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Toughness Properties of Arbitrarily Partitionable Graphs

Julien Bensmaila

aUniversité Côte d’Azur, CNRS, Inria, I3S, France

Abstract

Drawing inspiration from a well-known conjecture of Chvátal on a toughness threshold
guaranteeing graph Hamiltonicity, we investigate toughness properties of so-called arbi-
trarily partitionable (AP) graphs, which are those graphs that can be partitioned into
arbitrarily many connected graphs with arbitrary orders, and can be perceived as a weak-
ening of Hamiltonian and traceable graphs. In particular, we provide constructions of
non-AP graphs with toughness about 5

4 , i.e., in which, when removing the vertices of any
cut-set S, the number of resulting connected components is at most about 4

5 ∣S∣. We also
consider side related questions on graphs that can be partitioned arbitrarily into only a
few connected graphs (with arbitrary orders). Among other things, we prove that not all
1-tough graphs can always be partitioned into four connected graphs this way. As going
along, we also raise several other questions and problems of interest on the topic.

Keywords: arbitrarily partitionable graph; toughness; Hamiltonicity; split graph.

1. Introduction

We start with some definitions. For an n ≥ 1, we refer to a graph of order n as an
n-graph, and to a partition π = (λ1, . . . , λp) of n (i.e., λ1 + ⋅ ⋅ ⋅ + λp = n) as an n-partition.
Now, a realisation (V1, . . . , Vp) of an n-partition π = (λ1, . . . , λp) in an n-graph G is a
partition of the vertex set V (G) of G into p parts V1, . . . , Vp where Vi is a connected part
(i.e., G[Vi] is connected) of size λi for every i ∈ {1, . . . , p}. We now say G is arbitrarily
partitionable (AP for short) if all n-partitions are realisable in G, or, in other words, if G
can be partitioned into arbitrarily many connected graphs, regardless of their orders.

AP graphs have been introduced independently by Barth, Baudon, and Puech in [1],
and by Horňák and Woźniak in [23]. Since then, several aspects of AP graphs have been
investigated in literature, covering structural aspects, algorithmic aspects, and several vari-
ants. For more details, we refer the interested reader to several works on the topic, see e.g.
[2, 9, 13, 16, 24, 30], and, in particular, to the more recent of these investigations.

Among others, an interesting aspect lies in that AP graphs are quite connected to other
fundamental notions of graph theory. For instance, it can be noted that any realisation
of an n-partition (2, . . . ,2) or (1,2, . . . ,2) in an n-graph forms a perfect matching or a
quasi-perfect matching (i.e., a set of ⌊n/2⌋ pairwise disjoint edges). Another illustration
arises from the facts that every path is obviously AP and that adding edges to an AP
graph preserves APness, from which we deduce that any Hamiltonian or traceable graph
(i.e., admitting a cycle or a path traversing all vertices exactly once) is AP.

This latter fact is actually one of the main motivations behind our investigations in
the current work. Indeed, put differently, APness can be perceived as a weaker form of
Hamiltonicity and traceability, and, as such, an interesting direction is wondering whether
known sufficient conditions for Hamiltonicity/traceability can be weakened to APness. A
perfect illustration is the pioneer result by Marczyk in [27], stating that the AP property



holds in any connected n-graph admitting a (quasi-)perfect matching and satisfying that
the degree sum of any two non-adjacent vertices is at least n − 2 (thereby weakening to
APness a famous result of Ore from [29], stating that this last quantity being at least n−1
guarantees traceability, and that it guarantees even Hamiltonicity if it is at least n). Since
this result, several authors have provided such positive and negative results, showing that
some sufficient conditions for Hamiltonicity and traceability weaken to APness, while some
others do not. For instance, Marczyk’s original result was improved (to decreased bounds
on the degree sums) by Marczyk in [28], and by Horňák, Marczyk, Schiermeyer, and Woź-
niak in [22]. In [9], Bensmail provided a similar condition for APness in graphs where
the degree sum of any three pairwise non-adjacent vertices is large enough. On a different
line, Kalinowski, Pilśniak, Schiermeyer, and Woźniak proved in [24] that graphs with suf-
ficiently many edges are AP, thereby weakening another condition for Hamiltonicity and
traceability. In [13], Bensmail and Li considered other various conditions for Hamiltonicity
and traceability, including the square operation and forbidden induced patterns.

In this work, we explore, in the context of AP graphs, another studied aspect of Hamil-
tonian and traceable graphs, being the notion of graph toughness, which is a refinement
over the fundamental notion of graph connectivity. In brief, the toughness is a measure
of how disconnected (in terms of number of resulting connected components) a graph may
become upon removing some of its vertices. More formally, for a graph G, we denote by
c(G) the number of connected components of G. Now, a cut-set S ⊂ V (G) of G is a set of
vertices such that c(G−S) > 1, or, in other words, whose removal leaves G not connected.
Assuming now S is a cut-set of G, we define as τ(S) the quantity ∣S∣

c(G−S) , and as τ(G) the
toughness of G, being the smallest value of τ(S) over all cut-sets S of G. In particular, a
tough cut-set of G is a cut-set S such that τ(S) = τ(G). Last, we say G is t-tough for some
t ≥ 0 if we have t ≤ τ(G). Note that the toughness of every non-complete graph is well
defined (since the definitions above apply only for graphs admitting cut-sets), and that a
t-tough graph is also t′-tough for all t′ ≤ t. Also, a graph has toughness 0 if and only if it
is not connected; this apart, the toughness of a graph can be arbitrarily large.

The notion of graph toughness, as mentioned earlier, was introduced to express sufficient
conditions for Hamiltonicity and traceability. More precisely, it is Chvátal whom considered
this notion first, and raised that, perhaps, all tough enough graphs are Hamiltonian.

Conjecture 1.1 (Chvátal [17]). There is some t0 > 0 such that every t0-tough graph is
Hamiltonian.

As a first guess towards Conjecture 1.1, Chvátal asked whether all graphs with tough-
ness more than 3

2 are Hamiltonian, which was first disproved by Thomassen (see [14]). After
that, as Enomoto, Jackson, Katerinis, and Saito [19] proved that every 2-tough graph ad-
mits a 2-factor (i.e., disjoint cycles covering all vertices) and that, for every ε > 0, there is a
(2−ε)-tough graph without this property, it was believed that, perhaps, 2-tough graphs are
all Hamiltonian. Again, this was refuted by Bauer, Broersma, and Veldman, who proved
in [8] that for every ε > 0 there is a (94 −ε)-tough graph that is not traceable. This is where
the main investigations towards Conjecture 1.1 stand to date, although many related re-
sults (some of which will be recalled later on in this work, to guide our investigations) can
be found in literature, in particular for restricted graph classes.

Although graph toughness has not been considered as such in the context of AP graphs,
a few results and investigations actually deal with connectivity properties of these graphs,
and, as such, are not so distant from that field. In particular, since investigations on AP
trees (see e.g. [2]), it is known that removing a cut-vertex (i.e., a cut-set of size 1) from an
AP graph results in at most four connected components. This contrasts with more general,
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larger cut-sets, as Baudon, Foucaud, Przybyło, and Woźniak proved that removing a cut-
set of size at least 2 from an AP graph might result in a graph with arbitrarily many
connected components [6]. In the language of graph toughness, this implies τ(G) can be
arbitrarily close to 0, for an AP graph G. It was proved, however, that if one strengthens
the definition of AP graphs by a bit, then some of these phenomena do not hold any
more [3]. This very concern was studied further by other authors in the recent work [16].

