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2Laboratoire de Physique des Solides, Université Paris Sud 11, UMR CNRS 8502, F-91405 Orsay, France

3Institut Universitaire de France, 103 Boulevard Saint-Michel, F-75005 Paris, France
4University College London, Department of Chemistry,

20 Gordon Street, London, WC1H 0AJ, United Kingdom
(Dated: September 26, 2018)

We present a method to build magnetic models for insulators based on high-temperature expan-
sions by fitting both the magnetic susceptibility and the low temperature specific heat data. It is
applied to the frustrated magnet kapellasite (Cu3Zn(OH)6Cl2) with the J1-J2-Jd -Heisenberg model
on the kagome lattice. Experimental data are reproduced with a set of competing exchange energies
closed to J1 = −12 K, J2 = −4 K and Jd = 15.6 K, where Jd is the third neighbor exchange en-
ergy across the hexagon. Strong constrains between these exchange energies are established. These
values confirm the results of B. F̊ak et al. (Phys. Rev. Lett., 109, 037208 (2012)) regarding the
location of kapellasite in the cuboc2 phase of the Heisenberg model. The quality and limits of this
modeling are discussed.
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FIG. 1. (Color online) Kagome plane of kapellasite with Cu2+ S = 1/2 spins (blue), a non magnetic Zn2+ ion (green), and
exchange interactions (red).

I. INTRODUCTION

There are different routes for building magnetic models for insulators. The simplest and most reliable one is the
modeling of inelastic modes (spin waves) as detected by neutron scattering, if any. In the case of a spin liquid, the
inelastic spectrum is a continuum and may have very few distinct features when it is gapless. On the other hand, ab
initio calculations are notoriously difficult and strongly depend on the nature of the approximations. The only tool
left is a modeling through fits of thermodynamic quantities to high temperature (HT) series. It is well known that
the extraction of the Curie-Weiss temperature from susceptibility data is quite delicate and requires a large range of
high-temperature experimental data. In the case of frustrated magnets, this is insufficient to provide some insight
in the low-temperature physics.1,2 In fact, as we will show in this paper, the fit of the susceptibility alone, even in a
large range of temperatures, does not settle the model and should be complemented by a fit of the magnetic specific
heat. This paper aims at unveiling the different difficulties that can be encountered in this process and can provide,
with a given complex example, the case of kapellasite, a general method to tackle this problem.

Kapellasite3,4 is a polymorph of herbertsmithite and shares its chemical formula Cu3Zn(OH)6Cl2. As for her-
bertsmithite, kapellasite fails to develop any long-range magnetic order down to 20 mK, displays a continuum of
inelastic excitations, and is, thus, an interesting spin-liquid candidate.5 But contrary to herbertsmithite,6–9 the high-
temperature susceptibility of this recently discovered metastable compound points to a ferromagnetic Curie-Weiss
field of about 10 K, whereas, the low-temperature behavior does not show dominant ferromagnetic correlations down
to the lowest temperature: This observation is a characteristic of competing interactions. This compound is, thus,
a delicate benchmark for any modeling, but it is also a very precious one as we know, from neutron-scattering data,
it has very well defined and specific low-temperature short-range spin-spin correlations. Therefore, the results of the
high temperature modeling can be immediately questioned through the low-temperature neutron data.5

While kapellasite has the same chemical formula as herbertsmithite, the two are not isostructural. In kapellasite,
the coupling between the kagome planes occurs only via very weak O-H-Cl hydrogen bonds.4 Kapellasite is, therefore,
remarkably two dimensional. A first theoretical description of kapellasite, which is deep in the Mott phase, is the
Heisenberg Hamiltonian on the perfect kagome lattice,

H =
∑
〈i,j〉α

Jα Si · Sj , (1)

where the exchange integrals Jα are defined in Fig. 1. Due to the geometry of the exchange paths, J3 and Jd are
different and Jd is expected to be larger than J3 by an order of magnitude.10 We will, thus, limit our analysis to the
pure J1-J2-Jd model. We further neglect both the effects of disorder and of an eventual Dzyaloshinskii-Moriya (DM)
interaction.

The spin-1/2 HT series of magnetic susceptibility X and specific heat CV with the J1-J2-Jd parameters have been
computed up to order 9 and are given in the Supplemental Material.11

The paper is organized as follows. In Sec. II, the magnetic susceptibility X is fitted to experimental data providing
strong constraints on the coupling constants. In Sec. III, we show how to use the low-temperature CV data to further
refine these constraints. Sections II and III are organized similarly. A quality factor is defined to measure the quality
of the fits, whereas technicalities are reported in the appendices, and we finish with the physical conclusions to be kept
in mind when considering the properties of the model. In the Conclusion, we discuss the consequences of neglecting,
at this stage, the chemical disorder in the kagome plane and Dzyaloshinskii-Moriya interactions.
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II. DESCRIBING X (T )

The dc susceptibility was measured in a commercial Quantum Design MPMS-5S super conduction quantum-
interference devoice (SQUID) magnetometer. It does not diverge at low temperature and coincides with the NMR local
probe data indicating that the measured macroscopic susceptibility is intrinsic. The experimental data are given as a
list of points {Tk,X exp

k }. Fitting the data to a Curie-Weiss law X (T ) ' C/(T − T0) leads to C = 0.429(2) cm3 K/mol
and T0 = 9.5± 1 K, where T0 is interpreted as the Curie-Weiss temperature. In the range of temperatures of interest,
X T/C ' 1, thus, suitable for fitting.

We define the HT-series expansion of the magnetic susceptibility XHT,

XHT(T )T

C
= 1 +

n∑
i=1

Pi(J1, J2, Jd)β
i, (2)

where β = 1/T and Pi is a homogeneous polynomial of order i and n is the highest order at which the series is known.
The Curie-Weiss temperature is defined as θ = P1(J1, J2, Jd) and, for the kagome lattice, θ = −J1−J2−Jd/2. These
polynomials are given in the Supplemental Material11 up to order n = 17,12 10, 11, and 9 for the J1 (M100), J1-J2
(M120), J1-Jd (M10d) and J1-J2-Jd (M12d) models, respectively.

In order to account for the uncertainties in the number of spins and the temperature independent Van Vleck and
diamagnetic susceptibilities, we introduce two parameters A (close to 1) and B and define a least mean square error
as

ZX =
1

ε2NT

NT∑
k=1

[
A
XHT(Tk)Tk

C
+BTk −

X exp
k Tk
C

]2
, (3)

where NT is the number of experimental measurements, Tk ≥ Tmin and ε = 0.0015 is on the order of the experimental
uncertainties on XT/C. One could then minimize ZX with respect to the parameters {J1, J2, Jd, A,B}.

