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We obtain some weighted L p -Sobolev estimates with gain on p and the weight for solutions of the ∂ -equation in lineally convex domains of finite type in C n and apply them to obtain weighted L p -Sobolev estimates for weighted Bergman projections of convex domains of finite type for quite general weights equivalent to a power of the distance to the boundary.

INTRODUCTION

The motivation of this paper is to extend the weighted L p -Sobolev estimates for weighted Bergman projections obtained in [START_REF]Estimates for weighted Bergman projections on pseudo-convex domains of finite type in C n[END_REF] (1) of Theorem 1.1] for convex domains of finite type in C n to more general weights.

For this we use the method of Section 4 of [START_REF] Charpentier | Weighted and boundary l p estimates for solutions of the ∂ -equation on lineally convex domains of finite type and applications[END_REF] which needs weighted L p -Sobolev estimates for solutions of the ∂ -equation with suitable gains, the weight being a power of the distance to the boundary. So in this paper we try to obtain such estimates.

Estimates for derivatives of solutions of the ∂ -equation in convex domains of finite type has already a long history. The first result was obtained by W. Alexandre for C k estimates in [START_REF]C k -estimates for the ∂b -equation on convex domains of finite type[END_REF][START_REF]C k estimates for ∂ on convex domain of finite type[END_REF]. For L p -Sobolev estimates, with gain on the Sobolev index, partial results were obtained by Ahn H. and Cho H. in [START_REF] Ahn | Optimal sobolev estimates for ∂ on convex domains of finite type[END_REF] and complete results announced by Yao L. in [START_REF] Yao | Sobolev and Hölder estimates for homotopy operators of ∂ -equations on convex domains of finite multitype[END_REF].

Here we obtain partial weighted L p -Sobolev estimates, with both gain on p and the power of the weight, for solutions of the ∂ -equation on the more general case of lineally convex domains of finite type. We use the operator constructed and used in [START_REF] Charpentier | Estimates for Solutions of the ∂ -Equation and Application to the Characterization of the Zero Varieties of the Functions of the Nevanlinna Class for Lineally Convex Domains of Finite Type[END_REF][START_REF] Charpentier | Weighted and boundary l p estimates for solutions of the ∂ -equation on lineally convex domains of finite type and applications[END_REF] and we apply them to weighted Bergman projections.

The paper is organized as follows. In Section 2 we fix our notations and state the theorems about the estimates on solutions of the ∂ -equation. In Section 3 we give the main properties of the geometry of lineally convex domains of finite type, in Section 4 we recall the construction of the operator solving the ∂ -equation, and, in Section 5 we give the proofs of the Theorems stated in Section 2. Finally, in Section 6 we give the estimates for weighted Bergman projections we can obtain with our method.

NOTATIONS AND MAIN RESULTS

Throughout this paper Ω = {ρ < 0} is a smoothly bounded lineally convex domain of finite type ≤ m in C n which means that (c.f. [START_REF] Charpentier | Estimates for Solutions of the ∂ -Equation and Application to the Characterization of the Zero Varieties of the Functions of the Nevanlinna Class for Lineally Convex Domains of Finite Type[END_REF]) for all point p in the boundary ∂ Ω of Ω, there exists a neighborhood W of p such that, for all point z ∈ ∂ Ω ∩W ,

z + T 1,0 z ∩ (Ω ∩W ) = / 0,
where T 1,0 z is the holomorphic tangent space to ∂ Ω at the point z and that there exists a smooth defining function ρ of Ω such that, for δ 0 sufficiently small, the domains Ω t = {ρ(z) < t}, -δ 0 ≤ t ≤ δ 0 , satisfy the same condition. Theorem 2.1. Let Ω = {ρ < 0} be a smoothly bounded lineally convex domain of finite type ≤ m. Let p ∈ [1, +∞[. Let γ and γ ′ be two real numbers such that γ ′ > -1 and γp /m ≤ γ ′ ≤ γ. Then there exists a linear operator T , depending on ρ and γ, such that, for any ∂ -closed (0, r)-form (1 ≤ r ≤ n -1) whose coefficients are in L p Ω, δ γ Ω , T f is a solution of the equation ∂ (T f ) = f such that:

(1) For 1 ≤ p < m(γ

+ n) + 2 -(m -2)(r -1), T f L q δ γ ′ Ω f L p (δ γ Ω ) ,
where p, γ, q, and γ ′ satisfy the following condition:

if p = 1 and γ ≥ 0, 1 q > 1 p - 1-m p (γ-γ ′ )
m(γ ′ +n)+2-(m-2)(r-1) and 1 q = 1 p -

1-m p (γ-γ ′ ) m(γ ′ +n)+2-(m-2)(r-1)
otherwise.

(2) For p > m(γ

+ n) + 2 -(m -2)(r -1), T f Λ α f L p (δ γ Ω ) , with α = 1 m 1 -m(γ+n)+2-(m-2)(r-1) p .
Remark. For γ = γ ′ this statement is identical to [CD18, Theorem 2.1] but (1) is stronger when γ = γ ′ . For p = m(γ + n) + 2 -(m -2)(r -1) it could be proved that T f ∈ BMO(Ω) but we will not do it here.

Theorem 2.2. Let Ω = {ρ < 0} be a smoothly bounded lineally convex domain of finite type ≤ m. Let p ∈ [1, +∞[. Let γ and γ ′ be two real numbers such that γ ′ > -1 and γp /m ≤ γ ′ ≤ γ. Then there exists a linear operator T , depending on ρ and γ, such that, for any ∂ -closed (0, r)-form whose coefficients are in

L p 1 Ω, δ γ Ω , T f is a solution of the equation ∂ (T f ) = f such that: T f L q 1,r-1 δ γ ′ Ω f L p 1,r (δ γ Ω ) ,
where p, γ, q, and γ ′ satisfy the following condition:

1 q = 1 p -α with: (1) If γ ≥ p -1: α < 1-m p (γ-γ ′ ) m(γ ′ +n)+2-(m-2)(r-1) ; (2) If γ < p -1: γ ′ ≥ γ -γ+1 p and α < min 1-m p (γ-γ ′ ) m(γ ′ +n)+2-(m-2)(r-1) , γ+1 p -(γ-γ ′ ) 2n+γ ′ . Theorem 2.3.
Let Ω be a smoothly bounded lineally convex domain of finite type ≤ m. Let p ∈ [1, +∞[. Let d ≥ 2 be an integer. Let γ and γ ′ be two real numbers such that γ ′ > -1 and γp /m ≤ γ ′ ≤ γ. Then there exists a linear operator T , depending on ρ and γ, such that, for any

∂ -closed (0, r)-form (1 ≤ r ≤ n -1) f whose coefficients are in L p d Ω, δ γ Ω and p ∈ [1, +∞[, T f is a solution of the equation ∂ (T f ) = f such that: T f L q d,r-1 δ γ ′ Ω f L p d,r (δ γ Ω )
, if one of the three following conditions is satisfied:

(

1) f ∈ L p d,0,r Ω, δ γ Ω , (2) f ∈ L p d,r Ω, δ γ Ω and γ ≥ d p -1, (3) f ∈ L p d,r Ω, δ
γ Ω and d(p -1) ≤ γ < d p -1, with p, γ, q, and γ ′ satisfy:

• when condition (1) or (2) is verified, 1 q > 1 p - 1-m p (γ-γ ′ ) m(γ ′ +n)+2-(m-2)(r-1) , • when condition (3) is verified, 1 q > 1 p -min 1-m p (γ-γ ′ ) m(γ ′ +n)+2-(m-2)(r-1) , γ+1 p -(γ-γ ′ ) 2n+γ ′ .

GEOMETRY OF LINEALLY CONVEX DOMAINS OF FINITE TYPE

To simplify the reading of this paper we recall here the main properties of the geometry of lineally convex domains of finite type taken from [START_REF] Conrad | Anisotrope optimale Pseudometriken für lineal konvex Gebeite von endlichem Typ (mit Anwendungen)[END_REF], [START_REF] Charpentier | Estimates for Solutions of the ∂ -Equation and Application to the Characterization of the Zero Varieties of the Functions of the Nevanlinna Class for Lineally Convex Domains of Finite Type[END_REF] and [START_REF] Charpentier | Weighted and boundary l p estimates for solutions of the ∂ -equation on lineally convex domains of finite type and applications[END_REF].

For ζ close to ∂ Ω and ε ≤ ε 0 , ε 0 small, define, for all unitary vector v,

(3.1) τ (ζ , v, ε) = sup {c such that ρ (ζ + λ v) -ρ(ζ ) < ε, ∀λ ∈ C, |λ | < c} .
Note that the lineal convexity hypothesis implies that the function

(ζ , v, ε) → τ(ζ , v, ε) is smooth. In particular, ζ → τ(ζ , v, δ Ω (ζ )) is a smooth function. The pseudo-balls B ε (ζ )
(for ζ close to the boundary of Ω) of the homogeneous space associated to the anisotropic geometry of Ω are

(3.2) B ε (ζ ) = {ξ = ζ + λ u with |u| = 1 and |λ | < c 0 τ(ζ , u, ε)}
where c 0 is chosen sufficiently small depending only on the defining function ρ of Ω.

