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Abstract

Deep neural networks are known to be vulnerable to small adversarial perturbations
in test data. To defend against adversarial attacks, probabilistic classifiers have been
proposed as an alternative to deterministic ones. However, literature has conflicting
findings on the effectiveness of probabilistic classifiers in comparison to determinis-
tic ones. In this paper, we clarify the role of randomization in building adversarially
robust classifiers. Given a base hypothesis set of deterministic classifiers, we show
the conditions under which a randomized ensemble outperforms the hypothesis
set in adversarial risk, extending previous results. Additionally, we show that for
any probabilistic binary classifier (including randomized ensembles), there exists a
deterministic classifier that outperforms it. Finally, we give an explicit description
of the deterministic hypothesis set that contains such a deterministic classifier for
many types of commonly used probabilistic classifiers, i.e. randomized ensembles
and parametric/input noise injection.

1 Introduction

Modern machine learning algorithms such as neural networks are highly sensitive to small, impercep-
tible adversarial perturbations of inputs [3, 43]. In the last decade, there has been a back-and-forth
in research progress between developing increasingly potent attacks [5, 10, 19, 25] and the creation
of practical defense mechanisms through empirical design [8, 30, 32]. In particular, probabilis-
tic classifiers (also called stochastic classifiers or randomized classifiers) have been widely used
to build strong defenses which can be roughly categorized into two groups: noise injection tech-
niques [14, 28, 34, 37, 47, 48] and randomized ensembles [31, 38]. The first group includes methods
that add noise at inference, usually to the input [22, 48], an intermediate layer activation [22, 47, 51]
or the weights of a parametric model [22] like a neural network. Most of this work is experimental,
with some theoretical papers that try to justify the use of such methods [37]. The second group,
inspired by game theory, create a mixed strategy over base classifiers as a finite mixture [31, 38]. The
argument behind this kind of models is that it becomes harder for an attacker to fool multiple models
at the same time [12, 36].

Intuitively, the greater flexibility of probabilistic classifiers implies that they should outperform their
deterministic counterparts in adversarially robust classification. For instance, one of the earliest works
using randomization to improve robustness to adversarial attacks [48] claims that “randomization
at inference time makes the network much more robust to adversarial images”. Dhillon et al. [14]
propose a pruning method that “is stochastic and has more freedom to deceive the adversary”.
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Similarly, Panousis et al. [34] claim that for their method, “the stochastic nature of the proposed
activation significantly contributes to the robustness of the model”.

Lending support to the intuition that probabilistic classifiers are better than their deterministic
counterparts, Pinot et al. [38] prove the non-existence of a Nash equilibrium in the zero-sum game
between an adversary and a classifier when both use deterministic strategies. Moreover, they show
that a randomized ensemble outperforms any deterministic classifier under a regularized adversary.
Meunier et al. [31] shows that a mixed Nash equilibrium does exist in the adversarial game when the
classifier is allowed to use randomized strategies, making a strong case for probabilistic classifiers.

In contrast to the above results advocating for probabilistic classifiers, Pydi and Jog [40] use an
equivalence between adversarial risk minimization and a certain optimal transport problem between
data generating distributions to show that in the case of binary classification there exists an approxi-
mate pure Nash equilibrium in the adversarial game, showing that there always exists a sequence of
deterministic classifiers that are optimal for adversarial risk minimization. Trillos et al. [45] extend
their results to multiclass classification using a multimarginal optimal transport formulation. More
recently, Awasthi et al. [1, 2] prove the existence of a deterministic classifier that attains the optimal
value for adversarial risk under mild assumptions. Trillos et al. [44] extends it to the multiclass
setting.

How does one reconcile these apparently conflicting theoretical findings as a machine learning
practitioner? First, it is important to note that the above theoretical results are valid when considering
large hypothesis sets, like that of all possible measurable classifiers. In practice, one works with more
limited hypotheses sets such as the space of linear classifiers or the space of classifiers that can be
learned by an L-layered deep neural network, for which the above theoretical results do not directly
apply. Second, the task of training a robust probabilistic classifier is non-trivial [12, 39]. Even the
task of efficiently attacking a probabilistic classifier is not straightforward [6, 12, 13, 36]. Hence, it is
important to understand the precise role of randomization in adversarial robustness and the conditions
under which probabilistic classifiers offer a discernible advantage over deterministic classifiers. In
this work, we address this issue by making the following contributions.