Using Padé approximants of the truncated series allows extension of the fits to significantly lower temperatures
and the definition of Eq.3 is extended to ZX ,PPA by replacing the HT polynomial by the various physical Padé
approximants (PPAs) (see the definition in Appendix A).

In the present approach, the best set of parameters is searched among that having the largest number of Padé
approximants providing a “good fit” of the experimental data. We, thus, define a measure QX of the fit quality as

QX =
∑
{PPA}

M (ZX ,PPA) , (4)

where the sum runs over the PPAs and M(x) is a measure function chosen to be close to 1 for x < 1 and to vanish
rapidly for x > 1 to discard bad PPAs. We use

M(x) =
1

1 + x8
. (5)

A “good” (respectively, “bad”) PPA contributes 1 (respectively, 0) to QX , thus, higher is the QX , better is the fit.
The choice of Tmin: If Tmin is too high (Tmin > 25 K), almost all PPAs coincide with the HT polynomial, and the

experimental data do not strongly constrain the parameters of the model. As Tmin decreases, the constraint becomes
stronger, but the PPAs start to deviate from each other, and the quality of the approximation becomes questionable.
This is seen in the function QX (Tmin), which decreases sharply around some Ts: In the following Tmin is chosen just
above Ts.

We look for the set {J1, J2, Jd, A,B} maximizing QX . The evaluation of the linear parameters A and B at fixed
{J1, J2, Jd} is explained in Appendix B. Unfortunately, the remaining parameters cannot be obtained from a mini-
mization algorithm because QX is not continuous (the number of PPAs depends on the J ’s). On the other hand, as
the number of parameters is reduced, the quality function QX can be evaluated on grids, and after some trials, the
main minima are eventually found.

The pure kagome model M100 is compatible with the experimental data with ferromagnetic J1 ∼ −12 K, A = 1.037,
B = −1.2× 10−4 K−1 but only for T > 70 K.

Then, we study models M120 and M10d. Figures. 2(a) and 2(b) show QX for models M120 and M10d, respectively,
whereas Figs. 2(c) and 2(d) show all PPAs at the best points of (a) and (b), respectively. Note that, in the present
method, QX goes rapidly from 0 to some plateau. The size of the plateau determines the uncertainties of the fits and
depends directly on ε. The fits are of better quality for model M10d with a lower Tmin. This is not because the series
is known at a higher order but because M10d leads to a better fit of the experimental data around the maximum of
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FIG. 2. (Color online) (a) and (b) Fit quality QX as defined by Eq. (4) with ε = 0.0015 for the two models (a) J1-J2 and (b)
J1-Jd with Tmin = 18.5 and Tmin = 17.5 K, respectively. Contour levels are at integer values. The color scale allows the direct
comparison between different models: It is proportional to QX/n, where n is the HT-series order. The best fits are for the
highest value of QX (thus, in red). The parameters at the best points of (a) and (b) are given in the Supplemental Material.11

(c) and (d) Comparison with experiment for these best points of (a) and (b), respectively. All PPAs at order (c) n = 10 (d)
n = 11 are shown, and d indicates the degree of the denominator for each PPA (see Appendix A for the PPA’s definition). Only
good PPAs, thick lines in (c) and (d), are used to compute QX in (a) and (b), respectively. The thick vertical line indicates
Tmin.
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XT . Note that, for these two models, J1 is ferromagnetic whereas J2 and Jd are antiferromagnetic. In both cases,
the precision on J2/J1 and Jd/J1 is an order of magnitude better than that on J1.

With the full model (M12d), we have looked for the solutions at fixed J1 between −30 and 30 K. We often find two
domains of high QX . In a three-dimensional plot of QX versus J1, J2, and Jd, the domains of high quality fits (say
QX > 6) fall into a strongly squeezed torus with J1 between −24 and 12 K (QX ∼ 0 for J1 outside this interval). Cuts
of these domains at fixed J1 are shown in Fig. 3(a). Note that, despite the lower order of the M12d-HT series, these
results agree very well with those of models M120 and M10d (Fig.2). The sets of optimal parameters are plotted on
the classical phase diagram of the J1-J2-Jd model13 for ferromagnetic and antiferromagnetic J1 in Figs. 3(b) and 3(c),
respectively. The best fits appear in various phases of the classical phase diagram nearby the ferromagnetic phase but
never in the ferromagnetic phase itself. As quantum fluctuations stabilize antiferromagnetic phases and do not change
the energy of the ferromagnet, the ferromagnetic phase of the quantum model is expected to have a smaller extent
than the classical one, and we are fully confident that all solutions found here fall in an antiferromagnetic quantum
phase. But X alone is insufficient to determine in which antiferromagnetic phase kapellasite is.

We finish this section with comments on the two parameters A and B. The quantity A−1 in Eq. (3), which measures
the uncertainty on C takes values on the order of a few percent in agreement with experimental uncertainties. The
sum of the Van Vleck and diamagnetic contributions to susceptibility is measured by B and is about −10−4K−1 which
is of the order of expected values.

III. DESCRIBING CV (T )

Throughout this paper, the specific heat stands for the dimensionless specific heat per spin [CV ≡ CV /(NkB)].

It has a spin and a phonon contribution, Cspin
V and Cphonon

V , respectively. At high temperatures, the leading term

of Cspin
V decreases as J2

CV
/T 2, where J2

CV
is a positive quadratic form of the coupling constants {Ja}, here JCV =

[3/8(J2
1 + J2

2 + J2
d/2)]1/2, i.e., at least, ' 10 K according to the results found in the previous section. On the other

hand, at low temperatures, the Cphonon
V starts as (T/TD)3, where TD is a Debye temperature. When JCV is much

smaller than TD, say as for helium-3,14 both terms can be handled independently. A quick analysis of Cphonon
V reveals

that TD ∼ 170 K. Thus, between 10 and 100 K, both contributions are mixed together and we will focus on the fit of
CV on the low-temperature data below 10 K.