Let ζ and ε be fixed. Then, an orthonormal basis

(v 1 , v 2 , . . . , v n ) is called (ζ , ε)-extremal (or ε-extremal, or simply extremal) if v 1 is the complex normal (to ρ) at ζ ,
and, for i > 1, v i belongs to the orthogonal space of the vector space generated by (v 1 , . . . , v i-1 ) and minimizes τ (ζ , v, ε) in the unit sphere of that space. In association to an extremal basis, we denote

(3.3) τ(ζ , v i , ε) = τ i (ζ , ε). so i → τ i (ζ , ε) is increasing. Moreover the finite type condition implies that (3.4) τ 1 (ζ , ε) = ε and ε 1/2 τ i (ζ , ε) ε 1/m , i ≥ 1.
If v is any unit vector and λ ≥ 1,

λ 1/m τ(ζ , v, ε) ≤ 1 C τ(ζ , v, λ ε) ≤ Cλ τ(ζ , v, ε),
where m is the type of Ω.

Then we define the polydiscs AP ε (ζ ) by

(3.5) AP ε (ζ ) = AP(ζ , ε) = z = ζ + n ∑ k=1 λ k v k such that |λ k | ≤ c 0 Aτ k (ζ , ε) . P ε (ζ ) = P(ζ , ε) being the corresponding polydisc with A = 1. We choose c 0 < 1 so that z ∈ P ε (ζ ) implies (3.6) |δ Ω (z) -δ Ω (ζ )| ≤ ε/2.
Remark. Note that there is neither unicity of the extremal basis (v 1 , v 2 , . . . , v n ) nor of associated polydisk P ε (ζ ). However the polydisks associated to two different (ζ , ε)-extremal basis are equivalent. Thus in all the paper P ε (ζ ) will denote a polydisk associated to any (ζ , ε)-extremal basis and τ i (ζ , ε) the radius of P ε (ζ ).

Moreover there exists C > 0 such that for ζ close to ∂ Ω and ε > 0 small (see [START_REF] Conrad | Anisotrope optimale Pseudometriken für lineal konvex Gebeite von endlichem Typ (mit Anwendungen)[END_REF] and [START_REF] Charpentier | Estimates for Solutions of the ∂ -Equation and Application to the Characterization of the Zero Varieties of the Functions of the Nevanlinna Class for Lineally Convex Domains of Finite Type[END_REF]):

If v is a unit vector then:

(1)

z = ζ + λ v ∈ P ε (ζ ) implies |λ | ≤ Cτ(ζ , v, ε), (2) z = ζ + λ v with |λ | ≤ τ(ζ , v, ε) implies z ∈ CP ε (ζ ).
Lemma 3.1. For z close to ∂ Ω, ε small and ζ ∈ P ε (z) or z ∈ P ε (ζ ), we have, for all

1 ≤ i ≤ n: (1) τ i (z, ε) = τ (z, v i (z, ε) , ε) ≃ τ (ζ , v i (z, ε) , ε) where (v i (z, ε)) i is a (z, ε)-extremal basis; (2) τ i (ζ , ε) ≃ τ i (z, ε); (3) In the coordinate system (z i ) associated to the (z, ε)-extremal basis, ∂ ρ ∂ z i (ζ ) ε τ i
where τ i is either τ i (z, ε) or τ i (ζ , ε).

Remark.

In (1) above τ (ζ , v i (z, ε) , ε) is not τ i (ζ , ε
) because the extremal basis at z and ζ are different but (2) implies that these quantities are equivalent.

We also define

d(ζ , z) = inf {ε such that z ∈ P ε (ζ )} .
The fundamental result here is that d is a pseudo-distance. Moreover the pseudo-balls B ε and the polydiscs P ε are equivalent in the sense that there exists a constant K > 0 depending only on Ω and ρ such that

(3.7) 1 K P ε (ζ ) ⊂ B ε (ζ ) ⊂ KP ε (ζ ) so d(ζ , z) ≃ inf {ε such that z ∈ B ε (ζ )} and (3.8) d(ζ , z) ≃ d(z, ζ ). Moreover (3.9) δ (z) + d(z, ζ ) ≃ δ (ζ ) + d(z, ζ ).
Lemma 3.2. For z ∈ Ω, close to ∂ Ω, δ small, k = 0, . . . , n -1 and -1 < µ < 1, (3.10)

P δ (z) dλ (ζ ) |z -ζ | 2(n-k)-1+µ µ τ k+1 (z, δ ) 1-µ k ∏ j=1 τ 2 j (z, δ ).
For 0 < µ < 2, k = 0, . . . , n -1, T being the real tangent space to ρ at the point z (3.11)

P δ (z)∩T dσ (ζ ) |z -ζ | 2(n-k-1)+µ µ    τ 1 (z, δ )τ k+1 (z, δ ) 2-µ ∏ k j=2 τ j (z, δ ) 2 if k ≥ 2 τ 1 (z, δ )τ 2 (z, δ ) 2-µ if k = 1 τ 1 (z, δ ) 1-µ if k = 0 and 0 < µ < 1. For -1 < β ≤ 0, k = 1, . . . , n -1, 0 ≤ µ < 1 and δ ≥ δ Ω (ζ )
(3.12)

P δ (ζ ) δ Ω (z) β dλ (z) |z -ζ | 2(n-k)-1+µ β ,µ δ β τ k+1 (ζ , δ ) 1-µ k ∏ j=1 τ 2 j (ζ , δ ) .
Proof. We use the coordinate ξ = (ξ i ) 1≤i≤n system associated to a (z, δ )-extremal basis and we denote ξ ′ = (ξ k+1 , . . . , ξ n ) and, if k < n -1, ξ ′′ = (ξ k+2 , . . . , ξ n ).

• Proof of (3.10): Let

E 0 = ζ ∈ P δ (z) such that z ′ -ζ ′ ≤ 2τ k+1 (z, ζ )
and

E j = ζ ∈ P δ (z) such that |z ′′ -ζ ′′ | ∈ 2 j-1 τ k+1 (z, δ ), 2 j τ k+1 (z, δ ) , if k < n -1 / 0, if k = n -1.
(note that (see (3.6)) P δ (z) = ∪ j≥0 E j ) Then

E 0 dλ (ζ ) |z -ζ | 2(n-k)-1+µ µ τ k+1 (z, δ ) 1-µ k ∏ j=1 τ j (z, δ ) 2 and, if k < n -1, E j dλ (ζ ) |z -ζ | 2(n-k)-1+µ µ 2 j τ k+1 (z, δ ) -1-µ k+1 ∏ j=1 τ j (z, δ ) 2 ,
which proves (3.10). • Proof of (3.11): analog to the proof of (3.10).

• Proof of (3.12): Let T be the real tangent space to ρ at ζ and ν the inward real normal to ρ at ζ . For z ∈ P δ (ζ ), let us write z = Z(z) + t(z)ν, Z(z) ∈ T , and let t 0 such that Z(z)

+ t 0 ν = W (z) ∈ ∂ Ω so z = W (z) +tν with t = t(z) -t 0 . Then δ Ω (z) ≃ t and |z -ζ | ≃ |Z(z) -ζ | + |t(z)
| and, by hypothesis on δ and (3.6), δ Ω (z) ≤ 2δ , thus

P δ (ζ ) δ Ω (z) β dλ (z) |z -ζ | 2(n-k)-1+µ P δ (ζ )∩T 2δ 0 t β dt |W -tν -ζ | 2(n-k)-1+µ dσ P δ (ζ )∩T δ β +1 |Z -ζ | 2(n-k-1)+1+µ) dσ (Z) δ β +1 δ τ k+1 (ζ , δ ) 2-(1+µ) ∏ k j=2 τ j (ζ , δ ) 2 if k ≥ 1 δ β τ k+1 (ζ , δ ) 1-µ if k = 0 by (3.11) = δ β τ k+1 (ζ , δ ) 1-µ ∏ k j=1 τ j (ζ , δ ) if k ≥ 1, δ β τ k+1 (ζ , δ ) 1-µ if k = 0,
which ends the proof.