In this work, we thus initiate the study of graph toughness in the very context of
AP graphs, regarding these graphs as a weaker form of Hamiltonian graphs. We start in
Section 2 by raising a few remarks on a well-known theorem of Tutte on perfect matchings,
from which we get to explaining why the most common proof arguments for proving non-
APness cannot be applied to construct non-AP graphs with “large” toughness. In that
section, we also get to introducing other results and problems related to Tutte’s Theorem,
which we think are of independent interest. From Section 3 on, we then focus on the
following straight analogue of Chvátal’s Conjecture 1.1:

Conjecture 1.2. There is some t∗ > 0 such that every t∗-tough graph is AP.

Of course, if Conjecture 1.1 was to be proved, then it would imply Conjecture 1.2 holds
too, since Hamiltonicity implies APness. In the same line as in the work [25] of Kratsch,
Lehel, and Müller, in Section 3 we start by investigating Conjecture 1.2 for split graphs. In
particular, we get to constructing non-AP split graphs with toughness tending to 5

4 . Using
that construction, we then get to exhibiting non-AP graphs with slightly larger toughness in
Section 4, through exploiting ideas of Bauer, Broersma, and Veldman from [8], that allowed
them to establish, assuming it holds, the best known lower bound on t0 in Conjecture 1.1
to date. On the way, we also observe that the very construction of Bauer, Broersma, and
Veldman of non-traceable graphs with toughness about 9

4 provides AP graphs. In Section 5,
we move to a slightly different problem, where all these questions are investigated in graphs
that are, in some sense, AP only for partitions into a few connected graphs. We finish off
in Section 6 with a few more questions and directions for further work on the topic.

2. Around Tutte’s Theorem for perfect matchings

Previous studies on AP graphs have shown that, in general, graphs are more likely to
not be AP because of partitions with spectrum1 of size 1, and in particular because of
partitions of the form (λ, . . . , λ) for λ ≥ 2 being small. A notable case is thus when λ = 2,
corresponding to perfect matchings. Although there are non-AP graphs having perfect
matchings, still, for these reasons, building non-AP graphs with certain properties is more
easily done through building graphs with these properties admitting no perfect matchings.

Unfortunately, this approach is not quite promising in our context, in which we strive
to build non-AP graphs with large toughness. This can e.g. be seen through the following
famous condition, due to Tutte, for graphs to admit perfect matchings.

Theorem 2.1 (Tutte [31]). A graph G with even order has a perfect matching if and only
if for every S ⊆ V (G) the graph G−S has at most ∣S∣ connected components with odd order.

From Tutte’s Theorem, we directly get that every graph of even order with sufficiently
large toughness admits perfect matchings. More precisely, note that a particular toughness
value is 1, as 1-tough graphs can more simply be perceived and defined as those graphs

1Following works of Ravaux on AP graphs [30], the spectrum of a partition is the set of its values.
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in which, when removing any k ≥ 1 vertices, we end up with a graph having at most k
connected components. In conjunction with Tutte’s Theorem, this yields:

Observation 2.2. Every 1-tough graph of even order admits a perfect matching.

Regarding earlier remarks, we thus get that, if one aims to build non-AP graphs with
large toughness, i.e., more than 1, then one has to consider graphs that are not AP because
of partitions different from (2, . . . ,2), while, generally speaking, admitting no realisation
of (2, . . . ,2) is a common reason why a non-AP graph is not AP.

Let us also add that Observation 2.2 is best possible, in the sense that, for every ε > 0,
there are (1 − ε)-tough graphs of even order with no perfect matchings [19].

In the next sections, we will exhibit non-AP graphs with toughness more than 1, and
this will be done by making sure there is some λ ≥ 3 such that these graphs cannot
be partitioned following (λ, . . . , λ). The main reasons why we focus on such partitions
generalise concerns raised above. In particular, note that, intuitively to the least, when
partitioning a graph following some partition π, there are more partition possibilities, and
thus more chances that a realisation exists, 1) the more distinct values π contains, and 2)
the larger the values of π are. For these reasons, we will give a special focus to partitions
(λ, . . . , λ) for some λ ≥ 3 being small (λ = 3 being thus the most promising case).

Due to these concerns, we wonder whether there is a way to generalise Tutte’s Theorem
from perfect matchings, thus to partition (2, . . . ,2), to any partition (λ, . . . , λ) with λ ≥
3. A problem is that building a realisation of (2, . . . ,2) is much more constrained and
different from building one of (λ, . . . , λ) for some λ ≥ 3, which makes unclear how a proper
generalisation should read. An attempt we suggest is based on the following interpretation
of one direction of Tutte’s Theorem. Let G be a graph and S be a cut-set of G. If C is a
connected component of G−S with odd order, then, in a perfect matching of G, it must be
that at least one vertex of C is matched to a vertex outside C, and, more precisely, by the
definition of a cut-set, this outside vertex must belong to S. From this, we get right away
that ∣S∣ must be at least the number of connected components with odd order of G − S.

For the sake of simplicity, let us focus on λ = 3 throughout the following explanations.
When considering realisations of (3, . . . ,3) in G, note that, if ∣V (C)∣ is not a multiple of 3,
then there must be at least one part X of size 3 containing both vertices in C and vertices
outside C. And this part X can be of multiple forms:

• if ∣X ∩ V (C)∣ = 1, then either

– X contains one vertex of C and two vertices of S, or

– X contains one vertex of C, one vertex of S, and one vertex from a connected
component of G − S different from C;

• if ∣X ∩ V (C)∣ = 2, then X contains two vertices of C and one vertex of S.

These arguments generalise naturally to any partition (λ, . . . , λ) with λ ≥ 3, though, obvi-
ously, the possibilities increase as λ rises, and a general description as above, involving the
order of C modulo λ, gets more and more tedious to establish properly (in particular, note
that, for large values of λ, any part containing vertices of C can contain multiple vertices
of S, and, for each connected component C ′ of G−S different from C, multiple vertices of
C ′). Still, there is an obvious, strong way of generalising one direction of Tutte’s Theorem
to partitions of the form (λ, . . . , λ) for any λ ≥ 2, which reads as follows.

Set λ ≥ 2. For a graph G with a cut-set S, let C(G,S,λ) be the following graph:
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• for every connected component C of G−S, if ∣V (C)∣ /≡ 0 mod λ, then we add a clique
KC of order ∣V (C)∣mod λ to the graph;

• we add a clique K of order ∣S∣ to the graph;

• we make all vertices of K universal; that is, for every connected component C of
G−S with ∣V (C)∣ /≡ 0 mod λ, we add to the graph all possible edges between vertices
of K and vertices of KC .

Note that ∣V (G)∣ ≡ ∣V (C(G,S,λ))∣mod λ; in particular, if ∣V (G)∣ is divisible by λ, then
so is ∣V (C(G,S,λ))∣. Now, by arguments above, it should be clear that the following
generalisation of one direction of Tutte’s Theorem holds:

Observation 2.3. Let λ ≥ 2, and G be a graph with order multiple of λ. If, for some
cut-set S of G, graph C(G,S,λ) admits no realisation of (λ, . . . , λ), then so does not G.