In Fig. 4 we show that fits of CV /T
2, at the lowest available temperature, approach to a constant 0.075(3) K−2,

compatible with a 2D-antiferromagnetic ground state and the solutions found in the previous section. Assuming this
fit extrapolates to T = 0 and following a method based on sum rules12,15 (see Appendix C), we calculate Cspin

V /T per
spin for the various models found in the previous section and compare it to experimental data in Fig. 5. If none of
these models agrees exactly with the experimental data, only those corresponding to J1 between −14 and −6 K have
a maximum at the right position. So, the position of the CV /T downturn definitively excludes correlations of the q0
type and favors the cuboc2 type described in Messio et al.13

But, the inset of Fig. 5 also shows that some entropy is clearly missing in all cases above 10 K. We interpret the
data as follows: A large percentage of the spins (∼ 87%, see below) is described by a pure model J1-J2-Jd below
∼ 3 K whereas the remaining ones are supposed to be frozen in this low-temperature range and account for the missing
entropy at larger temperatures (5−50 K). Assuming the phonons and this non described part are negligible at low T ,

we, thus, set Cexp
V = Cspin

V below T = 3 K, where Cspin
V is represented with PPA, Cspin

V,PPA, as explained in Appendix C.

Experimental data are given as a list of points {Tk, Cexp
V,k }. As in the previous section, we introduce a quality factor

QCV as:

QCV =
∑
{PPA}

M(ZCV ,PPA) (6)

ZCV ,PPA =
1

NT

∑
Tk<3K

[
DCspin

V,PPA(Tk)− Cexp
V (Tk)

εTk

]2
(7)

where M is a measure function [see Eq. (5)], ε = 0.0025 is the uncertainty on CV /T , and NT is the number of
experimental points in the sum. The parameter D accounts for both mass uncertainty and possible missing entropy
and is evaluated as explained in Appendix B.
Cspin
V,PPA depends on the unknown ground state energy per spin e0.16 Appendix D describes how e0 is evaluated

using an another quality factor. As a consequence, computing QCV is much more demanding and less stable and the
figures QCV (J1, J2, Jd) present several spurious discontinuities. In the domain of interest, keeping the good PPAs to
compute e0 and QCV removes most of these discontinuities. Figure 6 shows, at J1 = −12.4 K, the results for QX ,
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FIG. 3. (Color online) Regions of highest-quality fits of the susceptibility (same color code as in Fig. 2, Tmin = 17.5 K and
ε = 0.002). Various cuts of these regions are displayed at fixed J1 (see text). Numbers near each cut indicate the J1 value.
Symbols [(only indicative in (a)] describe the nature of the order parameter of the classical phase in the corresponding range
of parameters.13 (a) gives a global view of the results of QX . (b) precisely locates these regions of high-quality fits in the
classical phase diagrams for ferromagnetic J1 and (c) for antiferromagnetic J1. The parameters at the best points of each cut
of (a) are given in the Supplemental Material11. In (a), the black parallelogram on the cut-J1 = −12 K, visible by zooming it,
summarizes the uncertainties on the final best point found at the end of Sec. III.
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FIG. 4. (Color online) Low-temperature behavior of the kapellasite specific heat. Points are experimental data, and the lines
are polynomial fits of degree 1 (respectively 2) of the data for T < 0.9 K (respectively T < 2 K).
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FIG. 5. (Color online) Comparison with experiments of (a) Cspin
V /T and entropy (b) Sspin(T ) =

∫ T

0
dT Cspin

V /T for various
parameters of model M12d. The dotted line stands for experiments, the dot-dashed line stands for phonons; full (cuboc2),
dotted (

√
3 ×
√

3), and dashed (q0) lines stand for models in the middle of the domains found in the previous sections. The
complete sets of parameters are given in the Supplemental Material,11 and only the values of J1 are reported in the legend. In
the “q0 domain” of Fig. 3, all curves are very similar so only one has been kept in this plot. In the “

√
3 ×
√

3 domain,” for
J1 > 2, most of the curves (not shown here) continue to shift to higher temperatures.

QCV and QX +QCV . The choice of axis, Jd/J1 and (J2 + Jd)/J1, replaces the strongly squeezed domain of high QX
(see Fig.3) into a more compact one. The high-Q domains are different for X and CV and may eventually overlap
as shown in Fig. 6(c). Choosing a threshold for QX +QCV determines the domain of validity of the overall fit. The
plateaus around the maxima being surrounded by sharp walls, the determination of the best-parameter range is rather
independent of the threshold. Repeating the process for various J1’s, in Figure 6(d), we show the overall constraints
on the parameters where the best fits of X and CV are found. This figure shows that two parameters, say J1 and Jd,
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can be understood by viewing the band of high QCV (b) entering the domain of QX > 0 (a) from the right at J1 ∼ −10 K and
gliding to the left as J1 decreases.
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FIG. 7. (Color online) Comparison with experiments for J1 = −12, J2 = −4 and Jd = 15.6 K. (a) Magnetic susceptibility
with A = 1.027, B = −10−4 K−1, and Tmin = 16.5 K [thick vertical line, see Eq. (3)]. (b) Specific heat with D = 0.863 and
e0 = −15.674 K. The vertical line stands for Tmax [see Eq. (7)].

are defined with a larger uncertainty than the rather well defined ratio (J2 + Jd)/J1. The results are summarized as:

J1 = −12.0(8) in K

Jd = 15.6(9) + 0.5 (J1 + 12) in K (8)

J2 + Jd
J1

= −0.97(1)− 0.03 (J1 + 12)

Figure 7 shows the comparison of both XT and CV /T at the center of the best domain, i.e., J1 = −12, Jd = 15.6,
and J2 = −4 K. The uncertainties on {J2, Jd} are well represented by the red part of the cut at J1 = −12 K of Fig.
3(a) or 3(b), visible by zooming it.
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IV. CONCLUSION

We have fitted the spin contribution of the magnetic susceptibility and specific heat experimental data with a
spin-1/2 J1-J2-Jd Heisenberg model on the kagome lattice (see Fig. 1). In contradiction to the ab initio calculations
of Janson et al.,10 the nearest-neighbor coupling is ferromagnetic. This is at variance with herbertsmithite where the
nearest neighbor interaction is strong and antiferromagnetic. This can be traced back to the Cu-µ3OH-Cu-bonding
angle being ∼ 13◦ smaller in kapellasite.4,17 The isostructural compound Haydeeite Cu3Mg(OH)6Cl2, also has a
ferromagnetic first neighbor interaction but is in the ferromagnetic domain.4,18 This is not the case for kapellasite
where the J2 and Jd exchange couplings compete to form a non magnetic compound.

