose X i and X k recombine. Then this recombination is not f (X i ) or f (X k ) since both parents have a '•' in 2nd position, implying that none of the children have an element of [1..n].

Suppose D g and D h recombine. Then this recombination is not f (D g ) or f (D h ) because both parents have a '-' in 2nd position, implying that both children have a '-' in 2nd position.

Suppose X i and D j are used in a recombination R. Then R is not f (X i ) because one parent has a '•' in 2nd position, and the other has a '-', implying that none of the children have an element of [1..n]. So R must be f (D j ), implying that one of the children p is an ancestor of D * j , having • in 2nd position and c j in 4th position. In the remaining paragraph we show that there is no recombination from S that makes the c j in 4th position of p the ancestor of the c j in 4th position of D * j , contradicting the existence of R.

Consider any subsequent recombination R ′ that uses p as a parent. Each R ′ cannot be a f (X i ) since p cannot contribute an element of [1..n] in 2nd position, so it must be f (D h ), for D h ∈ D and h ̸ = j. Note that the other parent q, used in R ′ , must have '-' in 2nd position and c h in 4th position, so the children are then q ′ with • and c h in 2nd and 4th positions, and p ′ with '-' and c j in 2nd and 4th positions. But, while p ′ is the child that contains the c j that could be ancestral to the 4th position of D * j , it cannot be used as a parent in a recombination of f (X ∪ D), since it has '-' in 2nd position, and f (D j ) has already been applied. Therefore, p ′ is not an ancestor of D * j . This is true for any such child p ′ produced by a subsequent recombination, which contradicts that p is an ancestor of D * j . This contradict our initial supposition that R is f (D j ).

⊓ ⊔ Corollary 1. The recombination that uses X i produces X * i . Proof. Note that X i is the only phage in X ∪ D that shares any character with X * i . Since both parents of any recombination creating X * i must share at least one character with X * i , the recombination in S that uses X i is the only one that can create X * i . ⊓ ⊔ Corollary 2. The recombination that uses D j produces either D * j or c j ic j c j . Proof. By definition D j is an ancestor of D * j , and by Corollary 4 we know that any descendant of D j must recombine with an element of X ∪ D. Since no other member of X ∪ D has c j in positions 1, 3 or 4, a child of D j must be an ancestor of D * j and have that character c j in those positions. This child must be either D * j , p = c j ic j c j , or q = c jc j c j . A subsequent recombination using child q = c jc j c j does not exist since it would either recombine with an X k , but not produce X * k in contradiction with Corollary 1, or with a D h , whose 2nd position is also '-'. Therefore, q has no descendant, contradicting that it is an ancestor of D * j .

⊓ ⊔

We now establish that a recombination scenario S of length n + m implies a valid, and satisfiable truth assignment for ϕ.

For an X i ∈ X , we say that X i chose X + i if the only recombination that uses X i is with an X + i or its descendant, and we say that it chose X - i if X i recombined with X - i or its descendant. If X i chose X + i , we set x i = true, and if X i chose X - i we set x i = f alse. Let us call the resulting assignment α, which we claim is satisfying. We first argue that each x i is assigned only one value, and then show that each clause is satisfied. Proposition 5. A recombination scenario S of length n + m implies a valid, and satisfiable truth assignment for ϕ.

Proof. We first show that the assignment α is well-defined, i.e. each variable x i is assigned either true or f alse, but not both. Since each X i chooses at least one of X + i or X - i , we know that x i is assigned true or f alse. Assume now that x i is assigned both. Then X i chose both X + i and X - i , meaning that X i recombines with a phage that descends from both X + i and X - i . But the existence of this phage requires a recombination between descendants of both X + i and X - i , which contradicts Corollary 4.

We now show that each clause is satisfied by α. By Corollary 2, we know that D j,1 and D j,2 do not recombine, and only one of the two, that we called D j , appears in S. Since D j contributes at most two c j characters to D * j , the third c j can only be a descendant of an X + i or X - i , since they are the only other phages in P that may contain c j . By construction, this means that the clause C j is satisfied by the variable x i being set to the truth assignment implied by the corresponding X + i or X - i . ⊓ ⊔

Conclusion

The notion of recombination used in this article is the same as the two-point crossover function [START_REF] Gitchoff | Recombination induced hypergraphs: a new approach to mutation-recombination isomorphism[END_REF] used for characterizing fitness landscapes for the exploration of genotypes. This two-point crossover has since been studied in a general form as a k-point crossover [START_REF] Changat | Transit sets of-point crossover operators[END_REF]. While, to the best of our knowledge, there is no work directly linking the area of fitness landscape exploration to the minimization problem discussed in this article, we hope that these related areas can be fused in the future.

In this paper, we showed that the Minimum Phage Population Reconstruction is NP-Complete in two extreme cases: bounded length, and a single target phage. Although negative, such results may come as a relief, since we can turn our focus to algorithms that, by accounting for biological constraints, could provide drastically reduced search spaces for parsimonious solutions. For example, the use of other measures of evolution, or information about community structure [START_REF] Chevallereau | Interactions between bacterial and phage communities in natural environments[END_REF] might play a significant role in reducing the complexity of the problem: after all, phages recombine all the time, and thrive doing so.
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 2 Fig.2: Red and green breaks. Red breaks connect a phage in S xy to a phage in S ijk , and green breaks connect a phage in S xy to phage P . Phage Q has 6m red breaks and 6m green breaks.
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 3 Fig. 3: A possible output for the example of Figure 1, with the sets S ijk and S xy used by a recombination scenario of length 6m = 12. Here |S ijk | = m, and {(1, 2, 2), (2, 1, 1)} is a perfect matching.

Fig. 4 :

 4 Fig.4: A recombination between a descendant d of p ∈ S xy and a phage p ′ . The recombination creates phage c, in blue, which contains both break b and a 1 from a phage p ′ , where the 1 is located in a column from p's red interval. This recombination must have one breakpoint between b and the other red break of p, and one breakpoint β after the location of the 1 in phage p ′ . Breakpoint β cannot heal a break because it is between two 0's.

Fig. 5 :

 5 Fig.5: At the creation of child c, it has only 0's between columns i and k, with the exception of column j. The gray 1's in p are possible breaks that can be healed.

Fig. 7 :

 7 Fig. 7: An illustration of how phages X i , X + i , D j,1 , and D h,2 can recombine to produce X * i , D * j , and D * h . Recombinations are represented by pairs of arrows that meet in the middle at a box with a ■
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and add the following to Q:

Now for each clause C j , j ∈ [1.

.m], add the following to P:

and add the following to Q:

We show that ϕ is satisfiable if and only if Q can be reconstructed from P with at most r = n + m recombinations.

Coding the clauses:

Other phages in P:

Fig. 6: In this example there are n = 3 variables and m = 4 clauses, thus n+m = 7 phages in Q. One possible recombination scenario of length 7 is depicted. The three recombinations in Group 1 first construct * 1 using X + that asserts that clauses 1 and 3 are satisfied when variable x 1 is true. The resulting phage q is then used to generate both D * 1 and D * 3 . In 2, X * 2 and D * 2 are constructed using X - 2 that asserts that clause 2 is satisfied when when variable x 2 is false. Group 3 shows an alternative strategy that first constructs phage p = c 4 3 c 4 c 4 , and uses it to simultaneously construct X * 3 and D * 4 .