DEFINITION AND PROPERTIES OF A SOLUTION OF THE ∂ -EQUATION

To solve the ∂ -equation we use the method introduced in [START_REF] Charpentier | Estimates for Solutions of the ∂ -Equation and Application to the Characterization of the Zero Varieties of the Functions of the Nevanlinna Class for Lineally Convex Domains of Finite Type[END_REF]. Let us briefly recall it:

If

f is a smooth (0, r)-form ∂ -closed on Ω, then f (z) = (-1) r+1 ∂ z Ω f (ζ ) ∧ K r N (z, ζ ) - Ω f (ζ ) ∧ P r N (z, ζ ),
where K r N (resp. P r N ) is the component of a kernel K N (N ≥ 1), recalled in formula (4.4) below, of bi-degree (0, r -1) in z and (n, nr) in ζ (resp. the component of P N of be-degree (0, r) in z and (n, nr) in ζ ) constructed with the method of [AB82], using the Diederich-Fornaess support function constructed in [START_REF] Diederich | Lineally convex domains of finite type: holomorphic support functions[END_REF] (see also Theorem 2.2 of [START_REF] Charpentier | Estimates for Solutions of the ∂ -Equation and Application to the Characterization of the Zero Varieties of the Functions of the Nevanlinna Class for Lineally Convex Domains of Finite Type[END_REF]) and the function

G(ξ ) = 1 ξ N with a sufficiently large number N (instead of G(ξ ) = 1 ξ in formula (2.7) of [CDM14a]).
Then, the form Ω f (ζ ) ∧ P r N (z, ζ ) is ∂ -closed and the operator T solving the ∂ -equation in theorems 2.1, 2.2 and 2.3 is defined by 

(4.1) T f (z) = (-1) r+1 Ω f (ζ ) ∧ K r N (z, ζ ) -∂ * N Ω f (ζ ) ∧ P r N (z, ζ ) ,
Lemma 4.1. Let r ≥ 1, -1 < γ, d ∈ N. Let f be a ∂ -closed (0, r)-form with coefficients in L 1 (Ω, δ γ Ω ) and let g = Ω f (ζ ) ∧ P r N (z, ζ ). Then for N ≥ N 0 = N 0 (d) ∂ * N (g) is a solution of the equation ∂ u = g satisfying ∂ * N (g) C d (Ω) ≤ C k,N f L 1 (Ω,δ γ ) .
Finally the proofs of our theorems are reduced to the proofs of estimates for the operator T K defined by

(4.2) T K ( f ) = Ω f (ζ ) ∧ K r N (z, ζ ).
Let us now recall (from [START_REF] Charpentier | Estimates for Solutions of the ∂ -Equation and Application to the Characterization of the Zero Varieties of the Functions of the Nevanlinna Class for Lineally Convex Domains of Finite Type[END_REF]) the explicit formula for the kernel K N : Let S 0 (z, ζ ) be the holomorphic support function of Diederich-Fornaess [START_REF] Diederich | Lineally convex domains of finite type: holomorphic support functions[END_REF] (see also Theorem 2.2 of [START_REF] Charpentier | Estimates for Solutions of the ∂ -Equation and Application to the Characterization of the Zero Varieties of the Functions of the Nevanlinna Class for Lineally Convex Domains of Finite Type[END_REF]). Define two

C ∞ functions χ 1 (z, ζ ) = χ (|z -ζ |) and χ 2 (z) = χ (δ ∂ Ω (z)) (δ ∂ Ω denoting the distance to the boundary of Ω) where χ and χ are C ∞ functions, 0 ≤ χ, χ ≤ 1, such that χ ≡ 1 on [0, R /2] and χ ≡ 0 on [R, +∞[ and χ ≡ 1 on [0, η 1/2]
and χ ≡ 0 on [η 0 , +∞[, where R and η 1 are small enough. Then we define

χ(z, ζ ) = χ 1 (z, ζ )χ 2 (ζ ) and S(z, ζ ) = χ(z, ζ )S 0 (z, ζ ) -(1 -χ(z, ζ ))|z -ζ | 2 = n ∑ i=1 Q i (z, ζ ) (z i -ζ i ) .
Define the two forms s and Q used in [START_REF] Andersson | Henkin-Ramirez formulas with weight factors[END_REF] in the construction of the Kopelman formula by

s(z, ζ ) = n ∑ i=1 ζ i -z i d (ζ i -z i ) and Q(z, ζ ) = 1 K 0 ρ(ζ ) n ∑ i=1 Q i (z, ζ )d (ζ i -z i ) ,
where K 0 is a large constant chosen so that [CD18, formula (3.12) p. 204] Lemma 4.2. For z 0 close to ∂ Ω, ε small and z, ζ ∈ P ε (z 0 ), in the coordinate system (ζ i ) associated to a (z 0 , ε)-extremal basis, we have:

ℜe ρ(ζ ) + 1 K 0 S(z, ζ ) < ρ(ζ ) 2 . The Q i (z, ζ ) are C ∞ in Ω× Ω
(1) |Q i (z, ζ )| + |Q i (ζ , z)| ε τ i , (2) ∂ Q i (z,ζ ) ∂ ζ j + ∂ Q i (z,ζ ) ∂ ζ j + ∂ Q i (z,ζ ) ∂ z j ε τ i τ j ,
where τ i are either τ i (z, ε), τ i (ζ , ε) or τ i (z 0 , ε).

Moreover we have ([CD18, Formula (3.12) and Lemma 3.5])

(4.3) ρ(ζ ) + 1 K 0 S(z, ζ ) |ρ(ζ )| + |ρ(z)| + d(z, ζ ). Recall that if ζ ∈ ∂ Ω, ℜeS(z, ζ ) < 0 for z ∈ Ω, and, that s satisfies |z -ζ | 2 = | s, z -ζ | ≤ C |z -ζ |, z, ζ ∈ Ω. Then the kernel K N is (formula (2.7) of [CDM14a]) (4.4) K N (z, ζ ) = C n n-1 ∑ k=0 (n -1)! k! ρ(ζ ) 1 K 0 S(z, ζ ) + ρ(ζ ) N+k s(z, ζ ) |ζ -z| 2(n-k) ∧ (dQ) k ∧ (ds) n-k-1 .
The main articulations of the proofs are as follows:

The proof of Theorem 2.1 is given in Section 5.1 and the proofs of Theorems 2.2 and 2.3 are given in next sections.

To estimate derivatives of T K ( f ) we note that, for z ∈ Ω, the coefficients of ζ → K N (z, ζ ) and their derivatives up to order N -1 are smooth in Ω \ {z} and equal to 0 when ζ ∈ ∂ Ω. Thus we define K N (z, ζ ) the kernel obtained extending the coefficients of k) . Moreover we use an other trick (inspired by [START_REF] Wu | Sobolev and Hölder Estimates for ∂ on Bounded Convex Domains in C 2[END_REF]) on the derivatives of 1 K 0 S(z, ζ ) + ρ(ζ ). Finally the proofs are done using the following Lemma which is easily obtained reading the proof of [CD18, Lemma 3.10] (see also [START_REF] Range | Holomorphic Functions and Integrals Representations in Several Complex Variables[END_REF]Appendix B]): Lemma 4.3. Let Ω be a smoothly bounded domain in C n . Let µ and ν be two positive measures on Ω. Let K be a measurable function on Ω × Ω and let us consider the linear operator T defined by

K N by 0 if (z, ζ ) ∈ Ω × C n \ Ω . Then T K ( f ) = C n f (ζ ) ∧ K r N (z, ζ ) and, making the change of variable ζ -z = ξ we can derivate T K ( f ) (less than N -1 times) without derivating the expression 1 |z-ζ | 2(n-
T f (z) = Ω K(z, ζ ) f (ζ )dµ(ζ ).
Denote δ Ω the distance to the boundary of Ω. Assume that there exists a real number s ≥ 1 such that:

(1) If there exists a positive number κ 0 > 0 and, for all 0 < κ ≤ κ 0 , a positive constant C κ such that,

Ω |K(z, ζ )| s δ Ω (ζ ) -κ dµ(ζ ) ≤ C κ δ Ω (z) -κ , z ∈ Ω and Ω |K(z, ζ )| s δ Ω (z) -κ dν(z) ≤ C κ δ Ω (ζ ) -κ , ζ ∈ Ω, then T is bounded from L p (Ω, µ) to L q (Ω, ν) for all 1 < p < s s-1 with 1 q = 1 p -s-1 s . (2) If there exists a positive constant C such that Ω |K(z, ζ )| s dν(z) ≤ C, ζ ∈ Ω, then T is bounded from L 1 (Ω, µ) to L q (Ω, ν) with q = s. For 0 ≤ k ≤ n -1 and f a (0, r) form (1 ≤ r ≤ n -1), let us denote T k f (z) = (n -1)! k! Ω ρ(ζ ) 1 K 0 S(z, ζ ) + ρ(ζ ) N+k s(z, ζ ) |ζ -z| 2(n-k) ∧ (dQ) k ∧ (ds) n-k-1 ∧ f (ζ ) = Ω K k (z, ζ ) ∧ f (ζ ) so that T K f = ∑ n-1 k=0 C n T k f .