The spin susceptibility is relatively easy to reproduce and imposes strong correlations of J1, J2 and Jd. All solutions
stay in anti-ferromagnetic domains of the classical phase diagram, but different phases remain potential candidates.13

The main distinctive features of the specific heat data are the low-T downturn in CV /T at about 2 K, characteristic
of the competitive exchange couplings and a clear T 2 dependency excluding a ferromagnetic ground state. The peak
strongly constrains the parameters. The best domain for both the magnetic susceptibility and the specific heat is
obtained for J1 ∼ −12 K, a small ferromagnetic J2 ∼ −4 K and a large antiferromagnetic Jd ∼ 15.6 K [Eq. (8)]. These
parameters predict the system to have cuboc2 correlations as found independently by neutron-scattering experiments.5

These competitive exchange energies give a ferromagnetic behavior of the magnetic susceptibility at high temperatures
and an antiferromagnetic one at low temperatures.

However, the agreement between experiment and theory is not yet as good as a quick glance at Fig. 7 would suggest.
There is about 14% of missing entropy in our description [D = 0.863 in Eq. (7), whereas, the mass uncertainty is of
only about a few percent]. As it is improbable that this missing entropy will be found at ultralow temperatures below
our present measurements, it must be released at intermediate temperatures between 5 and 20 K, where we have not
succeeded to fit the full specific heat variations with this spin model and phonon contributions.

Disorder might be invoked to explain this difficulty. In fact, the actual chemical formula of the synthesized com-
pound, determined with neutron powder diffraction,4 is (Cu0.73Zn0.27)3(Zn0.88Cu0.12)(OH)6Cl2 with 27% Zn on the
Cu sites of the kagome lattice and 12% Cu on the hexagonal Zn site. In the classical model, this concentration of Zn
on the kagome sites is not enough to kill the long-range cuboc2 correlations, the threshold being at about 40%.19 The
pure quantum model is certainly softer, and the nature of its ground state is still an open question. Heuristically, the
presence of vacancies or extra spins can induce a priori two phenomena: either the manifestation of weakly coupled
local spin oscillations (the so-called “free spins”) or the freezing of singlets. The“free impurity spins” would show up
in spin susceptibility in differences between the bulk SQUID measurements of the magnetization and the local NMR
data. As no such phenomenon has been observed in this compound in the range of the present experiments, we do
not believe that it would help in understanding the results of the fits. The second possible (quantum) phenomena is
a partial freezing of isolated singlets along diagonal Jd bonds (recall that Jd is the largest antiferromagnetic energy
in this compound ∼ 15.6 K). These singlets would not show up in the specific heat at temperatures lower than a
fraction of Jd, explaining the D constant ∼ 0.87 needed to fit the specific heat data at temperatures lower than 3 K.
At higher temperatures, the liberation of these spins, through thermal excitations of the local singlets, would explain
that the spin susceptibility measurements and fits above 17 K give the correct amount of spins in the sample. A better
description of this phenomenon is out of the scope of the present approach, but could perhaps be explored with exact
diagonalizations.

In the present paper, DM interactions have been neglected. In fact, the lack of an inversion center on the magnetic
bounds allows for DM interactions of spin-orbit origin. In the cuprates, these couplings are usually estimated on the
order of 1/10 of the super exchange couplings, and in herbertsmithite, they were measured on the order of a few
percent.20 In herbertsmithite, the influence of this small coupling is emphasized by the presence of a nearby quantum
critical point.6,21,22 The situation in kapellasite is quite different: Whereas neutron scattering in herbertsmithite is
essentially featureless23,24 the experimental evidence of short-range cuboc2 correlations in kapellasite is strong,5 and
the results of the present analysis independently point to the same conclusion: The J2 and Jd parameters locate the
system in the “cuboc2 domain,” far away from any critical point (the cuboc2 ferro transition is a strong first order
transition25). Extending the present fit to take Dzyaloshinskii-Moriya interactions into account would slightly change
the exchange parameters but would not move the system away from the present phase. With these caveats in mind,
the present model is the best-effective model that we are able to build.

Acknowledments: We are greatly indebted to our collaborators, first of all, R. Colman and A. Wills who synthesized
this compound and brought it to our attention.3,4 The inelastic neutron-scattering data of B. F̊ak et al. was the second
considerable step in catching our attention for kapellasite. Extensive discussions with them during the two years of
this collaboration have been invaluable. C.L. acknowledges very interesting discussions with O. Janson.
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Appendix A: PPA

For fixed values of the coupling constants J1, J2 and Jd, we evaluate the order-n HT polynomial Pn(x), around

x = 0, of the magnetic susceptibility XHT
n (β) or of the specific heat Cspin,HT

V,n (e) where e is the energy per spin. From

a polynomial Pn(x) of degree n, we calculate the (n + 1)-rational fractions Nn−d(x)/Dd(x), having the same series
as Pn(x) around x = 0, with the degree d of D running from 0 to n: They are the so-called Padé approximants of
Pn(x). From this list, we discard all the Padé approximants which have zeros either in N or D in the whole interval of

variation of x, i.e., in [0,∞] for XHT
n (β) and [e0, 0] for Cspin,HT

V,n (e), where e0 is the ground state energy. The remaining
ones are called the PPA. By varying the coupling parameters, the number of PPAs may eventually change. Thus,
all functions built on the sum over the PPAs may be discontinuous. Unfortunately, this prevents using minimization
powerful methods. This is the price to pay when using PPAs.

Appendix B: DETERMINATION OF PARAMETERS A AND B OF QX

From Eq. (4) or Eq. (6), we have

QX =
∑
PPA

M(ZX,PPA) (B1)

ZX,PPA =
1

ε2NT

∑
k

[AFPPA(Tk) +BTk − F exp
k ]

2
, (B2)

where X = X or CV and B is 0 for CV and the measure function is defined in Eq. (5). F stands for XT/C if X = X
and CV /T if X = CV . The derivatives of QX with respect to A and B are as follows:

∂QX
∂A

=
∑
{PPA}

M′(ZX,PPA)
∂ZX,PPA

∂A

=
2

ε2NT

∑
{PPA}

M′(ZX,PPA)

×
∑
k

[AFPPA(Tk)−BTk−F exp
k ]FPPA(Tk) (B3)

∂QX
∂B

=
2

ε2NT

∑
{PPA}

M′(ZX,PPA)

×
NT∑
k=1

[AFPPA(Tk)−BTk − F exp
k ]Tk, (B4)

where M′(x) is the derivative of M(x). We look for A and B that cancel out these derivatives. If the weights
M′(ZX,PPA) are independent of A and B, these equations are linear and are easily solved. Assuming the weights are
smooth functions of A and B, we solve this problem iteratively. We choose, as initial point, the A and B solutions of
the best PPA [highest M(ZX,PPA)],