• From deterministic to probabilistic classifiers: Given a base hypothesis set (BHS)Hb of
deterministic classifiers, we prove the necessary and sufficient conditions for a probabilistic
classifier built fromHb to strictly outperform the best classifier inHb in adversarial risk. A
quantity that plays a crucial role in our analysis is the expected matching penny gap wherein
there exist classifiers that are vulnerable to adversarial perturbation at a point, but not all at
the same time. These results are contained in Section 3.

• From probabilistic to deterministic classifiers: In the binary classification setting, given
a probabilistic classifier h, we show that there always exists a deterministic classifier h
belonging to a “threshold” hypothesis set (THS) that is built from h in a straightforward
way. We then apply our results to common families of probabilistic classifiers, leading to
two important conclusions: 1) For every randomized ensemble classifier [13, 38], there
exists a deterministic weighted ensemble [17, 52] with better adversarial risk. 2) For every
input noise injection classifier [22, 37, 39], there exists a deterministic classifier that is a
slight generalization of randomized smoothing classifier [8, 26] with better adversarial risk.
These results are contained in Section 4.

• Families of classifiers for which randomization does not help: Given a BHSHb, we show
the conditions under which randomizing over classifiers in Hb does not help to improve
adversarial risk. Specifically, if the decision regions of Hb are closed under union and
intersection, our results imply that randomized ensembles built usingHb offer no advantage
over the deterministic classifiers inHb. These results are contained in Section 5.

Notation: We use 1{C} to denote an indicator function which takes a value 1 if the proposition C
is true, and 0 otherwise. For an input space X ⊆ Rd, we use σ(X ) to denote some σ-algebra over X
that makes (X , σ(X )) a measurable space. If not specified, σ(X ) will be the Borel σ-algebra, which
is generated by the open sets of X . We use P(X ) to denote the set of probability measures over the
measure space (X , σ(X )). For a positive integer K, we use [K] to denote the range {1, . . . ,K}. For
a vector u ∈ RK , we denote ui the ith component of u.
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2 Preliminaries

2.1 Adversarially Robust Classification

We consider a classification setting with input space X ⊆ Rd and a finite label space Y . The space X
is equipped with some norm ‖·‖, which is commonly set to be the `2 or `∞ norms. Let ρ ∈ P(X ×Y)
denote the true data distribution, which can be factored as ρ(x, y) = ν(y)ρy(x), where ν ∈ P(Y)
denotes the marginal probability distribution of ρ over Y and ρy ∈ P(X ) denotes the conditional
probability distribution of the data over X given class y.

A deterministic classifier is a function h : X → Y that maps each x ∈ X to a fixed label in Y . The
0-1 loss of h on a point (x, y) ∈ X × Y is given by, `0-1((x, y), h) = 1{h(x) 6= y}.
A probabilistic classifier is a function h : X → P(Y) that maps each x ∈ X to a probability
distribution over Y . To label x ∈ X with h, one samples a random label from the distribution
h(x) ∈ P(Y). In practice, if Y consists of K classes, P(Y) is identifiable with the K-simplex
∆K that consist of vectors u ∈ RK such that

∑K
i=1 ui = 1. Therefore, one can think of h(x) as a

probability vector for every x.

The 0-1 loss of h on (x, y) ∈ X ×Y is given by, `0-1((x, y),h) = Eŷ∼h(x)[1{ŷ 6= y}] = 1−h(x)y .
Note that `0-1((x, y),h) ∈ [0, 1] is a generalization of the classical 0-1 loss for deterministic
classifiers, which can only take values in {0, 1}.
Given x ∈ X , we consider a data perturbing adversary of budget ε ≥ 0 that can transport x to
x′ ∈ Bε (x) = {x′ ∈ X | d(x, x′) ≤ ε}, where Bε(x) is the closed ball of radius ε around x. The
adversarial risk of a probabilistic classifier h is defined as follows.