PROOFS OF THEOREMS

As sharp estimates of the coefficients of K N using the finite type hypothesis are made only when ζ and z are close and close to ∂ Ω, we consider a recovering of Ω as follows: let ε 0 be a small positive number, P l , 1 ≤ l ≤ M, points in ∂ Ω, V l = B (P l , ε 0 ), 1 ≤ l ≤ M, the euclidean balls centered at P l and radius ε 0 and V 0 an open set relatively compact in Ω such that {V l , 0 ≤ l ≤ M} is an open covering of Ω. Precisely ε 0 is chosen sufficiently small so that:

• For z and ζ in the balls 2V l = B (P l , 2ε 0 ), 1 ≤ l ≤ M, all the properties and es- timates associated to the finite type hypothesis are valid (see (3.1) to (3.12) and Lemma 4.2) including Lemmas 5.1 to 5.4;

• For z and ζ in 2V l ∩ Ω, 1 ≤ l ≤ M, Q(z, ζ ) is holomorphic in the z variable.
Then we choose smooth cut-off functions χ l ∈ C ∞ 0 (V l ), ∑ M l=0 χ l ≡ 1 on Ω and we write

T k f (z) = M ∑ l=0 Ω K k (z, ζ )χ l (ζ ) ∧ f (ζ ) = M ∑ l=0 T l k f (z) so T K f (z) = M ∑ l=0 n-1 ∑ k=0 C n T l k f (z).
By standard regularization procedure, to prove Theorem 2.1, Theorem 2.2 and Theorem 2.3 under condition (2) or (3) (resp. Theorem 2.3 under condition (1)) we can assume that the coefficients of f are C ∞ -smooth in Ω (resp. in D(Ω)). So in all the proofs below the coefficients of the form f are in C ∞ Ω .

Moreover, for l ≥ 1, if z ∈ 2V l , using the holomorphic property of Q, an elementary calculus shows that, in the above expression of

T K f (z), T l k f (z) appears only for k ≤ n -r and the kernel K k (z, ζ )χ l (ζ ) is equal to (5.1) K k (z, ζ )χ l (ζ ) = χ l (ζ )C n,k ρ(ζ ) 1 K 0 S(z, ζ ) + ρ(ζ ) N+k s(z, ζ ) |ζ -z| 2(n-k) ∧ ∂ ζ Q(z, ζ ) k ∧ ∂ ζ s(z, ζ ) n-k-r ∧ ∂ z s(z, ζ ) r-1 with s(z, ζ ) = ∑ i ζ i -z i dζ i and Q(z, ζ ) = 1 K 0 ρ(ζ ) ∑ i Q i (z, ζ )dζ i .
Lemma 5.1. Let D be a derivative of order j in z and ζ . Denote

F(z, ζ ) = ρ(ζ )∂ ζ as Q b s (z, ζ ) + Q b s (z, ζ )∂ ζ as ρ(ζ ).
Then for z and ζ close and close to the boundary of

Ω (1) |F(z, ζ )| α 2 τ as τ bs ; (2) |DF(z, ζ )| 1 |ρ(ζ )| α 2 τ as τ bs if j = 1; (3) |DF(z, ζ )| 1 1 |ρ(ζ )| 2
α 2 τ as τ bs for j ≥ 2;

where α = δ Ω (z) + d(z, ζ ) ≃ δ Ω (ζ ) + d(z, ζ ) and τ i = τ i (z, α) ≃ τ i (ζ , α).
Proof. Comes from (3) of Lemma 3.1 and Lemma 4.2. 5.1. Proof of Theorem 2.1. The result stated here is slightly stronger than the one given in [START_REF] Charpentier | Weighted and boundary l p estimates for solutions of the ∂ -equation on lineally convex domains of finite type and applications[END_REF] and we give a detailed proof. We assume N > 2 |γ| + 1 + N 0 .

Lemma 5.2. If z and ζ close to the boundary and close together

|K k (z, ζ )| ρ(ζ ) α N-1 1 |z -ζ | 2(n-k)-1 k ∏ i=1 τ -2 i where τ i = τ i (z, α) or τ i = τ i (ζ , α) with α = δ (z) + d(z, ζ ) ≃ δ (ζ ) + d(z, ζ ), otherwise |K k (z, ζ )| 1 |z -ζ | 2(n-k)-1 .
This Lemma follows easily formula (5.1) and Lemma 5.1.

Proof of (1) of Theorem 2.1. Let us consider the operators T l k , 0 ≤ l ≤ M. We use Lemma 4.3, with s = 1 + µ and 0 ≤ µ < 1/(2n -1), writing

T l k f (z) = Ω K l k (z, ζ ) f (ζ )δ (ζ ) γ-γ ′ p dµ(ζ ) with K l k (z, ζ ) = χ l (ζ )K k (z, ζ )δ (ζ ) -γ+γ ′ p -γ ′ and dµ(ζ ) = δ (ζ ) γ ′ dλ (ζ ):
Thus to prove that T k maps L p (δ γ dλ ) into L q δ γ ′ dλ (that is T l k defined by T l k g(z)

= Ω K l k (z, ζ )g(ζ )dµ(ζ ) maps L p (dµ) into L q (dν) with dν(z) = δ (z) γ ′ dλ (z))
we have to estimate the two following integrals:

I 1 (z) = Ω K l k (z, ζ ) 1+µ δ (ζ ) γ ′ -ε dλ (ζ ), 0 ≤ l ≤ M and I 2 (ζ ) = Ω K l k (z, ζ ) 1+µ δ (z) γ ′ -ε dλ (z), 0 ≤ l ≤ M, for 0 ≤ ε < min {γ ′ + 1, 1}. If l = 0 the estimate of I 2 (z) is trivial because • if |z -ζ | ≤ dist (V 0 , ∂ Ω) /2, δ Ω (z) ≃ δ Ω (ζ ) and δ Ω (ζ ) -(1+µ) -γ+γ ′ p -γ ′ δ Ω (z) γ ′ -ε is bounded, • if |z -ζ | > dist (V 0 , ∂ Ω) /2, |K k (z, ζ )| 1+µ δ Ω (ζ ) -(1+µ) -γ+γ ′ p -γ ′ is bounded and γ ′ -ε > -1, so I 2 (ζ ) ε,µ 1 δ Ω (ζ ) -ε .
If l ≥ 1 and z / ∈ 2V l then:

|K k (z, ζ )| 1+µ δ Ω (ζ ) -(1+µ) -γ+γ ′ p -γ ′
is bounded, trivially if -γ+γ ′ p -γ ′ ≤ 0 and other- wise by Lemma 5.2, and we obtain the same result because γ ′ -ε > -1.

Similar result is easily obtained for I 1 (z).

So we only have to estimate these integrals when l ≥ 1 and z

∈ 2V l . For -1 < γ ′ ≤ γ, γ -γ ′ < p/m, γ < m + n + 1 let µ 0 (k) =        1-m p (γ-γ ′ ) 2(n-k)-1+m(k+1+γ ′ + γ-γ ′ p ) if k = 0 1-γ-γ' p 2n-1+γ ′ + γ-γ ′ p if k = 0 , Proposition 5.1. For l ≥ 1, z ∈ 2V l and µ ≤ µ 0 (k), I 1 (z) ε δ (z) -ε if 0 < ε < γ ′ + 1. Proof. Denote P o (z) = P(z, δ (z)) and P i (z) = P z, 2 i δ (z) \ P z, 2 i-1 δ (z) for i ≥ 1. Then, using Lemma 5.2 or a direct calculus (N > 2 |γ|), if ζ ∈ P i (z), by (3.6) K l k (z, ζ ) 1+µ 0 δ (ζ ) γ ′ -ε |K k (z, ζ )| 1+µ 0 2 i δ (z) (1+µ 0 ) γ ′ -γ p -µ 0 γ ′ -ε .
(1) Case k = 0 By Lemma 3.2, (3.10), properties (3.4)

P i (z) |K k (z, ζ )| 1+µ 0 dλ (ζ ) τ k+1 z, 2 i δ (z) 1-µ 0 (2(n-k)-1) k ∏ j=1 τ -2 j z, 2 i δ (z) µ 0 2 i δ (z) 1 m (1-µ 0 (2(n-k)-1))-µ 0 (k+1) .
Then

P i (z) K l k (z, ζ ) 1+µ 0 δ (ζ ) γ ′ -ε dλ (ζ ) 2 i δ (z) 1 m (1-µ 0 (2(n-k)-1))-µ 0 (k+1)+(1+µ 0 ) γ ′ -γ p -µ 0 γ ′ -ε 2 i δ (z) -ε-µ 0 2(n-k)-1 m +k+1+ γ-γ ′ p +γ ′ + 1 m + γ ′ -γ p 2 i δ (z) -ε .
(2) Case k = 0 Similarly

P i (z) K l 0 (z, ζ ) 1+µ 0 δ (ζ ) γ ′ -ε dλ (ζ ) 2 i δ (z) -ε-µ 0 γ ′ -(2n-1)µ 0 +(1+µ 0 ) γ ′ -γ p 2 i δ (z) -ε .
Thus I 1 (z) ε δ (z) -ε which ends the proof of the Proposition.

Proposition 5.2. For l ≥ 1, z ∈ 2V l I ′ 2 (ζ ) = Ω∩2V l K l k (z, ζ ) 1+µ δ (z) γ ′ -ε dλ (z) ε δ (ζ ) -ε
with 0 < ε < min {γ ′ + 1, 1} and µ ≤ µ 0 (k) or ε = 0 with µ ≤ µ 0 (k) if γ < 0 and µ < µ 0 (k) otherwise.