At this point, it remains unclear, however, whether the other direction of Tutte’s The-
orem can be generalised the same way. That is, we wonder whether, assuming a graph G
admits no realisation of some partition (λ, . . . , λ) for some λ ≥ 3, there is necessarily a cut-
set S of G such that C(G,S,λ) shares the same property. Although we were able to check
this for small graphs, proving this seems more demanding than proving Tutte’s Theorem.

Due to these thoughts, in the next sections we will also wonder about toughness thresh-
olds guaranteeing a graph admits a realisation of (λ, . . . , λ) for any λ ≥ 3. Indeed, as a
weaker version of Conjecture 1.2 one could also wonder about the following:

Conjecture 2.4. For every λ ≥ 3, there is some t−λ > 0 such that every t−λ-tough graph
admits a realisation of (λ, . . . , λ).

3. On the toughness of AP and non-AP split graphs

Recall that a graph G is a split graph if its vertex set can be partitioned into two sets
K,I such that K is a clique (i.e., G[K] is complete) and I is an independent set (i.e., G[I]
is empty). For convenience, we say the vertices of K are black and those of I are white.

In this section, we wonder about the toughness of AP split graphs. In particular, we
wonder about the maximum toughness of a non-AP split graph, and about a toughness
threshold above which a split graph is necessarily AP. These concerns are primarily mo-
tivated by the work [25] of Kratsch, Lehel, and Müller, in which they answered these
questions for Hamiltonicity (thereby understanding Conjecture 1.1 completely for split
graphs). In particular, they proved that every 3

2 -tough split graph is Hamiltonian, and
that, for every ε > 0, there exist non-Hamiltonian split graphs with toughness 3

2 − ε.
The former of these two results directly implies the following in our context.

Corollary 3.1. Every 3
2 -tough split graph is AP.

Regarding the latter result of Kratsch et al., it turns out that the construction of split
graphs they provide yields graphs that are traceable. Thus, contrarily to their former
result, their latter one does not hold as is for non-APness, and we thus have to come up
with another construction of non-AP split graphs with “large” toughness.

As mentioned in previous Section 2, one of the most common reasons why a graph
is not AP is because it admits no perfect matchings. However, as seen through previous
Observation 2.2, having toughness at least 1 guarantees the existence of perfect matchings.
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Figure 1: A split graph used to prove Theorem 3.3. The clique contains the black vertices, while the
independent set contains the white ones.

Thus, the main difficulty here is that we have to come up with graphs that are not AP
because of partitions different from (2, . . . ,2), which, in general, are easier to realise.

Before proceeding, let us mention en passant that, in the context of split graphs, the
toughness threshold of 1 for perfect matchings is actually best possible. For that, we first
need to consider the split graph depicted in Figure 1, which can be used as follows:

Observation 3.2. Any split graph G of even order containing the graph H in Figure 1
(so that the white vertices remain of degree 2) admits no perfect matching.

Proof. This follows from Theorem 2.1 since removing the six black vertices of H results in
seven connected components, all of which have odd order, namely 1. This implies G has a
cut-set S such that G − S has strictly more than ∣S∣ connected components of odd order;
by Tutte’s Theorem, we thus get that G has no perfect matching.

Now, for any k ≥ 1, consider the following construction of a split graph Wk. Start from
k + 2 disjoint copies H1, . . . ,Hk+2 of the graph H in Figure 1, then add all possible edges
joining black vertices from two distinct Hi’s, and, last, just add k universal (black) vertices
to the graph to get Wk. Let us denote by Q the clique formed by these k new vertices.
Note that Q and the black vertices of H1, . . . ,Hk+2 form a clique on k + 6(k + 2) vertices.
Actually, Wk is a split graph, the clique K containing Q and the 6(k + 2) black vertices of
H1, . . . ,Hk+2, and the independent set I containing the 7(k + 2) white (degree-2) vertices
of H1, . . . ,Hk+2. In particular, note that ∣V (Wk)∣ = 13(k + 2) + k = 14k + 26 is even.

This construction has the following properties:

Theorem 3.3. For every k ≥ 1, graph Wk admits no perfect matching, and thus is not AP.
Furthermore, τ(Wk) is non-decreasing and tends to 1 as k grows to infinity.

Proof. Assume, towards a contradiction, that, for some k ≥ 1, graph G = Wk admits a
perfect matching M . Since ∣Q∣ = k and Wk contains k + 2 copies H1, . . . ,Hk+2 of H (the
graph depicted in Figure 1), there must be i, j ∈ {1, . . . , k + 2} with i ≠ j such that no edge
of M consists both of a vertex of Q and of a vertex of Hi or Hj . So the graph G′ induced
by the vertices covered by the edges of M containing at least one vertex of Hi or Hj is
a split graph with even order, containing exactly two copies of H, namely Hi and Hj , in
which all white vertices have degree 2. In particular, this means the restriction of M to G′

is a perfect matching of G′. This stands as a clear contradiction to Observation 3.2; thus,
M cannot exist, and G cannot admit perfect matchings, a contradiction.

Now, for any k ≥ 1, consider a tough cut-set S of G =Wk. Since the vertices of Q are
universal, clearly S must contain Q. Now, focus on any copy Hi of H in G −Q. Since Hi
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contains six black vertices all of which have degree at least 7 (in G −Q), while all white
vertices have degree 2, and only black vertices are connected to the rest of G−Q, it should
be clear that, besides Q, set S must contain black vertices of Hi only. Now, from Hi’s
point of view, it can be observed that removing any black vertex cannot isolate any white
vertex, removing any two black vertices isolates at most one white vertex, removing any
three black vertices isolates at most three white vertices, removing any four black vertices
isolates at most four white vertices, removing any five black vertices isolates at most five
white vertices, and removing all six black vertices isolates all seven white vertices. Besides,
in any case but the last one, some black vertices of Hi are not removed. Also, note that it
is not possible to remove black vertices so that exactly six white vertices get isolated.

We now get to distinguishing whether S contains all black vertices of G.

• If S contains all black vertices, then G − S contains all white vertices. Then

τ(S) = ∣S∣
c(G − S) =

k + 6(k + 2)
7(k + 2) = 7k + 12

7k + 14

which tends to 1 as k grows to infinity.

• If S does not contain all black vertices, then G − S necessarily contains a connected
component over all black vertices (and all white vertices adjacent to these) not in
S. For every i ∈ {0, . . . ,6}, we denote by ni the number of Hi’s of which S contains
exactly i black vertices. Then ∣S∣ = k + n1 + 2n2 + 3n3 + 4n4 + 5n5 + 6n6, and by
arguments above we have

τ(S) = ∣S∣
c(G − S) ≥

k + n1 + 2n2 + 3n3 + 4n4 + 5n5 + 6n6

n2 + 3n3 + 4n4 + 5n5 + 7n6 + 1
.

If the right-hand term of the inequality is at least 1, then we have our conclusion.
Otherwise, it means n6 > k + n1 + n2 + 1, implying, since there are k + 2 Hi’s, that S
must actually contain all black vertices of G. This is a contradiction.

This concludes the proof.

We now consider split graphs that are not AP because of partitions different from
(2, . . . ,2). This is done through the following construction of a graph Gk. For any k ≥ 1,
start from 4k + 3 (black) vertices v1, . . . , v4k+3 forming a clique, and, to each vi of these
4k + 3 vertices, attach a pendant (white) vertex wi. Last, add k universal (black) vertices
u1, . . . , uk to the graph (being our Gk), forming a clique Q on k vertices. Note that
∣V (Gk)∣ = 2(4k + 3) + k = 9k + 6 is a multiple of 3. Also, Gk is a split graph with clique K
containing Q and all vi’s, and with independent set I containing all wi’s.

