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1 INTRODUCTION  

Offshore wind turbines are being installed in ever 
greater numbers around the UK and Europe. The 
most common foundation design is the large diame-
ter monopile; a single pile upon which the turbine is 
located. These piles are substantially larger than 
piles used for oil and gas applications, with diame-
ters up to 10 m being considered for future designs. 
Consequently there are concerns about whether cur-
rent design approaches imported from oil and gas 
design, particularly for lateral loading, are robust. In 
addition there is limited guidance for assessing the 
effects of cyclic loading on pile response, both dur-
ing storm loading and also over the lifetime of the 
structure.  

To respond to these concerns a number of recent 
research programs have focused on cyclic loading of 
piles, principally through laboratory model testing. 
The aim of these testing programs has been to ex-
plore pile response under constant amplitude cyclic 
loading, and in particular the evolution of the foun-
dation response (e.g. rotation, stiffness) with the 
number of cycles (e.g. Leblanc et al., 2010a; Peralta, 
2010; Klinkvort, 2012; Cuéllar, 2011). It is recog-
nised that the loading on the foundation, caused by 
the wind and wave environment, is likely to com-
prise a range of amplitudes rather than a single, or 
constant, amplitude. Therefore further experimental 
work is needed to determine the equivalence be-

tween multi-amplitude and constant amplitude cyclic 
loading.  

This paper presents experimental results, from 
model scaled pile tests in sand that explores multi-
amplitude loading. The experimental equipment is 
described along with the framework for interpreting 
both constant amplitude and multi-amplitude test re-
sults. The results from a number of constant ampli-
tude cyclic loading tests along with two multi-
amplitude tests are presented. They are interpreted 
using currently available methods, and provide a ba-
sis against which future work can be developed. 

2 LATERAL LOADING MODEL PILE TESTS 

2.1 Background and motivation 

Recent research on pile response to cyclic lateral 
loading (e.g. Leblanc et al. 2010a; Peralta, 2010; 
Klinkvort, 2012; Cuéllar, 2011; Abadie & Byrne, 
2014) demonstrates that constant amplitude cyclic 
loading can cause significant increases in pile de-
flection and rotation over time. This effect is typical-
ly described as accumulated displacement with cycle 
number, and experimental data from such experi-
ments have been fitted using both power and loga-
rithmic laws by a range of Authors.  

For example Leblanc et al. (2010a) show that the 
evolution of the accumulated rotation  for con-
stant amplitude cyclic loading can be described by 
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cycle number for both tests. An interesting outcome 
of test MA2 is that the increase in rotation due to cy-
clic load amplitude C0 reduces to approximately ze-
ro following the fourth peak load event (b=0.46, 
corresponding to a load magnitude of the SLS). Sim-
ilar tests with larger cycle number would be helpful 
to assess the above statement for larger cycle num-
bers (107), though it would require a higher cyclic 
frequency for tests to run in a reasonable time frame. 

The two tests indicate that the pile displacement 
response, following a change in load, depends on 
whether there is an increase in load or decrease. Fig-
ure 6 demonstrates this by plotting the differences in 
pile head rotation against differences in load, when a 
change in load amplitude occurs. Decreases in load 
magnitude are displayed on the left, and increases on 
the right. It also shows that the order in which loads 
occur matters, by highlighting a sharper increase in 
pile rotation during the first storm events (top right 
ellipse) compared with the subsequent events (bot-
tom right ellipse). The graph shows that there is sig-
nificant non-linearity involved, corresponding to 
substantial plastic deformations occurring.  