Proof. Assume k = 0. By Lemma 5.2 or trivially if -γ+γ ′ p -γ ′ ≤ 0, for z ∈ P i (ζ )

K l k (z, ζ ) 1+µ δ (z) γ ′ -ε |K k (z, ζ )| 1+µ 2 i δ Ω (ζ ) -γ+γ ′ p -γ ′ δ (z) γ ′ -ε
and, by (3.12), γ ′ -ε > -1 implies

I ′ 2 (ζ ) 2 i δ Ω (ζ ) -ε-µ 2(n-k)-1 m +k+1+ γ-γ ′ p +γ ′ + 1 m + γ ′ -γ p .
The case k = 0 is easily treated as in the previous proposition which ends the proof.

The proof of (1) of Theorem 2.1 is complete.

Proof of (2) of Theorem 2.1. We give two different methods for the study of T 0 f and T k f , k ≥ 1.

• Case k ≥ 1. As in [START_REF] Charpentier | Weighted and boundary l p estimates for solutions of the ∂ -equation on lineally convex domains of finite type and applications[END_REF] we use the Hardy-Littlewood lemma, so, we have to prove the following inequality

|∇ z T k f | δ Ω (z) α-1 , if p > m(γ + n) + 2 -(m -2)(r -1) with α = 1 m 1 -m(γ+n)+2-(m-2)(r-1) p
. By Hölder inequality it follows from (5.2)

Ω |∇ z K k (z, ζ )χ l (ζ )| p p-1 δ Ω (ζ ) -γ p-1 δ Ω (z) p(α-1) p-1 . If l = 0 |∇ z K k (z, ζ )χ l (ζ )| p p-1 δ Ω (ζ ) -γ p-1 1 |z -ζ | (2n-1) p p-1 1 |z -ζ | 2n 2n-2 2n-1 and (5.2) is trivial. If l ≥ 1 and z / ∈ 2V l |∇ z K k (z, ζ )χ l (ζ )
| is bounded (by Lemma 5.2) and (5.2) is clear because γ p-1 < 1. In the last case, the Q i being holomorphic in z, it remains only the terms corresponding to k ≤ nr and by Lemma 5.2, Lemma 5.1, the fact that for s = s ′ a s = a s ′ and b s = b s ′ and the increasing property of the τ i , if z ∈ 2V l we have

∇ z K k (z, ζ )χ l (ζ )δ Ω (ζ ) -γ/p 1 |z -ζ | 2(n-k)-1 1 δ (z) + d(z, ζ ) 1+ γ p k ∏ i=1 τ i (z, δ (z) + d(z, ζ )) -2 + 1 |z -ζ | 2(n-k) 1 δ (z) + d(z, ζ ) γ p k ∏ i=1 τ i (z, δ (z) + d(z, ζ )) -2 = W 1 + W 2 .
Let P 0 (z) = P(z, δ (z)) and P j (z) = P z, 2 j δ (z) \ P z, 2 j-1 δ (z) . Then, if ζ ∈ P j (z), by (3.6),

|W 1 | p p-1 1 |z -ζ | 2(n-k)-1 p p-1 2 j δ (z) -p p-1 1+ γ p k ∏ i=1 τ i (z, δ (z) + d(z, ζ )) -2 p p-1
and by Lemma 3.2

P j (z) 1 |z -ζ | 2(n-k)-1 p p-1 dλ (ζ ) τ k+1 (z, 2 i δ Ω (z)) 1-(2(n-k)-1) 1 p-1 k ∏ i=1 τ i (z, 2 j δ Ω (z)) 2 . Then P j (z) |W 1 | p p-1 τ k+1 (z, 2 j δ Ω (z)) 1-(2(n-k)-1) p-1 2 j δ (z) 1- (2(n-k)-1) p-1 k ∏ i=1 τ i (z, 2 j δ Ω (z)) -2 p-1 2 j δ (z) 1 m 1- (2(n-k)-1) p-1 - p+γ+k+1 p-1 by (3.4) 2 j δ (z) p m(p-1) 1-m- m(γ+n-r+1)+2r p (because k ≤ n -r) = 2 j δ (z) p(α-1) p-1 . Similarly, if ζ ∈ P j (z), |W 2 | p p-1 1 |z -ζ | 2(n-k) p p-1 2 j δ (z) -γ p-1 k ∏ i=1 τ i z, 2 j δ (z) -2p p-1
and as Lemma 3.2 implies

P j (z) 1 |z -ζ | 2p(n-k) p-1 τ k z, 2 j δ (z) 2- 2(n-k) p-1 k-1 ∏ i=1 τ i z, 2 j δ (z) 2 we get P j (z) |W 2 | p p-1 2 j δ (z) -1 p-1 (2n-2+γ) if k > 1 2 j δ (z) -1 p-1 (2n+γ) if k = 1 2 j δ (z) p(α ′ -1) p-1 with α ′ = 1 -2n+γ p > α.
• Case k = 0. In that case as we cannot derive T 0 f we make a direct computation for kernels of the form

K 0 (z, ζ ) = ζ t -z t |z -ζ | 2n ρ(ζ ) 1 K 0 S(z, ζ ) + ρ(ζ ) N χ l (ζ ).
We have to estimate the difference

|u 0 (z 0 ) -u 0 (z 1 )| ≤ Ω |K 0 (z 0 , ζ ) -K 0 (z 1 , ζ )| | f (ζ )| dλ (ζ ) Ω | f (ζ )| p δ Ω (ζ ) γ dλ (ζ ) 1/p Ω |K 0 (z 0 , ζ ) -K 0 (z 1 , ζ )| p p-1 δ Ω (ζ ) -γ p-1 dλ (ζ ) p-1 p .
Let us write, z 0 and z 1 being fixed,

K 0 (z 0 , ζ ) -K 0 (z 1 , ζ ) = ζ t -z 0,t |z 0 -ζ | 2n - ζ t -z 1,t |z 1 -ζ | 2n ρ(ζ ) 1 K 0 S(z 0 , ζ ) + ρ(ζ ) N χ l (ζ ) +   ρ(ζ ) 1 K 0 S(z 0 , ζ ) + ρ(ζ ) N - ρ(ζ ) 1 K 0 S(z 1 , ζ ) + ρ(ζ ) N   ζ t -z 1,t |z 1 -ζ | 2n χ l (ζ ) = K 1 0 (ζ ) + K 2 0 (ζ ).
Let us denote T 0 the real tangent space to ρ and η 0 the inward real normal to ρ at the point z 0 . Let Z ∈ T 0 and W ∈ ∂ Ω such that ζ = W + tη 0 and W = Z + t 1 η 0 . Let us first estimate

I (z 0 , z 1 ) = Ω K 1 0 (ζ ) p p-1 δ Ω (ζ ) -γ p-1 dλ (ζ ). Let P 0 (z 0 ) = B (z 0 , 3 |z 0 -z 1 |), P j (z 0 ) = B z 0 , 3 j+1 |z 0 -z 1 | \ B z 0 , 3 j |z 0 -z 1 |
and Q j (z 0 ) = P j (z 0 ) ∩ T 0 where B(z, r) denotes the euclidean ball of center z and radius r in C n .

Let us first consider I

0 (z 0 , z 1 ) = P 0 (z 0 ) K 1 0 (ζ ) p p-1 δ Ω (ζ ) -γ p-1 dλ (ζ ): I 0 (z 0 , z 1 ) P 0 (z 0 ) δ Ω (ζ ) -γ p-1 |z 0 -ζ | (2n-1) p p-1 dλ (ζ ) + P 0 (z 0 ) δ Ω (ζ ) -γ p-1 |z 1 -ζ | (2n-1) p p-1 dλ (ζ ) = I 1 0 (z 0 , z 1 ) + I 2 0 (z 0 , z 1 ) .
To calculate the integral I 1 0 (z 0 , z 1 ) we use the coordinate system (Z,t) ∈ T × Rη 0 :

δ (ζ ) ≃ t, |z 0 -ζ | ≃ |Z -z 0 | + |t + t 1 | (note that γ p-1 < 1) I 1 0 (z 0 , z 1 ) |Z-z 0 |≤3|z 0 -z 1 | |Z -z 0 | -1 p-1 (γ+(2n-1)p)+1 |z 0 -z 1 | 1 p-1 (p-(γ+2n)) .
Now it is easy to see that the same estimate is valid for I 2 0 (z 0 , z 1 ). Let us now look at

I j (z 0 , z 1 ) = P j (z 0 ) K 1 0 (ζ ) p p-1 δ Ω (ζ ) -γ p-1 dλ (ζ ), j ≥ 1: using that ζ t -z 0,t |z 0 -ζ | 2n-1 - ζ t -z 1,t |z 1 -ζ | 2n-1 |z 0 -z 1 | 3 j |z 0 -z 1 | -2n
we get

I j (z 0 , z 1 ) |z 0 -z 1 | p p-1 3 j |z 0 -z 1 | -2np p-1 +2n-1-γ p-1 +1 3 -j(2n+γ) p-1 |z 0 -z 1 | p-(2n+γ) p-1 Thus ∑ j I j (z 0 , z 1 ) |z 0 -z 1 | p-(2n+γ) p-1
. Finally we have

Ω K 1 0 (ζ ) p p-1 δ Ω (ζ ) -γ p-1 dλ (ζ ) p-1 p |z 0 -z 1 | 1-2n+γ p .
To estimate

Ω K 2 0 (ζ ) p p-1 δ Ω (ζ ) -γ p-1 dλ (ζ )
we use the pseudo-balls

P 0 (z 1 ) = P (z 1 , |z 0 -z 1 |) and P k (z 1 ) = P z 1 , 2 k |z 0 -z 1 | \ P z 1 , 2 k-1 |z 0 -z 1 | . For P 0 (z 1 ) K 2 0 (ζ ) p p-1 δ Ω (ζ ) -γ p-1 dλ (ζ )
we argue as for I 1 0 (z 0 , z 1 ) using Lemma 3.2. This ends the proof because α < 1 -2n+γ p .