Theorem 3.4. For every k ≥ 1, graph Gk admits no realisation of (3, . . . ,3), and thus is
not AP. Furthermore, τ(Gk) is non-decreasing and tends to 5

4 = 1.25 as k grows to infinity.

Proof. We claim that, for any k ≥ 1, graph G = Gk admits no realisation of π = (3, . . . ,3).
Indeed, towards a contradiction, assume this is wrong, and let R be a realisation of π in
G. Note that any part of R containing some ui can contain at most two vi’s and wi’s.
Similarly any part containing some vi can contain at most two other vi’s, and at most one
pair {vj ,wj} for some j ≠ i. Since there are only k ui’s but 4k + 3 vi’s and wi’s, we deduce
there are at least 2k + 3 pairs {vi,wi} such that vi and wi do not belong to the same part
X as some vertex of Q. In particular, any such part X is of the {wi, vi, vj}, where j ≠ i,
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since, in G − Q, vertex wi is only adjacent to vi, while vi is only adjacent to wi and all
other vi’s. For the same reasons, since N(wj) = Q ∪ {vj}, this implies wj must be covered
by a part containing a vertex of Q. Since there are at least 2k + 3 parts X of the form
above, and the parts containing the vertices of Q cover only 3k vertices of G (k of which
being those in Q), we deduce there must be at least one particular part X = {wi, vi, vj}
such that the part Y containing wj does not contain any vertex of Q. Thus, G[Y ] cannot
be connected, which contradicts that R is a realisation of π. Thus, G is not AP.

Let now S be any tough cut-set of G = Gk, for some k ≥ 1. Note that S must contain
Q, since the ui’s are universal. Now, since the wi’s have degree 1 in G −Q, note that S
cannot contain any wi, and so, besides ui’s, set S contains only vi’s.

• If S contains x ∈ {1, . . . ,4k + 2} vertices in {v1, . . . , v4k+3}, then note that c(G−S) =
x + 1 since G − S has a connected component containing all vi’s (and their adjacent
wi’s) not in S. Precisely, we have

τ(S) = ∣S∣
c(G − S) =

k + x
x + 1 ,

which function, regardless of k, is non-increasing and thus reaches its minimum for
x = 4k + 2, for which value we have

τ(S) = k + (4k + 2)
(4k + 2) + 1 =

5k + 2
4k + 3

which tends to 5
4 as k grows to infinity.

• If S contains all 4k + 3 vi’s, then G − S consists in all wi’s being isolated, and thus
c(G − S) = 4k + 3. Hence,

τ(S) = k + (4k + 3)
4k + 3 = 5k + 3

4k + 3

which, again, tends to 5
4 as k grows to infinity.

This concludes the proof.

4. General graphs, and the construction of Bauer, Broersma, and Veldman

Before proceeding with with our main concern in this section, we first observe we can
generalise previous Theorem 3.4 to get a similar result (for non-split graphs) regarding
other partitions with spectrum of size 1, i.e., of the form (λ, . . . , λ) for any λ ≥ 3. In
particular, upcoming Theorem 4.1 provides a little step towards Conjecture 2.4.

For some fixed λ ≥ 3 and any k ≥ 1, consider the following graph Gλ
k . Start from

2k(λ − 1) + λ vertices v1, . . . , v2k(λ−1)+λ forming a clique, and, to each vi, attach a new
clique Wi on λ − 2 vertices (that is, Wi is a clique of order λ − 2, and we have all possible
edges between vi and vertices of Wi). Last, add k universal vertices u1, . . . , uk to the graph,
forming a clique Q, to achieve the construction of Gλ

k . Note that

∣V (Gλ
k)∣ = (λ − 1)(2k(λ − 1) + λ) + k = λ(2k(λ − 1) + λ − 2k − 1) + 3k.

In particular, ∣V (Gλ
k)∣ is divisible by λ whenever k is.
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Theorem 4.1. For every λ ≥ 3 and k ≡ 0 mod λ, graph Gλ
k admits no realisation of

(λ, . . . , λ), and thus is not AP. Furthermore, τ(Gλ
k) is non-increasing and tends to 2λ−1

2λ−2 > 1
as k grows to infinity.

Proof. The proof is essentially the same as that of Theorem 3.4. For k being a multiple of
λ, the order of any G = Gλ

k is a multiple of λ. Suppose a realisation of (λ, . . . , λ) in G exists.
Then at most k connected parts can contain the ui’s, and these at most k parts can contain
vertices of at most k(λ − 1) sets of the form Wi ∪ {vi} for some i ∈ {1, . . . ,2k(λ − 1) + λ}.
Assume, w.l.o.g., this is the case for all such Wi ∪ {vi}’s with index in {1, . . . , k(λ − 1)}.
Then, there can be at most k(λ − 1) indexes i /∈ {1, . . . , k(λ − 1)} such that vertices of
Wi ∪ {vi} belong to some connected part together with some vj with j ∈ {1, . . . , k(λ − 1)}.
Indeed, note that for every such i, we have that all vertices of Wi must belong to the same
part as vi (since vi is a cut-vertex in G −Q), and thus, apart from vertices in Wi ∪ {vi},
the part must contain exactly one other vertex, being some other vj . Still, w.l.o.g., we
can assume all i’s with this property lie in {k(λ − 1) + 1, . . . ,2k(λ − 1)}. We now deduce
that the graph G′ induced by the Wi’s and the vi’s with index i ≥ 2k(λ − 1) + 1 admits a
realisation of (λ, . . . , λ), which is impossible since all vi’s are cut-vertices in G′, and the
Wi’s have size λ−2. So G cannot admit a realisation of (λ, . . . , λ), and thus cannot be AP.

Regarding the toughness of G = Gλ
k (for some λ ≥ 3 and k ≡ 0 mod λ), again we have

that any cut-set S must contain the k vertices of Q. Now, regarding G −Q, again if we
assume S is tough, then there is not point having any vertex of some Wi in S. So, besides
Q, we have that S only contains vi’s. If S contains all vi’s, then

τ(S) = k + 2k(λ − 1) + λ
2k(λ − 1) + λ = k(2λ − 1) + λ

k(2λ − 2) + λ,

which tends to 2λ−1
2λ−2 as k grows to infinity. Now, if S contains only x vi’s for some x ∈

{1, . . . ,2k(λ− 1)+λ− 1}, then, again, the worst-case scenario is when x = 2k(λ− 1)+λ− 1,
in which case

τ(S) = k + 2k(λ − 1) + λ − 1
2k(λ − 1) + λ = k(2λ − 1) + λ − 1

k(2λ − 2) + λ

which again tends to 2λ−1
2λ−2 as k grows to infinity.

We now move to our main concern in this section. Namely, we consider, in our context,
the following construction introduced in [8] by Bauer, Broersma, and Veldman (building
upon previous ideas from [7]), from which they established one of the most significant
results towards Conjecture 1.1 to date. Let ℓ ≥ 1 and m ≥ 1 be two positive integers. For
a graph H with two vertices x and y, the graph G(H,x, y, ℓ,m) is obtained as follows:

• start from m disjoint copies H1, . . . ,Hm of H;

• then, assuming that, for every i ∈ {1, . . . ,m}, the copies of vertices x and y in Hi

are denoted xi and yi, add all possible edges between xi’s and yi’s (that is, any xi
becomes adjacent to every other xj and every yj , including yi, and vice versa);

• last, add ℓ universal vertices to obtain G(H,x, y, ℓ,m).