APPA =
1

∆

(
T F exp T FPPA − T 2 FPPA F exp

)
(B5)

BPPA =
1

∆

(
FPPA T FPPA F exp − T F exp F 2

PPA

)
(B6)

∆ =T FPPA
2 − T 2 F 2

PPA (B7)

where X means the mean value over the set of temperatures. This first estimation of A and B is then used to compute
the weights M′(ZX,PPA) in Eqs. (B3) and (B4), and new A and B are given by

A =
1

∆

(〈
T F exp

〉 〈
T FPPA

〉
−
〈
T 2
〉 〈
FPPA F exp

〉)
(B8)

B =
1

∆

(〈
FPPA T

〉 〈
FPPA F exp

〉
−
〈
T F exp

〉 〈
F 2
PPA

〉)
(B9)

∆ =
〈
T FPPA

2
〉
−
〈
T 2
〉〈

F 2
PPA

〉
(B10)
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where
〈
X
〉

means the average value over the set of temperatures and over the PPA with the weights M′(ZX,PPA).
This procedure is iterated until convergence by calculating the new weights at the new A and B. The convergence is
quick and a couple of iterations are sufficient for a relative precision of 10−5 on A and B.

Appendix C: PADÉ APPROXIMANT FOR CV

Here, we recall how to evaluate the specific heat at all temperatures using sum rules.12,15 For Heisenberg models on
two-dimensional lattices, as no phase transitions are expected at finite temperatures, the thermodynamic functions
are continuous. The entropy per spin versus the energy per spin s(e) is more suitable than CV (T ) as it is constrained
to start at the ground-state energy e0 with an entropy s = 0 and end at e = 0 and s = ln 2 at infinite temperatures.
Moreover, this is a monotonic increasing function β = 1/T = s′(e) with negative curvature CV = −s′(e)2/s′′(e).

From the HT-series expansion of CV (T ) =
∑n
i=2 aiβ

i (see Supplemental Material11 for the expression of ai versus
J1, J2, Jd) with β = 1/T , we obtain the HT series of s(T ) and e(T ) as

s(T ) = ln 2−
∫ ∞
T

dT ′
Cspin
V (T ′)

T ′

= ln 2−
n∑
i=2

ai
i
βi +O(βn+1) (C1)

e(T ) =−
∫ ∞
T

dT ′ Cspin
V (T ′)

=−
n−1∑
i=2

ai+1

i
βi +O(βn) (C2)

where we use s(T =∞) = ln 2 and e(T =∞) = 0. The HT-series expansion of s(e),

s(e) =

n∑
i=0

bie
i (C3)

is obtained order by order.

We assume a low-temperature power law for CV (T ),

CV (T )T→0 ' (C0T )α. (C4)

Then, s(e) ∝ (e− e0)1/µ for e around e0 where e0 is the ground-state energy and µ = 1 + 1/α. We define an analytic
function in the interval [e0, 0],

G(e) =
s(e)µ

e− e0
. (C5)

The HT-series expansion for G(e) is obtained from

G(e) = − (ln 2)µ

e0

[
n∑
i=0

Fi(µ)
P (e)i

i!

][
n∑
i=0

(e/e0)i

]
, (C6)

P (e) =
s(e)

ln 2
− 1 =

n∑
i=2

b̃ie
i, (C7)

where b̃i = bi/ ln 2 (b1 = 0) and Fi(µ) = Γ(µ + 1)/Γ(µ + 1 − i) = µ(µ − 1) · · · (µ + 1 − i). Keeping only terms up to
order n defines GHT(e). Note that P (e)i starts at order 2i.

Then, GHT(e) is transformed in all possible Padé approximants noted GHT
d (e) where n−d and d are the numerator

and denominator degrees. We keep only the PPA denoted GHT
d∗ (e) = Nn−d∗(e)/Dd∗(e) whose numerator and denom-

inator have no zero inside [e0, 0]. The value GHT
d∗ (e0) is related to C0 [see Eq. (C4)] by GHT

d∗ (e0) = C0,d∗(α+ 1)/αµ.
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From GHT
d∗ , we obtain s(e), its first derivatives,

sd∗(e) =

[
(e− e0)

N(e)

D(e)

]1/µ
(C8)

µ
s′d∗(e)

sd∗(e)
=

1

e− e0
+
N ′(e)

N(e)
− D′(e)

D(e)
(C9)

µ
s′′d∗(e)

sd∗(e)
=µ

[
s′d∗(e)

sd∗(e)

]2
+
N ′′(e)

N(e)
− D′′(e)

D(e)

−
[
N ′(e)

N(e)

]2
+

[
D′(e)

D(e)

]2
− 1

(e− e0)2
(C10)

Then we deduce β(e) = 1/T (e) = s′d∗(e) and Cspin
V (e) = −[s′d∗(e)]2/s′′d∗(e).

To compare various PPAs, it is sufficient to look at Gd∗(e0):26 Indeed all Pade’s have the same series around e = 0,
and if they have the same value at e0, it is likely that their variations will be very similar.

Appendix D: EVALUATING THE GROUNG-STATE ENERGY e0

We now show how to evaluate the ground-state energy if unknown. We look for the value giving the highest number
of similar PPAs. As mentioned in the previous appendix, it is sufficient to look at the values Gd∗(e0). We define the
quality of the result as

Qe(e0) =
∑
d∗1

∑
d∗2>d

∗
1

M
(
Gd∗1 (e0)−Gd∗2 (e0)

ε

)
, (D1)

whereM is a measure function as defined in Eq. (5). Unfortunately, this function may be discontinuous because the
number of PPAs may eventually change. Then, the maximum of Qe(e0) is found after a systematic search on a grid.
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High-temperature series J1-J2-Jd -Heisenberg model on the kagome
lattice.

HT-SERIES FOR X

The susceptibility HT-series polynomials are defined as:

XHT(T )T

C
=

n∑
i=0

Pi(J1, J2, Jd)β
i (D2)

=

n∑
i=0

pi(ν2, ν3)

i!