Rε(h) = E
y∼ν

[Ryε (h)] = E
y∼ν

E
x∼py

[
sup

x′∈Bε(x)
`0-1((x′, y),h)

]
1. (1)

The adversarial risk of a deterministic classifier h is defined analogously, replacing h by h in (1).

2.2 Threat model

We consider a white-box threat model, in which the adversary has complete access to the classifier
proposed by the defender. In theory, we are assuming that the adversary is able to attain (or
approximate to any precision) the inner supremum in (1). In practice, if the classifier is differentiable,
the adversary will have full access to the gradients (and any derivative of any order), and it will
have full knowledge of the classifier, including its architecture and any preprocessing used. The
adversary can also query the classifier as many times as needed. The only limitation for the adversary
regards the sources of randomness. In particular, when the proposed classifier is probabilistic and
an inference pass is done by sampling a label from h(x), the adversary does not know and cannot
manipulate the randomness behind this sampling.

It is worth noting that other works have considered similar inference processes, in which the label of
a point is obtained by a sampling procedure [29]. The underlying question is similar to ours: does
randomness improve adversarial robustness?. They propose a threat model in which an attacker can
perform N independent attempts with the goal of producing at least one misclassification, which
becomes easier if the predicted probability for the correct class is less than 1. In this paper, however,
we are interested in the expected accuracy of a classifier from a theoretical point of view, which in
practice translates to the probability of error, or the long term average performance or the classifier.

Our formulation of adversarial risk in (1) corresponds to the “constant-in-the-ball” risk in [20] or the
“corrupted-instance” risk in [15]. Under this formulation, as pointed out in [40], an adversarial risk of
0 is only possible is the supports of the class-conditioned distributions ρy are non-overlapping and
separated by at least 2ε. This is not the case with other formulations of risk introduced in [15, 20].
We focus on the former in this work.

1The measurability of the 0-1 loss under attack (inner part of (1)) is non-trivial and depends on various
factors like the type of ball considered for the supremum (closed or open) [44], and the underlying σ-algebra
[1, 40]. In Section 2.3 and Appendix A we will clarify the assumptions that ensure the well-definedness of the
adversarial risk in our setting.
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2.3 Probabilistic Classifiers Built from a Base Hypothesis Set

In this paper, we study probabilistic classifiers that are constructed from a base hypothesis set (BHS)
of (possibly infinitely many) deterministic classifiers, denoted byHb. We use the name mixtures [38]
for these type of classifiers. In the following, we show that many of the probabilistic classifiers that
are commonly used in practice fall under this framework.

Let Hb be a BHS of deterministic classifiers from X to Y , which we assume is identifiable with
a Borel subset of some Rp. Let µ ∈ P(Hb) be a probability measure over the measure space
(Hb, σ(Hb)), where σ(Hb) denotes the Borel σ-algebra on Hb. One can construct a probabilistic
classifier hµ : X → P(Y), built fromHb, that maps x ∈ X to a probability distribution µx ∈ P(Y),
where µx(y) = Ph∼µ(h(x) = y). We now instantiate Hb and µ ∈ P(Hb) for two main types
of probabilistic classifiers that are commonly used in practice: randomized ensembles and noise
injection classifiers.

For a randomized ensemble classifier (REC), µ ∈ PM (Hb) ⊂ P(Hb) where PM (Hb) is the set of
all discrete measures onHb supported on a finite set of M deterministic classifiers, {h1, . . . , hM}.
In this case, hµ(x) takes the value hm(x) with probability pm = µ(hm) for m ∈ [M ], where∑
m∈[M ] pm = 1. RECs were introduced in [38] and play the role of mixed strategies in the

adversarial robustness game. They are a simple randomization scheme when a finite number of
classifiers are at hand, and both training and attacking them represent a challenge [12, 13].