4 METHOD FOR PREDICTION OF PILE 
ACCUMULATED ROTATION 

4.1 Linear superposition model description 

 The investigation of the relationship between spec-
trum loading and fatigue lifetime is important to ac-
curately predict the evolution of pile deflection 
through random cyclic loading. First, the random 
loading history is decomposed into an equivalent set 
of uniform load reversals. This is a common proce-
dure in fatigue life assessment and can be performed 
with extended rain-flow counting (Rychlik 1987). 
The decomposition of the load series enables a dam-

age rule to be applied for predicting the fatigue life-
time. A common method is the linear cumulative 
damage rule, initially proposed by Palmgren (1924), 
and then popularised by Miner (1945). This concept 
was applied to laterally loaded piles by Lin & Liao 
(1999), following the work of Stewart (1986). They 
demonstrated a good fit to their experimental results; 
however, their experiments only involved 50 cycles 
maximum. Extending this, Peralta (2010) performed 
tests of up to 45,000 cycles, finding that the method 
underestimated the final pile deflection. In contrast 
Leblanc et al. (2010b) found that such a method 
provided a good prediction to their test results. 

The superposition method adopted here is de-
scribed in detail by Leblanc et al. (2010b). If there 
are two load sequences subscripted a and b, in the 
order Na then Nb, then firstly the accumulated rota-
tion a caused by Na cycles of lateral load a is de-

 
Figure 6. Analysis of the change in rotation during 
the loading sequence changing phases 
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Figure 5.  (a) Test MA1: maximum rotation evolution with number of cycles superimposed with predictions 
from the linear superposition model as proposed by Leblanc et al.  (2010b) and modifications from Equation 
8. (b) Test MA2: rotation evolution with number of cycles 
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termined using Equation (1): 
31.0)()( aascba NTT             (4) 

This can be made equivalent to eq
abN  cycles of load 

type b using the calculation: 
31.0

)( 






 


bscb

aeq
ab TT

N



             (5) 

If Nb cycles of load b are then applied to the pile, 
the overall accumulated rotation is given by: 

31.0)()( eq
abbbscbtot NNTT           (6) 

 The total pile rotation is then calculated as: 

 batotb ,0,0 ,max             (7) 

4.2 Modification based on experimental results 

Tests C1 to C3 make it possible to deduce the corre-
sponding values of Tb, Tc and s for each load type 
applied in the multi-amplitude tests. The above line-
ar superposition method is applied to test MA1 with 
the results shown in Figure 5(a). The model broadly 
captures the results, slightly over-predicting the final 
pile rotation but with an acceptable error of 3.7%. 
We propose modifying the calculation, taking ac-
count of observations from Figure 6 for decreases in 
load, by changing the term max0,a, 0,b} in Equa-
tion (7) to: 











0,max

0,max

,0,0

,0,0

bbba

bba
th f

if




   (8) 

 In this Equation,  is the slope of the fitting law 
for descending load sequences. The results of such a 
calculation are given in Figure 5(a), showing a better 
prediction of the final rotation (error of 0.16%). Ad-
ditional work is needed to develop a better under-
standing of the term th. New methods must capture 
the non-linearity of pile response more accurately, 
recognising that the cyclic accumulated pile load-
displacement response is unlikely to be calculated 
precisely using linear superposition methods.  

5 CONCLUSION 

This paper presents a series of laboratory floor mod-
el tests exploring pile response under multi ampli-
tude cyclic loading, representing storm loading on 
the pile. An important observation from this work is 
that the pile rotation appears to reach a limiting val-
ue following a series of maximum storm type loads. 
The paper shows that the pile response to multi am-
plitude cyclic loading involves significant non-
linearity, particularly when large plastic defor-

mations occur. A linear superposition method, such 
as described by Leblanc et al. (2010b), is shown to 
provide a reasonable but conservative approximation 
to the final pile rotation. This is modified to predict 
the pile response more accurately. 

To further develop these methods research must 
focus on understanding the non-linearity highlighted 
in section 3.2, for both loading and unloading. Tar-
geted laboratory floor testing and field testing, along 
with theoretical development, will be needed. The 
resulting model would improve design guidance for 
cyclic loading of offshore wind turbine monopiles. 
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