(
J1
2T

)i
(D3)

where β = 1/T , ν2 = J2/J1 and ν3 = Jd/J1.

p0(ν2, ν3) =1 (D4)

p1(ν2, ν3) =− 2− 2 ν2 − ν3 (D5)

p2(ν2, ν3) =4 + 8 ν3 + 16 ν2 + 8 ν2ν3 + 4 ν22 (D6)

p3(ν2, ν3) =− 3−48 ν3 − 81 ν2 − 3 ν32 − 48 ν22ν3 + 2 ν33 − 12 ν2ν
2
3 − 114 ν2ν3 − 96 ν22 − 12 ν23 (D7)

p4(ν2, ν3) =− 4 + 176 ν3 + 172 ν2 − 4 ν42 − 32 ν2ν
3
3 +216 ν32ν3 + 5 ν43 + 260 ν22ν

2
3 + 396 ν2ν

2
3 + 1188 ν22ν3

+432 ν32−32 ν33 +1094 ν22 +1108 ν2ν3+260 ν23 (D8)

p5(ν2, ν3) =− 202 + 225 ν3 + 605 ν2 − 680 ν42ν3 − 202 ν52 − 21 ν53 − 270 ν22ν
3
3 + 60 ν2ν

4
3 − 3245 ν32ν

2
3 − 11430 ν32ν3

+ 60 ν43 − 7970 ν22ν
2
3 − 410 ν2ν

3
3 − 1360 ν42 − 270 ν33 − 8465 ν2ν

2
3 − 17230 ν22ν3 − 11645 ν32 − 2935 ν23

− 7630 ν2ν3 − 5595 ν22 (D9)

p6(ν2, ν3) =1513 + 4104 ν2 − 4206 ν3 − 14253 ν22 + 122658 ν2ν
2
3 + 187998 ν22ν3 + 15912 ν2ν3 + 132562 ν32

+ 13170 ν23 + 20210 ν33 + 98088 ν42 + 251238 ν32ν3 + 40632 ν2ν
3
3 + 183249 ν22ν

2
3 − 2646 ν2ν

4
3 + 104100 ν42ν3

+ 132630 ν32ν
2
3 + 38550 ν22ν

3
3 − 4170 ν22ν

4
3 + 18080 ν32ν

3
3 + 26370 ν42ν

2
3 + 3384 ν52ν3 + 1104 ν2ν

5
3 − 4170 ν43

+ 1104 ν53 + 6768 ν52 + 1513 ν62 −
399

2
ν63 (D10)

p7(ν2, ν3) =13844− 151620 ν2 − 74704 ν3 + 139083 ν22 −
1966153

2
ν2ν

2
3 − 1293383 ν22ν3 + 299964 ν2ν3 −

189371

2
ν32

+ 139755 ν23 − 371574 ν33 −
4759391

2
ν42 − 3589292 ν32ν3 − 1154895 ν2ν

3
3 −

6770421

2
ν22ν

2
3 −

82789

2
ν2ν

4
3

− 3827614 ν42ν3 − 3512439 ν32ν
2
3 − 1749132 ν22ν

3
3 − 86618 ν22ν

4
3 − 990822 ν32ν

3
3 − 1991059 ν42ν

2
3

− 775061 ν52ν3 + 7651nu2ν
5
3 − 354109 ν42ν

3
3 + 938 ν2ν

6
3 +

67319

2
ν32ν

4
3 − 53018 ν62ν3 − 3738 ν22ν

5
3

− 262773

2
ν52ν

2
3 + 13615 ν43 − 3738 ν53 −

1275309

2
ν52 − 106036 ν62 + 938 ν63 + 13844 ν72 + 160 ν73 (D11)

p8(ν2, ν3) =− 186286− 137536 ν2 + 1145568 ν3 + 6324260 ν22 − 2088608 ν2ν
2
3 − 4756328 ν22ν3 + 857352 ν2ν3

− 10846320 ν32 − 1664724 ν23 + 1483992 ν33 + 16142374 ν42 + 41699268 ν32ν3 + 19842784 ν2ν
3
3

+ 40719726 ν22ν
2
3 + 6650764 ν2ν

4
3 + 67176864 ν42ν3 + 82220052 ν32ν

2
3 + 42915800 ν22ν

3
3 + 10425242 ν22ν

4
3

+ 46137688 ν32ν
3
3 + 65417170 ν42ν

2
3 + 54159980 ν52ν3 − 1232896 ν2ν

5
3 + 18554568 ν42ν

3
3 + 127572 ν2ν

6
3

+ 6383884 ν32ν
4
3 + 3657208 ν62ν3 − 1281328 ν22ν

5
3 + 26510312 ν52ν

2
3 + 2892272 ν43 − 870832 ν53 + 32058256 ν52

+ 4069692 ν62 + 248420 ν63 + 764352 ν72 − 61008 ν73 − 186286 ν82 + 11421 ν83 + 248420 ν22ν
6
3 − 592716 ν32ν

5
3

+ 1625812 ν42ν
4
3 + 4060012 ν52ν

3
3 + 811044 ν62ν

2
3 − 61008 ν2ν

7
3 + 382176 ν72ν3 (D12)
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p9(ν2, ν3) =− 2329677 + 26960814 ν2 + 11526543 ν3 − 56758545 ν22 + 128462472 ν2ν
2
3 + 154668708 ν22ν3

− 111054150 ν2ν3 − 115342752 ν32 − 36200385 ν23 + 64998198 ν33 + 319743243 ν42 − 220814460 ν32ν3

− 147995460 ν2ν
3
3 − 152834616 ν22ν

2
3 − 244445922 ν2ν

4
3 − 822646359 ν42ν3 − 1365041772 ν32ν

2
3

− 706484844 ν22ν
3
3 − 436794300 ν22ν

4
3 − 1401175632 ν32ν

3
3 − 1793770353 ν42ν

2
3 − 1427828508 ν52ν3

+ 3083328 ν2ν
5
3 − 944463996 ν42ν

3
3 + 2878929 ν2ν

6
3 − 456663087 ν32ν

4
3 − 576786222 ν62ν3 + 24409008 ν22ν

5
3

− 1226646711 ν52ν
2
3 − 81429093 ν43 + 14618331 ν53 − 580389138 ν52 − 314815344 ν62 − 3893763 ν63

− 55709883 ν72 + 1180962 ν73 + 7338168 ν82 − 311904 ν83 + 7769322 ν22ν
6
3 − 13919346 ν32ν

5
3 − 172316772 ν42ν

4
3

− 380586006 ν52ν
3
3 − 287537220 ν62ν

2
3 − 965718 ν2ν

7
3 − 27272862 ν72ν3 + 1180962 ν22ν

7
3 − 5141667 ν32ν

6
3

+ 9044406 ν42ν
5
3 − 59040405 ν52ν

4
3 − 33586860 ν62ν

3
3 − 20688669 ν72ν

2
3 − 311904 ν2ν

8
3 + 3669084 ν82ν3

− 2329677 ν92 + 37370 ν93 (D13)

p10(ν2, 0) =44494564 + 32699900 ν2 − 1607336300 ν22 + 4682885400 ν32 − 1969984450 ν42 − 3722864284 ν52