For a weight-noise injection classifier (WNC), Hb = {hw : w ∈ W} where hw is a deterministic
classifier with parameter w. In this case, µ is taken to be a probability distribution overW with the
understanding that each w ∈ W is associated with a unique hw ∈ Hb. For example,Hb can be the
set of all neural network classifiers with weights in the setW ⊆ Rp. Any probability distribution µ
on the space of weightsW results in a probabilistic classifier hµ. Alternatively,Hb can be generated
by injecting noise z sampled from a distribution µ to the weights w0 of a fixed classifier hw0

. In
this case, the probabilistic classifier hµ maps x ∈ X to a probability distribution µx ∈ P(Y), where
µx(y) = Pz∼µ(hw0+z(x) = y). Weight noise injection has been explicitly used in [22], but there
are many other approaches that implicitly define a probability distribution over the parameters of a
model [14, 35] and sample one or more at inference.

For an input-noise injection classifier (INC), Hb = {hη : η ∈ X} where hη(x) = h0(x+ η) for a
fixed deterministic classifier h0. In this case, µ is taken to be a probability distribution over X (which
is unrelated to the data generating distribution), and hµ maps x ∈ X to a probability distribution
µx ∈ P(Y), where µx(y) = Pη∼µ(h(x + η) = y). Injecting noise to the input has been used for
decades as a regularization method [4, 21]. INCs are studied in [22, 37, 39] as a defense against
adversarial attacks, and are closely related to randomized smoothing classifiers [8, 26].
Remark 1 (Measurability). To ensure the well-definedess of the adversarial risk, we need to ensure
that the 0-1 loss under attack (inner part of (1)) is measurable. The 0-1 loss for a fixed class y ∈ Y
can now be seen as a function from the product space X ×Hb to {0, 1}:

f(x, h) = `0-1((x, y), h) = 1{h(x) 6= y} (2)

For a distribution µ ∈ P(Hb) and the associated probabilistic classifier hµ, we can rewrite the 0-1
loss of hµ at x as

`0-1((·, y),hµ) = E
h∼µ

[1{h(·) 6= y}] =

∫
Hb
f(·, h)dµ(h) (3)

Note that if f is Borel measurable in X × Hb, then by Fubini-Tonelli’s Theorem, the 0-1 loss as
a function of x with an integral over Hb shown in (3) is Borel measurable. By [16, Appendix A,
Theorem 27], the 0-1 loss under attack is then universally measurable and therefore the adversarial
risk, which requires the integral over X of the loss under attack, is well-defined over this universal
σ-algebra [44, Definition 2.7]. Recent work by Trillos et al. [44] have also shown the existence of
Borel measurable solutions for the closed ball formulation of adversarial risk.

In this work, we assume that the function f in (2) is Borel measurable in X ×Hb for every y, so that
(1) is well-defined. This assumption is already satisfied in the settings that are of interest for our work.
As an example, it holds when the classifiers at hand are neural networks with continuous activation
functions. More details on Appendix A. For a deeper study on the measurability and well-definedness
of the adversarial risk in different threat models and settings, see [1, 16, 40, 44].
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3 From Deterministic to Probabilistic Classifiers

Let Hb be a class of deterministic classifiers. In this section, we compare the robustness of proba-
bilistic classifiers built uponHb with the robustness of the classHb itself. Note that if we consider
the trivial mixtures µ = δh for h ∈ Hb, we obtain the original classifiers in Hb, so it is always
true that infµ∈P(Hb)Rε(hµ) ≤ infh∈Hb Rε(h). We are interested in the situations in which this
gap is strict, meaning that mixtures strictly outperform the base classifiers. With this in mind, we
introduce the notion of Matching Penny Gap to quantify the improvement of probabilistic classifiers
over deterministic ones.

Theoretical Results on Robustness of Probabilistic Classifiers. We begin by presenting a theorem
which shows that the adversarial risk of a probabilistic classifier is at most the average of the
adversarial risk of the deterministic classifiers constituting it. The proof of this result will be a first
step towards understanding the conditions that favor the mixture classifier.
Theorem 3.1. For a probabilistic classifier hµ : X → P(Y) constructed from a BHSHb using any
µ ∈ P(Hb), we haveRε(hµ) ≤ Eh∼µ [Rε(h)].