Bauer et al. proved that, provided H, x, y, ℓ, and m satisfy some properties, we can infer
that G(H,x, y, ℓ,m) is not Hamiltonian, and sometimes not even traceable, all the while
having large toughness. In particular, for the graph L depicted in Figure 2 (a) (for which,
throughout, we deal with its vertices using the terminology from the figure), they proved:
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Figure 2: Two graphs introduced in [8]. One of their main properties of interest is that, for each of the
two graphs, there is no Hamiltonian path starting and ending in the two white vertices x and y.

Theorem 4.2 (Bauer, Broersma, Veldman [8]). For every ℓ ≥ 2 and m ≥ 1, we have

τ(G(L,x, y, ℓ,m)) = ℓ + 4m
2m + 1 .

If m ≥ 2ℓ + 3 then G(L,x, y, ℓ,m) is not traceable, while if m ≥ 2ℓ + 1 then G(L,x, y, ℓ,m)
is not Hamiltonian. So, there are non-traceable graphs with toughness tending to 9

4 .

It seems legitimate to wonder whether the construction of Bauer et al. brings something
in the context of AP graphs. We prove it is not the case as is; indeed:

Theorem 4.3. For every ℓ,m ≥ 1, graph G(L,x, y, ℓ,m) is AP.

Proof. Assume ℓ and m are fixed, and set G = G(L,x, y, ℓ,m). We denote by L1, . . . , Lm

the m copies of L in G, and, for every i ∈ {1, . . . ,m}, we denote by xi, ai, bi, ci, di, ei, fi, yi
the copies of x, a, b, c, d, e, f, y, respectively, in Li. Also, we denote by K the clique formed
by the ℓ universal vertices of G. Last, we set n = ∣V (G)∣.

Let π be an n-partition. Our goal is to build a realisation R of π in G. For that,
we will proceed along the following ideas. First, we will pick consecutive connected parts
along L1, . . . , Lm following that order, in the sense that if, when treating some Li, we miss
vertices to form a connected part, then we will also pick vertices from the next copy Li+1.
To that aim, we will make sure, when adding the last vertices of Li and the first ones of
Li+1 to a part S, that the vertices of Li in S induce a connected graph, the vertices of
Li+1 in S induce a connected graph, and that S contains both yi and xi+1 to guarantee the
vertices of both Li and Li+1 in S, altogether, induce a connected graph. Eventually, once
all vertices of L1, . . . , Lm are exhausted, we will then use freely the vertices of K to form
connected parts, which can be done at will since K is a clique of universal vertices.

For technical reasons, we first need to take care of the possible connected parts of size 4
of R, which we do as follows. Note that L admits realisations of (4,4); for instance, one
can consider the two connected parts {x, b, a, c} and {d, e, f, y}. Starting from i = 1, as
long as R requires at least two more connected parts of size 4, we then pick two connected
parts of size 4 in Li this way, and then proceed with Li+1. Thus, we can assume we get to
the point where all vertices of L1, . . . , Li−1 are covered by connected parts of size 4, and
either i − 1 = m and it now suffices to partition K arbitrarily to get the desired R, or it
remains to partition Li, . . . , Lm and at most one connected part of size 4 must be picked.

When starting dealing with Li, the last part S we have built when treating Li−1 might
be missing vertices. We denote by δ ≥ 0 the number of such vertices missing in S (to reach
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the desired size). As described above, in case δ ≥ 1 we assume that S contains yi−1 so that
Li contains a vertex, xi, adjacent to a vertex in S. In case δ = 0, we set S = {}.

We now consider a few cases:

• If δ = 0, then every connected part built earlier on has reached its desired size. Note
that P = (ai, ci, bi, xi, di, fi, ei, yi) is a Hamiltonian path of Li. In that case, we then
pick as many remaining connected parts as possible following P , with the additional
care that if there remains exactly one connected part of size 4 to be picked, then
we pick it first. This apart, we can pick any remaining connected parts along P .
In particular, the last vertices of P might be part of a partial connected part S,
that contains yi as desired, missing δ ≥ 1 vertices. In case the last connected part is
actually complete, when treating Li+1, we would thus have S = {} and δ = 0.

• If δ ≥ 1, then we add the following vertices to S.

– If δ = 1, then we add xi to S, thereby forming a connected part (due to the edge
yi−1xi and the fact that S −{xi} induces a connected graph by hypothesis) with
the desired size. Note then that P = (ai, ci, bi, di, fi, ei, yi) forms a Hamiltonian
path of what remains of Li. We can then pick remaining connected parts along
P , with the last part, containing yi, being possibly partial.

– If δ = 2, then we add xi and bi to S to complete the part. We now consider the
other connected parts that remain to be picked; in particular, note that it is not
possible, since δ = 2, that there remains one of size 4 to pick.

∗ If there remains at least one part of size 1 to be picked, then we pick {ai}.
Then P = (di, fi, ei, ci, yi) is a Hamiltonian path in what remains to be
picked in Li, and we can again pick remaining connected parts along P , the
last one, containing yi, being possible partial.

∗ If there remains at least one part of size 2 to be picked, then we pick {ai, ci}.
Then P = (di, fi, ei, yi) is a Hamiltonian path of what remains of Li, and
we can proceed as in the previous case.

∗ If there remains at least one part of size 3 to be picked, then we pick
{di, ei, fi}. Then P = (ai, ci, yi) is a Hamiltonian path covering the other
vertices of Li, and again we can be done.

∗ If there remains at least one part of size x at least 5 to be picked, then we
pick the first x vertices of (ai, ci, di, ei, fi, yi) to form a connected part. In
case we had x = 5, then we start picking another remaining connected part
from S = {yi} and proceed as earlier. If we had x = 6, then, actually, the
connected part has reached the desired size, and we continue the process
with Li+1 from an empty part. If we had x ≥ 7, then the resulting connected
part is partial, and will be completed later on.

– If δ ≥ 3, then we add to S the first vertices of (xi, bi, ai, di, fi, ei, ci, yi), following
that order, until either S reaches the desired size, in which case we then continue
picking remaining connected parts along the ordering, or we attain a connected
part containing yi, which, if partial, will be completed later on. In all cases, it
can be checked that all parts built along that process in Li are indeed connected.

When adding ym to a connected part S, we can then add, if necessary, any vertices of
K to S so that it reaches the desired size. If, then, other connected parts remain to be
picked, then it suffices to pick arbitrary parts with the desired sizes covering the remaining
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vertices of K, to achieve the construction of R. Thus, π is indeed realisable in G, and from
this we can conclude that G is indeed AP.

Bauer, Broersma, and Veldman also employed the previous construction G(H,x, y, ℓ,m)
with the building block in Figure 2 (b) as H to establish that, for every ε > 0, there exist
chordal non-traceable graphs with toughness 7

4−ε (see [8]). Through a similar proof scheme
as in the proof of Theorem 4.3, similarly we can prove these graphs are always AP. Thus,
here as well, unfortunately we do not get anything new regarding our concerns.