+ 12819641560 ν62 + 2641862210 ν72 + 853326455 ν82 − 109501560 ν92 + 44494564 ν102 (D14)

p10(0, ν3) =44494564− 323940580 ν3 + 753910650 ν23 − 746061580 ν33 + 248953155 ν43 + 673343648 ν53

− 251041900 ν63 + 86401210 ν73 − 21228160 ν83 + 4486600 ν93 −
1698455

2
ν103 (D15)

p11(0, ν3) =568071766− 5959595279

2
ν3 +

19215984161

2
ν23 −

49178193933

2
ν33 + 33878328495 ν43 − 30148742943 ν53

+ 8479066530 ν63 − 2914976526 ν73 +
1749626615

2
ν83 − 246955709 ν93 + 58891206 ν103 − 8569254 ν113

(D16)

p12(0, 0) =− 15809083611 (D17)

p13(0, 0) =− 386791997479

2
(D18)

p14(0, 0) =7857174705265 (D19)

p15(0, 0) =84970643937857 (D20)

p16(0, 0) =− 5176017551551181 (D21)

(D22)
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HT SERIES FOR cspinV

The specific heat HT-series polynomials are defined as:

cspinV (T ) =

n∑
i=2

Qi(J1, J2, Jd)β
i (D23)

=

n∑
i=2

qi(ν2, ν3)

i!

(
J1
2T

)i
(D24)

q0(ν3, ν3) =0 (D25)

q1(ν3, ν3) =0 (D26)

q2(ν3, ν3) =3 + 3 ν22 +
3

2
ν23 (D27)

q3(ν3, ν3) =− 27 ν2 − 54 ν3 ν2 +
9

2
ν33 (D28)

q4(ν3, ν3) =− 153 + 144 ν2 + 108 ν3 + 144 ν3 ν2 − 90 ν23 + 252 ν3 ν
2
2 − 72 ν23 ν2 − 153 ν42 − 90 ν23 ν

2
2 −

45

2
ν43 (D29)

(D30)

q5(ν3, ν3) =3300 ν2 − 900 ν3 − 2850 ν22 + 5700 ν3 ν2 − 150 ν23 + 1650 ν32 − 4650 ν3 ν
2
2 + 750 ν23 ν2 − 450 ν33

+ 6000 ν3 ν
3
2 − 1350 ν23 ν

2
2 + 3300 ν33 ν2 − 300 ν23 ν

3
2 − 450 ν33 ν

2
2 − 225 ν53 (D31)

(D32)

q6(ν3, ν3) =32085/2− 24570 ν2 − 20655 ν3 − 21735 ν22 + 1620 ν3 ν2 +
33615

2
ν23 + 19890 ν32 − 131085 ν3 ν

2
2 + 43200 ν23 ν2

− 9225 ν33 + 9450 ν42 + 46980 ν3 ν
3
2 − 81675 ν23 ν

2
2 − 2430 ν33 ν2 +

8235

2
ν43 − 32805 ν3 ν

4
2 + 54000 ν23 ν

3
2

− 28080 ν33 ν
2
2 + 19710 ν43 ν2 +

32085

2
ν62 + 16875 ν23 ν

4
2 + 4950 ν33 ν

3
2 +

8235

2
ν43 ν

2
2 +

945

4
ν63 (D33)

(D34)

q7(ν3, ν3) =− 10143− 644301 ν2 + 269892 ν3 + 1052226 ν22 − 934920 ν3 ν2 − 75411 ν23 − 460404 ν32 + 1893654 ν3 ν
2
2

− 31752 ν23 ν2 + 122598 ν33 + 119511 ν42 − 1000629 ν3 ν
3
2 + 242991 ν23 ν

2
2 − 1032381 ν33 ν2 − 31311 ν43

− 930069

2
ν52 + 269010 ν3 ν

4
2 + 827757 ν23 ν

3
2 − 257544 ν33 ν

2
2 −

125685

2
ν43 ν2 + 58653 ν53 − 1421343 ν3 ν

5
2

− 187425 ν23 ν
4
2 − 980343 ν33 ν

3
2 +

52479

2
ν43 ν

2
2 − 227997 ν53 ν2 − 10143 ν72 + 7938 ν23 ν

5
2 − 38808 ν33 ν

4
2

+ 66150 ν43 ν
3
2 + 58653 ν53 ν

2
2 +

57771

4
ν73 (D35)

(D36)

q8(ν3, ν3) =− 2859213 + 6178704 ν2 + 5449416 ν3 + 9429168 ν22 − 9235296 ν3 ν2 − 4847052 ν23 − 20274912 ν32

+ 53705904 ν3 ν
2
2 − 21687792 ν23 ν2 + 5012952 ν33 + 9225132 ν42 − 62253744 ν3 ν

3
2 + 48280344 ν23 ν

2
2

+ 3022992 ν33 ν2 − 1229970 ν43 − 1534176 ν52 + 56331912 ν3 ν
4
2 − 65766624 ν23 ν

3
2 + 40230624 ν33 ν

2
2

− 12512304 ν43 ν2 + 1025136 ν53 − 626304 ν62 − 7418544 ν3 ν
5
2 + 43961232 ν23 ν

4
2 − 8318688 ν33 ν

3
2

+ 23324616 ν43 ν
2
2 − 130368 ν53 ν2 − 125076 ν63 + 10753344 ν3 ν

6
2 − 12882912 ν23 ν

5
2 + 10512768 ν33 ν

4
2

− 13091568 ν43 ν
3
2 + 4212600 ν53 ν

2
2 − 3452400 ν63 ν2 − 2859213 ν82 − 3844932 ν23 ν

6
2 − 741888 ν33 ν

5
2

− 2292990 ν43 ν
4
2 − 654192 ν53 ν

3
2 − 125076 ν63 ν

2
2 +

89271

2
ν83 (D37)
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q9(ν3, ν3) =5600664 + 184435056 ν2 − 100067400 ν3 − 433650996 ν22 + 227967048 ν3 ν2 + 78952644 ν23 + 179433792 ν32

− 607203540 ν3 ν
2
2 − 42816600 ν23 ν2 − 63694188 ν33 + 95703120 ν42 − 144709416 ν3 ν