A natural follow-up question to is to ask what conditions guarantee a strictly better performance
of a probabilistic classifier. We know that this gap can be strict, as can be seen in toy examples
like the one shown in Figure 1b where Hb is the set of all linear classifiers, and there exist two
distinct classifiers f1, f2 both attaining the minimum adversarial risk among all classifiers in Hb.
Any non-degenerate mixture of f1, f2 attains a strictly better adversarial risk, demonstrating a strict
advantage for probabilistic classifiers.

From the proof of Theorem 3.1 it is clear that a strict gap in performance between probabilistic and
deterministic classifiers is only possible when the following strict inequality holds for a non-vanishing
probability mass over (x, y).

sup
x′∈Bε(x)

E
h∼µ

[1{h(x′) 6= y}] < E
h∼µ

[
sup

x′∈Bε(x)
1{h(x′) 6= y}

]
. (4)

The above condition holds at (x, y) if there exists a subset of vulnerable classifiers Hvb ⊆ Hb
with µ(Hvb) > 0 any of which can be forced to individually misclassify the point (x, y) by an
adversary using (possibly different) perturbations x′h ∈ Bε(x) for h ∈ Hvb, but cannot be forced to
misclassify all at the same time using the same perturbation x′ ∈ Bε(x). Such a configuration is
reminiscent of the game of matching pennies [18, 46] (see Appendix B). IfHb is in a matching penny
configuration at (x, y), a mixed strategy for classification (i.e. a mixture ofHb) achieves a decisive
advantage over any pure strategy (i.e. any deterministic base classifier) because the adversary can
only force a misclassification on a subset of all vulnerable classifiers. Such a configuration was first
noted in [12] in the context of improved adversarial attacks on RECs, and also in [13] for computing
the adversarial risk of RECs of size M = 2. Figure 1 illustrates such a condition on an example REC
of size M = 2 over a single point (Figure 1a), and over a simple discrete distribution (Figure 1b). We
formalize this intuition with the definition below.
Definition 1 (Matching penny gap). The matching penny gap of a data point (x, y) ∈ (X × Y) with
respect to a probabilistic classifier hµ constructed fromHb using µ ∈ P(Hb) is defined as,

πhµ(x, y) = µ(Hvb(x, y))− µmax(x, y), (5)

where Hvb(x, y) ⊆ Hb denotes the vulnerable subset and µmax(x, y) the maximal simultaneous
vulnerability of base classifiersHb, defined below.

Hvb(x, y) = {h ∈ Hb : ∃x′h ∈ Bε(x) such that h(x′h) 6= y},
Hsvb(x, y) = {H′ ⊆ Hb : ∃x′ ∈ Bε(x) such that ∀h ∈ H′, h(x′) 6= y},
µmax(x, y) = sup

H′∈Hsvb(x,y)
µ(H′).

If πhµ(x, y) > 0, we say that hµ is in matching penny configuration at (x, y).

For example, in Figure 1a, πhµ(x0, y0) = 1 − max{µ(f1), µ(f2)} = min{µ(f1), µ(f2)} where
Hb = {f1, f2}. The subset Hvb(x, y) contains all classifiers that can be individually fooled by an
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optimal attacker. The collection of subsets Hsvb(x, y) contains all subsetsH′ of classifiers that can
be simultaneously fooled. Then, µmax(x, y) is the maximum mass of classifiers that can be fooled
simultaneously. Thus, πhµ(x, y) measures the gap between the mass of classifiers that are individually
vulnerable and the maximum mass of classifiers that can be fooled with only one perturbation.

(a) A matching penny configuration at
x0 with two deterministic classifiers f1
and f2 with f1(x0) = f2(x0) = y0. In
the top-left colored region, f1(x) 6= y0,
and on the bottom-right colored region
f2(x) 6= y0 (vulnerability regions).
Both f1, f2 can be made to incur a loss
of 1 at Bε(x0) by separate perturba-
tions, but not with the same perturba-
tion.