5.2. Proofs of Theorems 2.2 and 2.3. Denotes f l = χ l f , so

T K f (z) = M ∑ l=0 n-1 ∑ k=0 Ω K k (z, ζ ) ∧ f l (ζ ).
As explained in Section 4 we extend the kernels

K k to (z, ζ ) ∈ Ω × C n with K k (z, ζ ) = K k (z, ζ ) if (z, ζ ) ∈ Ω × Ω, 0 if (z, ζ ) ∈ Ω × (C n \ Ω),
and we also extend the coefficients of the (0, r)-form f in C ∞ 0 (C n ). Thus, for 0 ≤ k ≤ nr, making the change of variable ξ = z -ζ we get

(5.3) T l k f (z) = - C n K k (z, z -ξ ) ∧ f l (z -ξ ).
Note that, f being assumed smooth, the estimate (4.3) implies that T l k f (z) is smooth in Ω and it's derivatives are given derivating under the sign of integration and does not depend on the order of derivation.

As ∂ ∑ n-1 k=0 T k f = f -P N f , by Lemma 4.1, all derivatives of ∑ n-r k=0 T k f involving an anti-holomorphic derivative are derivatives of a coefficient of f up to a function smooth in Ω, so we need to estimate derivatives of the T k f involving only holomorphic derivatives (This is not necessarily but useful to simplify the notation in the proofs that follow).

To fix notations, for any integer

J let D J = J j=1 ∂ ∂ z i j = ∂ J ∂ z i 1 ...∂ z i J
, i j ∈ {1, . . . , n}, a derivative of order J in the z variable and denote

∆ J = J j=1 ∂ ∂ z i j + ∂ ∂ ζ i j the derivative obtained replacing ∂ ∂ z i j by ∂ ∂ z i j + ∂ ∂ ζ i j
, 1 ≤ j ≤ J, in D J . Then calculating D J T l k f with (5.3) and making the change of variable z -ξ = ζ we obtain that D J T l k f is a sum of integrals of the form

(5.4) I l J,k = Ω z t -ζ t |z -ζ | 2(n-k) ∆ J   ρ(ζ ) N-k 1 1 K 0 S(z, ζ ) + ρ(ζ ) N+k k ∏ s=1 ρ(ζ )∂ ζ as Q b s (z, ζ ) + ∂ ρ/∂ ζ a s Q b s (z, ζ ) f .
where f is a coefficient of χ l f . 5.2.1. Proof of Theorem 2.2. We assume N > 2m(n + 1) + 5n + 2 |γ| + N 0 (1) + 1. By (5.4) we have to estimate the operators associated to the integrals

I l 1,k (z) = Ω z t -ζ t |z -ζ | 2(n-k) ∆   ρ(ζ ) N-k 1 1 K 0 S(z, ζ ) + ρ(ζ ) N+k k ∏ s=1 ρ(ζ )∂ ζ as Q b s (z, ζ ) + ∂ ρ/∂ ζ a s Q b s (z, ζ ) f (ζ ) dλ (ζ )
where

∆ = ∂ ∂ z j + ∂ ∂ ζ j .
If ∆ acts on f the integral corresponds to an operator treated in Section 5.1, so we assume that ∆ does not act on f . By a straightforward calculus we are lead to consider the integral operators of the following type:

(5.5)

I = Ω * z t -ζ t |z -ζ | 2(n-k)   ρ(ζ ) N ′ -k 1 1 K 0 S(z, ζ ) + ρ(ζ ) N ′ +k+1 k ∏ s=1 ρ(ζ )∂ ζ as Q b s (z, ζ ) + ∂ ρ/∂ ζ a s Q b s (z, ζ ) f (ζ )dλ (ζ )
where N ′ = N or N -1 and * is a smooth function or

(5.6) I = Ω z t -ζ t |z -ζ | 2(n-k)   ρ(ζ ) N-k 1 1 K 0 S(z, ζ ) + ρ(ζ ) N+k ∆ k ∏ s=1 ρ(ζ )∂ ζ as Q b s (z, ζ ) + ∂ ρ/∂ ζ a s Q b s (z, ζ ) f (ζ )dλ (ζ ).
If l = 0 the kernels in I are, by Lemma 5.2 of the form * |z-ζ | 2(n-k)-1 , and, if l ≥ 1 and z / ∈ 2V l the kernels are smooth. Thus the integrals corresponding are easy to estimate so we consider only the cases l ≥ 1, z ∈ 2V l and k ≤ nr to study I because of the holomorphic property of the Q i .

The following Lemma is elementary:

Lemma 5.3. Let p ∈ [1, +∞[ and γ > -1. There exists a constant C > 0 such that, for any function g

∈ C 1 (Ω), g L p (δ ν Ω dλ ) ≤ C ν g L p 1 (δ γ Ω dλ
) where δ Ω denotes the distance to the boundary of Ω and

ν > -1 if γ < p -1, γ -p if γ ≥ p -1.
Proof of (1) of Theorem 2.2. By Lemma 5.1 the factors of f in (5.5) and (5.6) are bounded by

1 |z -ζ | 2(n-k)-1 ρ(ζ ) 1 K 0 S(z, ζ ) + ρ(ζ ) M 1 |ρ(ζ )| k ∏ i=1 τ i (z, δ Ω (z) + d(z, ζ )) -2 . By Lemma 5.3 δ Ω (ζ ) f p ∈ L p δ γ+ε Ω
, for all ε > 0, and we can apply the last result of the proof of Theorem 2.1 to conclude.

Proof of (2) of Theorem 2.2. If γ < p -1 we use a transformation similar to one used by Deyun Wu in [START_REF] Wu | Sobolev and Hölder Estimates for ∂ on Bounded Convex Domains in C 2[END_REF] for the integrals with k ≥ 1: Lemma 5.4. Let η z be the complex normal at the point z and let η

* ζ = ∂ ∂ η z -∂ ∂ η z acting on the variable ζ . Then for ζ ∈ V l and z ∈ 2V l : (1) η * ζ ρ(ζ ) |z -ζ | d(z, ζ ) 1/m 1 K 0 S(z, ζ ) + ρ(ζ ) 1/m (2) η * ζ S(z, ζ ) 1 (3) 1 1 K 0 S(z,ζ )+ρ(ζ ) M = * η * α ζ 1 1 K 0 S(z,ζ )+ρ(ζ ) M-α
where * is smooth in Ω.

Proof. ρ(ζ ) and S(z, ζ ) are C ∞ functions in the variable ζ on Ω and η * ζ ρ(z) = 0, and, by the definition of the support function S 0 , η * ζ S(z, z) 1 so (2) is valid if the balls V l are sufficiently small and, for (1) we use (4.3).

The two integrals (5.5) and (5.6) are treated similarly so we only treat the first one. Applying the preceding Lemma the integral (5.5) becomes

I = Ω * z l -ζ l |z -ζ | 2(n-k) ρ(ζ ) N ′ -k k ∏ s=1 ρ(ζ )∂ ζ as Q b s (z, ζ ) + ∂ ρ/∂ ζ a s Q b s (z, ζ ) η * ζ   1 1 K 0 S(z, ζ ) + ρ(ζ ) N ′ +k   f (ζ )dλ (ζ ).
Now we integrate by parts the derivative η * ζ . As the integrant is identically zero on the boundary of Ω ∩V l we get

I = Ω K 1 1 (z, ζ ) f (ζ )dλ (ζ ) + Ω K 2 1 (z, ζ )η * ζ f (ζ )dλ (ζ ) = I 1 1 + I 2 1
and iterating this procedure for I 1 1 (which is possible because 2(nk) -1 ≤ 2n -3)

I 1 1 = Ω K 1 2 (z, ζ ) f (ζ )dλ (ζ ) + Ω K 2 2 (z, ζ )η * ζ f (ζ )dλ (ζ ) = I 1 2 + I 2 2 .
If possible (integrability of a derivative of z l -ζ l |z-ζ | 2(n-k) ) we iterate this procedure to I 1 2 and so on. Finally we get a family of integrals

I 1 α = Ω K 1 α (z, ζ ) f dλ (ζ )
for α = (α 1 , α 2 , α 3 )