3
2 + 485374032 ν23 ν

2
2

+ 276310440 ν33 ν2 + 35501328 ν43 + 123924168 ν52 + 441623340 ν3 ν
4
2 − 1670214816 ν23 ν

3
2 + 372083544 ν33 ν

2
2

− 127644984 ν43 ν2 − 24001596 ν53 − 70144056 ν62 + 144516960 ν3 ν
5
2 + 1235200104 ν23 ν

4
2 − 631218096 ν33 ν

3
2

+ 54034452 ν43 ν
2
2 + 115234488 ν53 ν2 + 10998828 ν63 + 146195604 ν72 − 127553616 ν3 ν

6
2 − 684430884 ν23 ν

5
2

+ 852307920 ν33 ν
4
2 − 593753004 ν43 ν

3
2 + 250454268 ν53 ν

2
2 + 4221396 ν63 ν2 − 8027748 ν73 + 442063656 ν3 ν

7
2

+ 75600216 ν23 ν
6
2 + 423090216 ν33 ν

5
2 + 106291116 ν43 ν

4
2 + 101241576 ν53 ν

3
2 + 22410432 ν63 ν

2
2

+ 12159720 ν73 ν2 + 5600664 ν92 + 4667544 ν23 ν
7
2 + 32428512 ν33 ν

6
2 − 21895272 ν43 ν

5
2 + 2416392 ν53 ν

4
2

− 17600328 ν63 ν
3
2 − 8027748 ν73 ν

2
2 − 1161810 ν93 (D38)

q10(ν2, 0) =
559095695

2
− 2276071650 ν2 − 4567367250 ν22 + 14999658300 ν32 − 11395200825 ν42 + 3512454300 ν52

− 4851077175 ν62 + 1271847150 ν72 − 191251800 ν82 +
1559095695

2
ν102 (D39)

q10(0, ν3) =
559095695

2
− 1968883875 ν3 +

3707972775

2
ν23 − 2766779100 ν33 + 953949150 ν43 − 929445975 ν53

+ 73620225 ν63 − 111223125 ν73 −
59072625

2
ν83 −

45148455

4
ν103 (D40)

q11(0, ν3) =3188690010 + 49046431005 ν3 −
127470667995

2
ν23 +

103764854985

2
ν33 − 41081190975 ν43 + 16829360625 ν53

− 15771729270 ν63 +
10254468675

2
ν73 − 3039511530 ν83 + 1205526630 ν93 +

390259485

4
ν113 (D41)

q12(0, 0) =− 603545755725

2
. (D42)

q13(0, 0) =2163459683034 (D43)

q14(0, 0) =
627738503442687

4
(D44)

q15(0, 0) =− 3574008872020125

2
(D45)

q16(0, 0) =− 105051131047391805 (D46)

q17(0, 0) =1788835670130700224 (D47)
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PARAMETERS AT THE HIGHEST QUALITY FIT FOR X AT FIXED J1

J1 J2 Jd θ JCV (A− 1) B(K−1) QX
(K) (K) (K) (K) (K) ×102 ×104

-19.5 -9.438 0 28.9 13.3 1.0 -0.60 7
-14.2 0 12.212 8.1 10.2 2.7 -1.00 10
-24 13.951 -6.488 13.3 17.2 -1.5 0.02 3.4
-22 11.348 -2.189 11.8 15.2 -0.4 -0.24 6
-20 8.868 1.538 10.4 13.4 0.8 -0.55 6
-20 12.034 -5.256 10.6 14.5 1.1 -0.68 5.8
-18 6.594 4.459 9.2 11.9 1.9 -0.82 7
-16 2.155 10.404 8.6 10.9 2.3 -0.94 7
-14 -1.266 13.729 8.4 10.5 2.5 -0.96 7
-12 -4.203 15.820 8.3 10.4 2.5 -0.96 8
-10 -6.744 16.972 8.3 10.4 2.6 -0.99 8
-8 -8.933 17.274 8.3 10.5 2.5 -0.97 8
-6 -10.450 16.643 8.1 10.3 2.7 -1.02 8
-4 -11.769 15.484 8.0 10.1 2.8 -1.04 8
-2 -12.825 13.793 7.9 9.9 2.9 -1.05 9

-0.2 -13.236 11.602 7.6 9.5 3.1 -1.12 9.8
2 -13.723 8.510 7.5 9.3 3.3 -1.16 9.6
4 -14.082 5.204 7.5 9.2 3.3 -1.17 7.9
6 -14.144 1.137 7.6 9.4 3.3 -1.16 7
8 -14.239 -3.725 8.1 10.1 2.7 -1.00 9
10 -6.105 -29.960 11.1 14.8 0.4 -0.47 5
12 -13.207 -18.525 10.5 13.6 0.7 -0.49 6
10 -13.106 -10.897 8.6 11.1 2.4 -0.94 7
8 -3.242 -31.180 10.8 14.5 0.6 -0.52 6
6 -0.941 -30.507 10.2 13.7 1.1 -0.64 6
4 1.323 -31.075 10.2 13.7 1.1 -0.63 8
2 3.347 -31.236 10.3 13.7 1.0 -0.62 8

-0.2 5.355 -30.709 10.2 13.7 1.1 -0.64 8
-2 7.002 -31.236 10.6 14.2 0.8 -0.57 7
-4 8.573 -30.730 10.8 14.5 0.6 -0.53 6
-6 10.074 -30.317 11.1 15.0 0.4 -0.48 6
-8 11.455 -29.648 11.4 15.4 0.3 -0.44 6
-10 12.643 -28.241 11.5 15.7 0.2 -0.44 6
-12 13.809 -27.377 11.9 16.3 0.0 -0.39 5
-14 14.651 -25.031 11.9 16.5 0.1 -0.44 4.8
-16 15.212 -22.207 11.9 16.6 0.1 -0.44 4.3
-18 15.314 -18.172 11.8 16.5 0.2 -0.48 3.9

-12 15.6 4 8.2 10.3 2.7 -1.00 14.8

TABLE I. The Curie-Weiss temperature is θ = P1(J1, J2, Jd) = −J1 − J2 − Jd/2 (Eqs.D2,D5) and the leading term of CV at
high temperature J2

CV
= Q2(J1, J2, Jd) = 3/8(J2

1 +J2
2 +J2

d/2)] (Eqs.D23,D27). A and B are defined in Eq.3 of the article. The
last line is at the best point for both X and CV and the last column means QX +QCV

.
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