(b) Binary classification example with discrete data distri-
bution 1

2
δ(x = x1, y = 1) +

∑4
j=2

1
6
δ(x = xj , y = 0).

No linear classifier can attain adversarial risk better than
1
3

(attained by both f1 and f2). Any REC with µ(f1) =
1− µ(f2) ∈ (0, 1) achieves a strictly better risk. A REC
with µ(f1) = µ(f2) = 1/2 is optimal with risk 1

4
. See

Appendix C.4 for details.

Figure 1: Toy examples demonstrating a strict gap in adversarial risk between deterministic and
probabilistic classifiers (RECs).

The following theorem strengthens Theorem 3.1 by showing thatRε(h) is a strictly convex function
if and only if there is a non-zero expected matching penny gap.
Theorem 3.2. For a probabilistic classifier hµ : X → P(Y) constructed from a BHSHb using any
µ ∈ P(Hb),

Rε(hµ) = E
h∼µ

[Rε(h)]− E
(x,y)∼ρ

[πhµ(x, y)]. (6)

Proof sketch. By interchanging expectations over h ∼ µ and (x, y) ∼ ρ and using the fact that
supx′∈Bε(x) 1{h(x′) 6= y} = 1 if and only if h ∈ Hvb(x, y), we first show the following.

E
h∼µ

[Rε(h)] = E
(x,y)∼ρ

[µ(Hvb(x, y))]. (7)

Arguing from the definition of µmax(x, y), we then show that supx′∈Bε(x) Eh∼µ[1{h(x′) 6= y}] =

µmax(x, y). Taking expectation with respect to (x, y) ∼ ρ, we get,

Rε(hµ) = E
(x,y)∼ρ

[µmax(x, y)] . (8)

Combining (8) and (7) yields (6).

The following corollary shows that a lower bound on the expected matching penny gap is both
necessary and sufficient for a mixture to strictly outperform any deterministic classifier inHb.
Corollary 3.1. For µ′ ∈ P(Hb),Rε(hµ′) < infh∈Hb Rε(h) if and only if the following condition
holds.

E
(x,y)∼ρ

[πhµ′ (x, y)] > E
h∼µ′

[Rε(h)]− inf
h∈Hb

Rε(h) (9)

Additionally, infµ∈P(Hb)Rε(hµ) < infh∈Hb Rε(h) if and only if there exists µ′ ∈ P(Hb) for which
(9) holds.
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Remark 2 (Multiple optimal classifiers in matching penny configuration). For finiteHb, the assump-
tion (9) of Corollary 3.1 holds whenever there exist two distinct optimal classifiers h∗1, h

∗
2 ∈ Hb with

a positive expected matching penny gap. In such a case, the RHS of (9) is zero for any µ that is a
mixture of h∗1, h

∗
2. This is indeed the case in Figure 1b. More generally, assumption (9) holds if there

is a subset of classifiers in a matching penny configuration that are “near optimal” on average. More
details in Appendix C.3.

The following example depicts the scenario of Remark 2 in the extreme case in which there exist
infinitely many distinct optimal classifiers in matching penny configuration, leading to the maximum
possible advantage of using probabilistic classifiers.
Example 1 (Maximum expected matching penny gap of 1). Consider a discrete data distribution
ρ = δ(x = 0, y = 1) and a BHS composed of infinitely many linear classifiers,Hb = {h : h(x) =
1{wTx < 1}, ‖w‖2 = 1

ε } where ‖ · ‖2 is the Euclidean norm. Observe that every classifier inHb is
vulnerable at (x, y) = (0, 1) and soRε(h) = 1 for all h ∈ Hb. However, no pair is simultaneously
vulnerable. Hence, πhµ(x, y) = 1 for any distribution µ ∈ P(Hb) that is continuous over the entire
support Hb. By Theorem 3.2 we get that Rε(hµ) = 0 for any such µ. Therefore, any such hµ
outperforms every h ∈ Hb, and we have 0 = infµ∈P(Hb)Rε(hµ) < infh∈Hb Rε(h) = 1. More
details on Appendix C.1.
Remark 3 (Probabilistic classifiers with zero matching penny gap are not useful). Suppose the
expected matching penny gap E(x,y)∼ρ[πhµ′ (x, y)] is zero for some µ′ ∈ P(Hb). Then the left
hand side of (9) is zero, whereas the right-hand side Eh∼µ′ [Rε(h)] − infh∈Hb Rε(h) is always
non-negative. Hence, (9) does not hold and so Rε(hµ′) ≥ infh∈Hb Rε(h). Therefore, any such
probabilistic classifier underperforms the best deterministic classifier in the base setHb.