Despite Theorem 4.3, it is possible to use the construction of Bauer, Broersma, and
Veldman, together with one of our constructions from Section 3, to improve Theorem 3.4
by a bit. Our upcoming result relies on the following:

Lemma 4.4. Let H be a graph with ∣V (H)∣ ≡ 0 mod 3 admitting no realisation of (3, . . . ,3).
Then, for every ℓ ≡ 0 mod 3 and m ≥ 2ℓ + 1, and any two vertices x and y of H, graph
G(H,x, y, ℓ,m) admits no realisation of (3, . . . ,3), and thus is not AP.

Proof. Set G = G(H,x, y, ℓ,m) for some ℓ ≡ 0 mod 3, m ≥ 2ℓ + 1, and any two vertices x
and y of H. As in the definition, we denote by H1, . . . ,Hm the m copies of H in G, by zi
the copy of any vertex z of H in the ith copy Hi in G, and by K the clique of G formed
by the ℓ universal vertices. Note that we have ∣V (G)∣ ≡ 0 mod 3.

Towards a contradiction to the claim, assume G admits a realisation R of (3, . . . ,3).
Since m ≥ 2ℓ + 1, all parts of R contain three vertices each, and ∣K ∣ = ℓ, note that there is
necessarily an i ∈ {1, . . . ,m} such that no vertex of Hi belongs to a connected part together
with a vertex of K. Since Hi admits no realisation of (3, . . . ,3) but the order of Hi is a
multiple of 3, this means there must be two distinct connected parts, X and Y , of R,
such that xi ∈ X and yi ∈ Y , and X contains one or two vertices (not in K) outside Hi,
while similarly Y contains one or two vertices (not in K) outside Hi. More precisely, since
∣V (Hi)∣ ≡ 0 mod 3, it must be, say, that xi is the only vertex of Hi in X, while Y contains
two vertices of Hi, one being yi and the second one being some y′i with y′i /∈ {xi, yi}, such
that yiy

′

i is an edge (since Y is a connected part, and the unique vertex of Y outside Hi

cannot be a neighbour of y′i by construction). Then, due to the edge xiyi, we have that
{xi, yi, y′i} is a connected part of size 3, and, together with the other parts of R covering
the other vertices of Hi, we get that Hi, and thus H, admits a realisation of (3, . . . ,3), a
contradiction. Thus, G cannot admit a realisation of (3, . . . ,3).

Now, we have:

Theorem 4.5. If ℓ ≥ 3 with ℓ ≡ 0 mod 3, then G(H,w1,w2, ℓ,2ℓ + 1), where H denotes
the graph Gℓ from Theorem 3.4, admits no realisation of (3, . . . ,3), and thus is not AP.
Furthermore, we have

τ(G(H,w1,w2, ℓ,2ℓ + 1)) =
10ℓ2 + 8ℓ + 1
8ℓ2 + 6ℓ + 2 >

5

4
.

Proof. Set G = G(H,w1,w2, ℓ,2ℓ + 1), where, in H, recall w1 and w2 are two vertices of
degree 1 in the graph obtained upon removing all ℓ universal vertices of H. The first
part of the statement follows directly from Lemma 4.4, since, by Theorem 3.4, there is no
realisation of (3, . . . ,3) in H, as ℓ ≡ 0 mod 3 and m is basically 2ℓ + 1 in the current case.
Thus, we can now focus on proving the second part of the statement.

We denote by K the clique formed by the ℓ universal vertices of G. Also, for every
i ∈ {1, . . . ,2ℓ+1}, we denote by Hi the ith copy of H in G, and by Ki the clique formed by
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the ℓ universal vertices of Hi. For every vertex z of H (being either some uj , vj , or wj),
we here denote by zi its copy in Hi for every i ∈ {1, . . . ,2ℓ + 1}.

Let S be a tough cut-set of G. Clearly, K ⊂ S. For every i ∈ {1, . . . ,2ℓ + 1}, we set
Si = S ∩ V (Hi) and si = ∣Si∣. For every i ∈ {1, . . . ,2ℓ + 1}, we also denote by Ci the set of
the connected components of G − S that contain only vertices of V (Hi) ∖ {wi

1,w
i
2} (i.e.,

containing neither wi
1 nor wi

2) and set ci = ∣Ci∣. Then

τ(G) = τ(S) =
ℓ +

2ℓ+1

∑
i=1

si

r +
2ℓ+1

∑
i=1

ci

,

where r = 0 if wi
1,w

i
2 ∈ S for every i ∈ {1, . . . ,2ℓ + 1}, and r = 1 otherwise. In particular,

τ(G) = τ(S) ≥
ℓ +

2ℓ+1

∑
i=1

si

1 +
2ℓ+1

∑
i=1

ci

.

Recall that H contains exactly 4ℓ + 3 vi’s and wi’s. In particular, since, for every i ∈
{1, . . . ,2ℓ+1}, the largest independent set of Hi −{wi

1,w
i
2} has size 4ℓ+2 (achieved by the

set containing wi
3, . . . ,w

i
4ℓ+3 and, say, vi1), then ci ≤ 4ℓ+2. Now, for similar arguments as in

the proof of Theorem 3.4, it can be noted that, if ci ≥ 1, then si ≥ ℓ+ ci. Indeed, recall that
any cut-set of H must contain the ℓ universal vertices, and that, essentially, having any vi
in the cut-set yields a connected component containing wi only (assuming wi is not also
part of the cut-set). A particular case here is when ci = 4ℓ+2, which requires Si to contain
Ki, {vi3, . . . , vi4ℓ+3}, and {wi

1,w
i
2}; hence, even in that case, si ≥ ℓ+4ℓ+3 > ℓ+4ℓ+2 = ℓ+ ci.

However, we note that if there is an i such that ci = 4ℓ + 2 (and thus si ≥ 5ℓ + 3), then
we can obtain a cut-set of G tougher than S, a contradiction, by, locally, just replacing Si

with another cut-set Si of Hi achieving si = 5ℓ + 1 and ci = 4ℓ + 1. For these reasons, we
can actually assume further all ci’s are at most 4ℓ + 1.

Now, since si ≥ ℓ + ci for every i ∈ {1, . . . ,2ℓ + 1}, we have

τ(G) = τ(S) ≥
ℓ +

2ℓ+1

∑
i=1

si

1 +
2ℓ+1

∑
i=1

ci

≥
ℓ + ℓ(2ℓ + 1) +

2ℓ+1

∑
i=1

ci

1 +
2ℓ+1

∑
i=1

ci

.

Since ℓ ≥ 3, note that this lower bound on τ(S) is a non-increasing function of
2ℓ+1

∑
i=1

ci and

thus it reaches its miminum when ci = 4ℓ + 1 for every i ∈ {1, . . . ,2ℓ + 1}. Thus

τ(G) = τ(S) ≥ ℓ + ℓ(2ℓ + 1) + (2ℓ + 1)(4ℓ + 1)
1 + (2ℓ + 1)(4ℓ + 1) = 10ℓ2 + 8ℓ + 1

8ℓ2 + 6ℓ + 2 .