K 1 α (z, ζ ) = * η * ζ α 1 z l -ζ l |z -ζ | 2(n-k) η * ζ α 2 ρ(ζ ) N ′ -k η * ζ α 3 k ∏ s=1 ρ(ζ )∂ ζ as Q b s (z, ζ ) + ∂ ρ/∂ ζ a s Q b s (z, ζ ) 1 1 K 0 S(z, ζ ) + ρ(ζ ) N ′ +k+1-|α|
, the procedure being stopped when α 1 = 2k or α 2 or α 3 "great enough" (i. e. α 2 = 2m(n + 1), α 3 = 3n -1). By Lemma 5.1

η * ζ β ρ(ζ )∂ ζ as Q b s (z, ζ ) + ∂ ρ/∂ ζ a s Q b s (z, ζ )      ε 2 τ as (ζ ,ε)τ bs (ζ ,ε) if β = 0 ε τ as (ζ ,ε)τ bs (ζ ,ε) if β = 1 1 if β ≥ 2
where ε = δ Ω (ζ ) + d(z, ζ ) which implies, using that the {a s } and {b s } are distinct and the increasing property of the τ i ,

η * ζ α 3 k ∏ s=1 ρ(ζ )∂ ζ as Q b s (z, ζ ) + ∂ ρ/∂ ζ a s Q b s (z, ζ ) ε 2k-α ′ 3 k ∏ i=1 τ i (ζ , ε) -2 where α ′ 3 = α 3 if α 3 ≤ 2k 2k if α 3 ≥ 2k .
By (1) of Lemma 5.4

η * ζ α 2 ρ(ζ ) N ′ -k |ρ(ζ )| N ′ -k-α 2 A (α 2 )
where

A (α 2 ) η * ζ ρ(ζ ) α 2 + ρ(ζ ) α 2 -1 2 1 K 0 S(z, ζ ) + ρ(ζ ) α 2 2m
.

Finally

K 1 α (z, ζ ) 1 |z -ζ | 2(n-k)-1+α 1 ρ(ζ ) 1 K 0 S(z, ζ ) + ρ(ζ ) N ′ -k-α 2 1 K 0 S(z, ζ ) + ρ(ζ ) α 1 -1+α 3 -α ′ 3 + α 2 2m k ∏ i=1 τ i (ζ , ε) -2 .
Note first that

K 1 α (z, ζ ) 1 |z -ζ | 2(n-k)-1+α 1 |ρ(ζ )| α 1 -1 ρ(ζ ) 1 K 0 S(z, ζ ) + ρ(ζ ) M k ∏ i=1 τ i (ζ , ε) -2 for M = N ′ -k -α 2 -α 1 + 1 > 2 |γ| + 1.
On the other hand if α 2 or α 3 is large then, by Lemma 5.2,

K 1 α (z, ζ ) 1 |z -ζ | 2n-1 ρ(ζ ) 1 K 0 S(z, ζ ) + ρ(ζ ) M .
If α 1 = 2k then, using (3.4),

K 1 α (z, ζ ) 1 |z -ζ | 2n-1 1 K 0 S(z, ζ ) + ρ(ζ ) 2k-1 ρ(ζ ) 1 K 0 S(z, ζ ) + ρ(ζ ) M k ∏ i=1 τ i (ζ , ε) -2 1 |z -ζ | 2n-1 1 1 K 0 S(z, ζ ) + ρ(ζ ) ρ(ζ ) 1 K 0 S(z, ζ ) + ρ(ζ ) M =: W 1 (z, ζ ). Now K 2 α (z, ζ ) = * K 1 α ′ (z, ζ ) 1 K 0 S(z, ζ ) + ρ(ζ ) with |α ′ | = |α| -1, so K 2 α (z, ζ ) 1 |z -ζ | 2(n-k)-1+α 1 |ρ(ζ )| α 1 ρ(ζ ) 1 K 0 S(z, ζ ) + ρ(ζ ) M k ∏ i=1 τ i (ζ , ε) -2 .
If α 1 is even (α 1 = 2 (k -k 1 )), using (3.4),

K 2 α (z, ζ ) 1 |z -ζ | 2(n-k 1 )-1 |ρ(ζ )| 2(k-k 1 ) ρ(ζ ) 1 K 0 S(z, ζ ) + ρ(ζ ) M k 1 ∏ i=1 τ i (ζ , ε) -2 k ∏ i=k 1 +1 τ i (ζ , ε) -2 1 |z -ζ | 2(n-k 1 )-1 ρ(ζ ) 1 K 0 S(z, ζ ) + ρ(ζ ) M k 1 ∏ i=1 τ i (ζ , ε) -2 =: W 2 (z, ζ ). If α 1 is odd then K 2 α (z, ζ ) K 2 α ′ (z, ζ ) + K 2 α ′′ (z, ζ ) with α ′ = (α 1 -1, α 2 , α 3
) and α ′′ = (α 1 + 1, α 2 , α 3 ) so there exists k ′ 1 and k ′′ 1 such that

K 2 α (z, ζ ) 1 |z -ζ | 2(n-k ′ 1 )-1 k ′ 1 ∏ i=1 τ i (ζ , ε) -2 + 1 |z -ζ | 2(n-k ′′ 1 )-1 ρ(ζ ) 1 K 0 S(z, ζ ) + ρ(ζ ) M k ′′ 1 ∏ i=1 τ i (ζ , ε) -2 .
Finally I is a sum of integrals applied to f with kernels controlled by W 1 (z, ζ ) and applied to η * ζ f with kernels controlled by W 2 (z, ζ ). Theorem 2.1 has been proved applying Lemma 4.3. If the conditions of Lemma 4.3, for parameter s = 1 + µ, are verified then the operator T maps L p (δ γ ) into L q δ γ ′ for 1 q = 1 p -µ 1+µ . For all p ≥ 1 under hypothesis of Theorem 2.1 we have proved the result if

µ ∈ 0, 1 -m p (γ -γ ′ ) m(γ ′ + n) + 2 -(m -2)(r -1) = [0, µ o [
(note that µ 0 < 1 2n-1 ). The integrals applied to η * ζ f have kernels bounded by those appearing in the proof of Theorem 2.1 and are well controlled when µ < µ 0 .

For the integrals involving only f we have to estimate the operator T given by T f

(z) = Ω K(z, ζ ) f (ζ )dλ (ζ ) with (5.7) K(z, ζ ) = 1 |z -ζ | 2n-1 ρ(ζ ) ρ(ζ ) + 1 K 0 S(z, ζ ) M 1 ρ(ζ ) + 1 K 0 S(z, ζ ) χ l (ζ ). Writing T f (z) = Ω K(z, ζ )δ (ζ ) -α-γ ′ (δ α (ζ ) f (ζ )) dµ(ζ ) with dµ(ζ ) = δ γ ′ (ζ )dλ (ζ ) and α = γ-γ ′ -β p , by Lemma 5.3 δ α f L p (δ γ ′ ) ≤ C α f L p 1 (δ γ ) with (5.8) γ -γ ′ < β < γ + 1.
and it suffices to prove that the operator

T β g(z) = Ω K(z, ζ )δ (ζ ) -α-γ ′ |g(ζ )| dµ(ζ ) maps
L p δ γ ′ into L q δ γ ′ under the conditions on β given in (5.8).

• Case p > 1. By Lemma 4.3 this result will be obtained proving the two following inequalities (5.9)

I 1 (z) = Ω |K(z, ζ )| 1+µ δ (ζ ) (-α-γ ′ )(1+µ)+γ ′ -ε dλ (ζ ) ε δ (z) -ε

and

(5.10)

I 2 (ζ ) = Ω |K(z, ζ )| 1+µ δ (ζ ) (-α-γ ′ )(1+µ) δ (z) γ ′ -ε dλ (z) ε δ (ζ ) -ε , with µ < min β -(γ-γ ′ ) 2np-(β -(γ-γ ′ ))+pγ ′ , µ 0 =: µ 1 (β ). Let us verify first I 1 (z). If l = 0, |K(z, ζ )| 1+µ δ (ζ ) (-α-γ ′ )(1+µ)+γ ′ -ε 1 |z -ζ | (2n-1)(1+µ)
and the result is trivial as µ < 1/2n -1. If l > 0: if z ∈ Ω \ 2V l the inequality is trivial for similar reasons, so, we show it if z ∈ 2V l . By (5.7) and (4.3)

|K(z, ζ )| 1+µ δ (ζ ) (-α-γ ′ )(1+µ)+γ ′ -ε ≤ 1 |z -ζ | (2n-1)(1+µ) |ρ(ζ )| M(1+µ) ρ(ζ ) + 1 K 0 S(z, ζ ) M(1+µ)+1+µ δ (ζ ) (-α-γ ′ )(1+µ)+γ ′ -ε 1 |z -ζ | (2n-1)(1+µ) 1 δ (ζ ) + d(z, ζ ) -γ ′ +(α+γ ′ )(1+µ)+1+µ+ε , thus, if ζ ∈ P k (recall that P k (z) = P z, 2 k δ (z) \ P z, 2 k-1 δ (z) if k ≥ 1 and P 0 (z) = P (z, δ (z)
) and that the hypothesis on µ imply 0 ≤ (2n -1)µ < 1)

(5.11)

P k (z) |K(z, ζ )| 1+µ δ (ζ ) (-α-γ ′ )(1+µ)+γ ′ -ε ≤ 2 k δ (z) γ ′ -(α+γ ′ )(1+µ)-1-µ-ε P k (z) 1 |z -ζ | (2n-1)(1+µ) ≤ 2 k δ (z) 1-(2n-1)µ+γ ′ -(α+γ ′ )(1+µ)-1-µ-ε
, by (3.10).

Then I 1 (z) µ δ Ω (z) -ε if 0 ≤ µ < µ 1 .

For I 2 (ζ ), using that δ (z) 2 k δ (ζ ) if z ∈ P k (ζ ) and (3.12) the conclusion follows as before if µ

< µ 1 . If µ < γ ′ +1 2np-(γ ′ +1)+pγ ′ there exists β , γ ′ < β < γ + 1, such that µ < µ 1 (β )
achieving the proof for p > 1, the case k = 0 being trivial. • Case p = 1. Formula (5.11) and Lemma 4.3 imply the result. 5.2.2. Proof of Theorem 2.3. Now we assume N > 2 |γ| + d + 2m(n + 1) + 5n + N 0 (d) + 1. To prove the theorem it suffices to prove that there exists a constant C depending only on Ω and N such that for all (0, r)-form f with coefficients in C ∞ Ω with condition (1) and in D(Ω) with condition (2)

T K ( f ) L q k,r-1 δ γ ′ Ω ≤ C f L p k,r (δ γ Ω ) ,
with T K ( f ) given by (4.2) and p, γ, q and γ ′ as in the theorem.

First we have to calculate the derivatives of the T k f . As usual we assume l > 0 and z ∈ 2V l .

Using (5.4) for J ≥ 1, we have For the last point we use the above Lemma (with d ′ = d -1) and Theorem 2.2.

∆ J   ρ(ζ ) 1 K 0 S(z, ζ ) + ρ(ζ ) N+k k ∏ s=1   ∂ ζ as Q b s (z, ζ ) ρ(ζ ) + ∂ ρ/∂ ζ a s Q b s (z, ζ ) ρ 2 (ζ )   f   is a sum of expressions of the form ∆ J 1   ρ(ζ ) 1 K 0 S(z, ζ ) + ρ(ζ ) N+k   ∆ J 2   k ∏ s=1   ∂ ζ as Q b s (z, ζ ) ρ(ζ ) + ∂ ρ/∂ ζ a s Q b s (z, ζ ) ρ 2 (ζ )     ∆ J 3 f where ∆ J t = J t j=1 ∂ ∂ z i j + ∂ ∂ ζ i j with J 1 + J 2 + J 3 = J. Proposition 5.3. Let D z J = J j=1 ∂ ∂ z i j = ∂ J ∂ z i j ...∂ z i J , i j ∈ {1, . . . , n} be a derivative of order J, l > 0. Then D z J T K f is controlled by a sum of integrals Ω∩2V l K i,l (z, ζ )D ζ i f (ζ ), 0 ≤ i ≤ J, where D ζ i f is a derivative of f of order J -i and K i,l (z, ζ )   r-1 ∑ k=0 1 |z -ζ | 2(n-k)-1 ρ(ζ ) ρ(ζ ) + 1 K 0 S(z, ζ ) M k ∏ j=1 τ j (z, α) -2   1 ρ(ζ ) + 1 K 0 S(z, ζ ) i χ l (ζ ), with α = δ Ω (z) + d(z,

APPLICATION TO WEIGHTED BERGMAN PROJECTIONS

In view of theorems 2.2 and 2.3 we have: Proposition 6.1. Let d ∈ N * , p 0 ≥ 1, γ 0 γ 1 , (d -1)p 0 -1 < γ 0 ≤ γ 1 . There exists an operator T solving the ∂ -equation and ε > 0 such that for p ∈ [1, p 0 ] and γ ∈ [γ 0 , γ 1 ]:

(1) T maps continuously L p d δ γ Ω in L p+ε Proposition 6.3. Let D be a smoothly bounded convex domain of finite type. Let g the gauge of D, ρ 0 = g 4 e 1-1/g -1 and ω 0 = (-ρ 0 ) r with r a non negative rational number. Let P ω the weighted Bergman projection of D associated to the Hilbert space L 2 (D, ω 0 dλ ), dλ denoting the Lebesgue measure. Then for s ∈ N, p ∈ ]1, +∞[ and -1 < β < p (r + 1) -1, P ω 0 maps the Sobolev space L p s D, δ β ∂ Ω continuously into itself.

The following Proposition extends partially this result: Using Proposition 6.1 and the two previous Propositions, the proof is completely similar to the proof done in Section 4 of [START_REF] Charpentier | Weighted and boundary l p estimates for solutions of the ∂ -equation on lineally convex domains of finite type and applications[END_REF] based on the following comparison formula ϕP ω (u) = P ω 0 (ϕu) + Id -P ω 0 • A P ω (u) ∧ ∂ ϕ , where ω = ϕω 0 and A is an operator solving the ∂ -equation.

For d a nonΩ

  negative integer and p ∈ [1, +∞[, δ Ω being the distance to the boundary of Ω, we denote by L p d Ω, δ γ Ω , -1 < γ , the space of functions f such that, for any derivative D of order α, 0 ≤ α ≤ d, D f belongs to L p Ω, of the set of C ∞ functions with compact support in Ω. Moreover we denote by L p d,r Ω, δ γ Ω or simply L p d,r (δ γ ) the space of forms of degree r whose coefficients belong to r (δ γ ) the space of forms of degree r whose coefficients belong to L

  where ∂ * N is the canonical solution of the ∂ -equation derived from the theory of the ∂ -Neumann problem on pseudoconvex domains of finite type. By [CD18, Lemma 3.2] and Sobolev lemma we get (see [CD18, Lemma 3.3]):

  and satisfy the following estimates ([CD18, Lemma 3.6]):

  ζ ) and M large (N being large depending on J) and δ Ω denotes the distance to the boundary. Proof. Comes from Lemma 5.1 and Lemma 5.2. Lemma 5.5. Let p ∈ [1, +∞[, γ ∈ R, d ′ ∈ N and g ∈ C ∞ (Ω). Then under one of the two following condition(1) γ ≥ d ′ p -1 (2) g has compact support in Ω (i.e. g ∈ D(Ω))for ν > γd ′ p there exists a constant C ν such that g L p (δ ν Ω dλ ) ≤ C ν g L p d ′ (δ γ Ω dλ ) .Proof. Assume condition (1) satisfied. Then, by induction on i = 1, . . . , d ′ , Lemma 5.3 givesg L p d ′ -i (δ ν Ω ) ≤ C ν g L p d ′ (δ γ Ω ) for ν > γip.Assume now condition (2) satisfied. Remark first that the following Claim is an elementary consequence of Hölder inequality:Claim. Let p ∈ [1, +∞[ and η < p -1. Then for ν > ηp and any function h ∈ D(Ω), h L p (δ ν Ω dλ ) ≤ C ν h L p 1 (δ η Ω dλ ) .Then using the Claim and Lemma 5.3 the Lemma 5.5 is easily obtained by induction on i = 1, . . . ,d ′ : for ν > γip, g L p d ′ -i (δ ν Ω ) ≤ C ν g L p d ′ (δ γ Ω ) .Let us now finish the proof of Theorem 2.3. For the two first points of the theorem we use this Lemma (with d ′ = d) and Proposition 5.3 (recall ρ(ζ ) + 1 K 0 S(z, ζ ) δ Ω (ζ )).

  We use the operator T defined in (4.1) withN > 2 |γ 1 | + 2m(n + 2)+ 5n + d + 1.The following Proposition is a special case of [CDM15, Theorem 2.1]: Proposition 6.2. Let D be a smoothly bounded convex domain of finite type in C n . Let ρ be a smooth defining function of D. Let r ∈ R + , be a non negative real number, η ∈ C ∞ (D) be strictly positive and ω = η |ρ| r . Then, for any integer d, the weighted Bergman projection P Ω ω of the Hilbert space L 2 (Ω, ωdλ ) maps continuously the weighted Sobolev space L 2 d (Ω, ωdλ ) into itself. In [CDM14b, (1) of Theorem 1.1] the following result was proved:

Proposition 6. 4 .

 4 Let d ∈ N * . Let D be a smoothly bounded convex domain of finite type in C n . Let χ be any C ∞ non negative function in D which is equivalent to the distance δ D to the boundary of D and let η be a strictly positive C ∞ function on D. Let P ω be the (weighted) Bergman projection of the Hilbert space L 2 (D, ωdλ ) where ω = η χ r with r a non negative rational number. Then: (1) For p ∈ [2, +∞[ and -1 < β ≤ r, P ω maps the Sobolev space L p 1 D, δ β D continuously into itself. (2) If d ≥ 2, for p ∈ [2, +∞[ if r > d p -1 and d(p -1) -1 < β ≤ r, P ω maps continuously the Sobolev space L p d D, δ β D into itself.