Let now S∗ be the set of vertices of G containing K, all Ki’s, and, for every i ∈
{1, . . . ,2ℓ + 1} and j ∈ {3, . . . ,4ℓ + 3}, vertex vij . Then, it can be checked that G − S∗
contains a connected component containing all wi

1’s, all wi
2’s, all vi1’s, and all vi2’s, while

vertex wi
j is isolated for every i ∈ {1, . . . ,2ℓ + 1} and j ∈ {3, . . . ,4ℓ + 3}. Thus, ∣S∗∣ =

ℓ + ℓ(2ℓ + 1) + (2ℓ + 1)(4ℓ + 1), while c(G − S∗) = 1 + (2ℓ + 1)(4ℓ + 1). So,

τ(G) ≤ τ(S∗) = ℓ + ℓ(2ℓ + 1) + (2ℓ + 1)(4ℓ + 1)
1 + (2ℓ + 1)(4ℓ + 1) = 10ℓ2 + 8ℓ + 1

8ℓ2 + 6ℓ + 2 ,
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and we hence have

τ(G) = 10ℓ2 + 8ℓ + 1
8ℓ2 + 6ℓ + 2

as claimed. Since ℓ ≥ 3, this is more than 5
4 .

5. Partitioning into few connected parts

For any k ≥ 1, we say an n-graph G is k-AP if every n-partition (λ1, . . . , λk) containing
exactly k elements is realisable in G. Now, still for any k ≥ 1, we say G is AP+k if for
any set (v1, . . . , vk) of k distinct vertices of G, and for any n-partition π = (λ1, . . . , λp)
into p ≥ k parts, there is a realisation (V1, . . . , Vp) of π in G such that vi ∈ Vi for every
i ∈ {1, . . . , k}. Last, for any k, k′ ≥ 1 with k ≥ k′, we say G is k-AP+k′ if, for any set
(v1, . . . , vk′) of k′ distinct vertices of G, and for any n-partition π = (λ1, . . . , λk) into k
parts, there is a realisation (V1, . . . , Vk) of π in G such that vi ∈ Vi for every i ∈ {1, . . . , k′}.
In brief, k-APness means we can partition a graph into k connected graphs (regardless
of their orders), AP+kness means we can partition into at least k connected graphs even
under the requirement that k of these must each contain a given vertex, and k-AP+k′ness
is a combination of these two properties (we can partition a graph into a fixed number k
of connected graphs, a fixed number k′ of which must each contain one particular vertex).

The introduction of these notions was mostly motivated by perhaps one of the most fun-
damental results when it comes to connected partitions, being the following result proved
independently by Győri and Lovász, which, following our terminology, reads as follows:

Theorem 5.1 (Győri [21], and Lovász [26]). For every k ≥ 1, k-connectedness and k-
AP+kness are equivalent notions.

Note that k-AP+k′ness is a particular case of k-APness and of AP+k′ness. AP+kness
was introduced and studied more recently in a few works [4, 5], and similarly for k-
APness [18]. Complexity aspects behind all these notions were also investigated e.g. in [11].

k-APness being a weaker form of APness, one could as well wonder about Conjecture 1.2
for this notion. This yields the following refinement:

Conjecture 5.2. For every k ≥ 1, there is some t∗k > 0 such that every t∗k-tough graph is
k-AP.

Note that, similarly as for Conjecture 1.2, even for more restricted Conjecture 5.2, we
mainly get into the problem of constructing non-AP graphs with toughness more than 1,
which, again, is not so obvious, recall our arguments from Section 2. Still, in the context
of Conjecture 5.2, Theorem 5.1 here yields a positive answer for all values of k:

Observation 5.3. Conjecture 5.2 holds for every k ≥ 1.

Proof. We claim that, for any k ≥ 1, Conjecture 5.2 holds for t∗k = k
2 . Indeed, let G be a

k
2 -tough graph. It is well-known that, for any t > 0, any t-tough graph is 2t-connected (as
the existence of any cut-set of size at most 2t − 1 would imply the toughness is at most
2t−1
2 < t, a contradiction). Thus, G is k-connected, and, by Theorem 5.1, we have that G

is k-AP (and even k-AP+k), as desired.

Given that Conjecture 5.2 actually holds, a next question could be to determine, for
any k ≥ 1, the smallest t∗k > 0 such that every t∗k-tough graph is k-AP. Due to the nature of
the next results below, we choose to state that question formally as follows.
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Question 5.4. For every k ≥ 1, what is the smallest t∗k ≥ 0 such that every graph G with
toughness more than t∗k, i.e., τ(G) > t∗k, is k-AP?

From now on, every mention to some parameter t∗k is with respect to Question 5.4, not
with respect to Conjecture 5.2. By arguments in the proof of Observation 5.3, we get that
t∗k < k

2 for every k ≥ 1. Going farther in general does not seem that obvious. For small
values of k ≥ 1, however, we can at least raise a few remarks. First, clearly, a graph is
1-AP if and only if it is connected; thus, t∗1 = 0. Regarding 2-APness, by Observation 5.3
we have t∗2 < 1. Here as well, we can provide an exact value:

Theorem 5.5. We have t∗2 = 1
2 .

Proof. Indeed, let G be a graph with τ(G) > 1
2 . If G is 2-connected, then G is 2-AP by

Theorem 5.1. Otherwise, G has a cut-vertex, which, when removed from G, yields at least
two connected components. Thus, in that case, τ(G) ≤ 1

2 , a contradiction.

Regarding t∗3 , we note that K2,4, the complete bipartite graph with parts of size 2 and
4, has toughness 2

4 =
1
2 and admits no perfect matching (realisation of (2,2,2)); thus t∗3 ≥ 1

2 .
On the other hand, Observation 5.3 tells us t∗3 < 3

2 . In a private communication, Woźniak
suggested that, perhaps, all 1-tough graphs are 3-AP, and thus that t∗3 < 1 (see [12] for an
earlier mention), which, we think, is an interesting question on its own.

Conjecture 5.6 (Woźniak, see e.g. [12]). All 1-tough graphs are 3-AP; that is, t∗3 < 1.

We are not able to come up with arguments answering Conjecture 5.6 in this work, but,
in the same line as some results we provided earlier, we can prove that, in general, 1-tough
graphs are not 4-AP. Regarding Question 5.4 above, this is sort of similar to considering
the other direction, being to wonder, for some t > 0, what is the largest k ≥ 1 such that
t-tough graphs are k-AP. Thus, for all 1-tough graphs, we prove they are “at best” 3-AP.

Theorem 5.7. There are arbitrarily large 1-tough graphs that are not 4-AP; that is, t∗4 ≥ 1.

Proof. For any k ≥ 0, consider the following construction. Start from five disjoint cliques
K1, . . . ,K5 on 4k + 3 vertices. For every i ∈ {1, . . . ,5}, select any one vertex of Ki, and
denote it by ui. Now turn {u1, . . . , u5} into a clique, that is, add all possible edges between
the ui’s. Last, add a universal vertex v, and let us call G the resulting graph.

Set n = ∣V (G)∣; note that n = 5(4k+3)+1 = 20k+16. Thus, π = (5k+4,5k+4,5k+4,5k+4)
is an n-partition. We claim π is not realisable in G. Assume this is wrong, and suppose G
admits a realisation R = (V1, V2, V3, V4) of π. As a general observation, note that if some
Vi contains some uj , then, because ∣Vi∣ = 5k + 4 > 4k + 3 (recall k ≥ 0), the vertices of Kj

must be covered by Vi and the part containing v, which two parts might be the same.
Now, since there are five ui’s, note that at least one part, say V1 w.l.o.g., must contain

at least two of the ui’s. If V1 contains at least three ui’s, say u1, u2, and u3 w.l.o.g.,
then, by a remark above, note that all vertices of K1, K2, and K3, must be covered by at
most two Vi’s (V1 and another Vi containing v). However, these at most two parts cover
2(5k+4) = 10k+8 vertices of G, while, in total, v and the vertices of K1, K2, and K3 form
a set of 3(4k + 3) + 1 = 12k + 10 > 10k + 8 vertices (recall k ≥ 0). Thus, this is impossible;
so, the Vi’s must contain at most two of the ui’s each.

We get a similar conclusion if two of the Vi’s each contain two of the ui’s, say V1 contains
u1 and u2 while V2 contains u3 and u4 without loss of generality. Indeed, then, all vertices
of K1, K2, K3, and K4, and v, must be covered by at most three parts. At most three
parts cover at most 3(5k + 4) = 15k + 12 vertices of G, while, here, they must cover at least
4(4k + 3) + 1 = 16k + 13 > 15k + 12 (recall k ≥ 0). Thus, again, this is impossible.
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So, we must have, say, that V1 contains u1 and u2, that V2 contains u3, that V3 contains
u4, and that V4 contains u5. Then, since ∣V2∣ = ∣V3∣ = ∣V4∣ = 5k+4 > 4k+3, and because each
of V2, V3, and V4 contains only one distinct of the ui’s, we deduce that v must belong to all
of V2, V3, and V4, which is another contradiction. Indeed, note that any Vi containing only
one of the ui’s must contain v, which does not comply with the fact that, in the present
case, all of V2, V3, and V4 have this property.

Thus, G cannot admit any realisation of π, and G is not 4-AP.

It remains to prove that G is 1-tough. Consider S, any tough cut-set of G. Since v is
universal, we must have v in S. Now, since the independence number of G−v is 5, we have
c(G−S) ≤ 5. For every x ∈ {2,3,4,5}, clearly the minimum number of vertices of G−v that
must be removed from G − v to get x connected components is x − 1 (one should remove
exactly x − 1 of the ui’s). Thus, regardless of x, we have τ(G) = τ(S) = 1+(x−1)

x = 1.

6. Conclusions and perspectives

In this work, we have initiated the study of the toughness of AP and non-AP graphs,
being motivated mainly by Chvátal’s Conjecture 1.1 and by the fact that AP graphs can
be perceived as a weakening of Hamiltonian graphs. In a natural way, we thus raised Con-
jecture 1.2 as an adapted version of Conjecture 1.1. As a first step towards that conjecture,
we proved Theorems 3.4 and 4.5, stating, in brief, that the threshold t∗ hypothesised in
Conjecture 1.2, if it exists, is at least 5

4 . We also studied side questions throughout, for
instance generalisations of Tutte’s Theorem in Section 2, and, in Section 5, through Con-
jecture 5.2 and Question 5.4, a restriction of Conjecture 1.2 to graph partitions into a
limited, constant number of connected parts only.

Most of the results we provided in the current work actually stand as very first steps
towards more general questions. In particular, there remain many aspects of interest which
could deserve to be studied further; for instance:

• One of our main results, Theorem 4.5, relies on a construction of Bauer, Broersma,
and Veldman from [8], combined together with a graph with certain properties we
exhibited through Theorem 3.4. More precisely, the main properties of interest of the
latter graph is that it admits no realisation of (3, . . . ,3) and has “large” toughness.
Through the same ideas, it would probably be possible to improve upon Theorem 4.5
by coming up with examples of graphs admitting no realisation of (3, . . . ,3) and
having larger toughness. Let us mention that, using computer programs, we were not
able to spot any small graph (with at most 12 vertices or so) having these properties.
These concerns could thus be investigated further on.

• Quite similarly, it can be noticed that Lemma 4.4 could be generalised to graphs
admitting no realisation of some (λ, . . . , λ) for any λ ≥ 3. While we feel confident, for
the reasons exposed in Sections 2 and 3, that, towards improving upon Theorem 4.5,
one should consider graphs that cannot be partitioned following (3, . . . ,3), perhaps
this refinement could be worth investigating further too. Recall that this would also
improve upon Theorem 4.1 we provided. On a different note, although constructing
graphs with no perfect matchings and large toughness is not interesting enough for
our concerns, as explained in Section 2, perhaps one way to go could be to consider
partitioning graphs following partitions with spectrum of size more than 1. Regarding
all the arguments we provided, perhaps one should consider partitions with spectrum
{2,3}, or, in other words, partitions into paths of order 2 and 3.
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• Regarding split graphs, note that we are still far from understanding Conjecture 1.2
for these. For now, we roughly know that, for these graphs, the lowest t∗ lies some-
where in between about 5

4 (Theorem 3.4) and 3
2 (Corollary 3.1). We believe tightening

these bounds closer could be an interesting challenge. Perhaps a significant result
one could invoke here, is the fact that the APness of split graphs relies solely on the
realisability of partitions with spectrum lying in {1,2,3}, as proved by Broersma,
Kratsch, and Woeginger [15]. That is, if a split n-graph G is not AP, then there is
an n-partition containing only 1’s, 2’s, and 3’s that is not realisable in G.

• To progress towards Conjecture 1.2, one could also consider other classes of graphs
that have been considered in the context of Conjecture 1.1. For instance, [20] is a
recent reference with an up-to-date listing of classes of graphs for which Conjecture 1.1
is known to hold. Although this means Conjecture 1.2 also holds for these classes of
graphs, one could wonder whether these results can be improved even further in our
context. Following our investigations in Section 3, one could more particularly wonder
about superclasses of split graphs, such as chordal graphs and 2K2-free graphs, which
have received quite some attention in this context.

• Note that an interesting aspect behind the constructions provided by Kratsch, Lehel,
and Müller in [25] and by Bauer, Broersma, and Veldman in [8], which we also got to
employ in ours, is the use of universal vertices, which are very important in the defi-
nition of graph toughness since these vertices necessarily belong to all cut-sets. In the
context of AP graphs, the behaviour of universal vertices has also been investigated,
notably in [10], wherein it was proved, among other things, that deciding whether
an n-partition is realisable in an n-graph with about a third universal vertices is NP-
complete. This leads to the more general question of whether this problem remains
NP-complete for graphs with “large” toughness. Note that this general problem was
indeed proved to be NP-complete when restricted to several classes of graphs, see e.g.
[11] and the pointers there, all of which seem to have very low toughness.

• Regarding the thoughts from Section 2, we wonder whether the way we proposed to
generalise Tutte’s Theorem from perfect matchings to partitions of the form (λ, . . . , λ)
is plausible. Recall that, in Observation 2.3, we indeed proposed one generalisation
of one of the two directions. Although the other direction might seem a bit strong,
we were not able to come up with any counterexample. So we wonder whether it
also holds, or, more generally speaking, whether Tutte’s Theorem indeed generalises
to this setting. If this were to be the case, then it is likely that this could have
implications on the study of AP graphs, for the reasons provided in Sections 2 and 3
(in particular, due to the fact that, very generally speaking, if a graph is not AP, then
it is likely that it is because of a non-realisable partition with spectrum of size 1).
Let us, here, also remind about Conjecture 2.4.

• Last, we think our related investigations in Section 5 are of interest, in particular due
to their connection with Theorem 5.1 of Győri and Lovász. One appealing question is
Conjecture 5.6, which we believe might be true. This apart, more general Question 5.4
could also be worth studying further.
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