The following example illustrates a scenario described in Remark 3, where we examine classifiers
with decision boundaries that are parallel sets [23].
Example 2 (Minimum expected matching penny gap of 0 / Parallel decision boundaries). Fix any
binary classifier h : X → {0, 1} with non-empty decision region Ah = {x ∈ X : h(x) = 1} ⊂ X ⊆
Rd. LetHb be composed of all classifiers whose decision regions are r-parallel sets of Ah defined as
Arh = Ah ⊕ Br(0) where ⊕ denotes the Minkowski sum, i.e., Hb = {h : ∃r ≥ 0 s.t. Arh = {x ∈
X : h(x) = 1}}. Because of the parallel decision boundaries, whenever two classifiers in Hb are
vulnerable, they are simultaneously vulnerable, and never exhibit a matching penny configuration.
Therefore, E(x,y)∼ρ[πhµ(x, y)] = 0 for any µ ∈ P(Hb). More details on Appendix C.2.

Application to RECs and Links with [13]. In the case of RECs where µ =
∑
m∈[M ] pmδhm i.e.,

hµ is a mixture of M deterministic classifiers inHb = {hm}m∈[M ], we can instantiate Theorem 3.2
as follows. As the family Hsvb(x, y) is finite, the supremum µmax(x, y) is always attained by some
subset of simultaneously vulnerable classifiersHmaxsvb (x, y). We can then write:

Rε(hµ) =
∑

m∈[M ]

pmRε(hm)− pm
[

E
(x,y)∼ρ

1{hm ∈ Hvb(x, y) \ Hmaxsvb (x, y)}
]

(10)

Alternatively, we can use (8) to write Rε(hµ) =
∑
m∈[M ] pm E(x,y)∼ρ 1{hm ∈ Hmaxsvb (x, y)}. At

each (x, y), testing whether hm ∈ Hmaxsvb (x, y) reduces to solving a combinatorial optimization
problem, as noted in [13]. Any (x, y) falls into one of finitely many configurations, depending
on which subset of classifiers are vulnerable or simultaneously vulnerable at (x, y). Dbouk and
Shanbhag [13] use this to derive upper and lower bounds onRε(hµ). Specifically, [13, Proposition
1] is equivalent to (8) for the special case of RECs. Also, [13, Theorem 1] can be proved as
an application of Theorem 3.2 to RECs with M = 2. To establish the link, one must note that
E(x,y)∼ρ[πhµ′ (x, y)] = 1

2ρ({(x, y) ∈ R}) where R ⊆ X × Y indicates the set of all points where
h1, h2 are in matching penny configuration.

4 From Probabilistic to Deterministic Classifiers

In this section, we prove that for any probabilistic binary classifier h, there exists a deterministic
classifier h in a “threshold” hypothesis set HT (h) with at least the same adversarial risk. In
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Section 4.1 we present the main theorem and in Section 4.2 we apply the theorem to various classes
of probabilistic classifiers.

4.1 Reducing a Probabilistic Classifier to a Deterministic One Through Threshold Classifiers

In the case of binary classification, i.e. Y = {0, 1} any distribution ν ∈ P(Y) is uniquely determined
by a scalar α = ν(y = 1) ∈ [0, 1]. Hence, any probabilistic binary classifier is identified with a
function h : X → [0, 1], where h(x) = ν(y = 1|x) ∈ [0, 1]. Accordingly, `0-1((x, 0),h) = h(x)
and `0-1((x, 1),h) = 1− h(x).

Given a probabilistic binary classifier h : X → [0, 1] and a threshold α ∈ [0, 1], the α-threshold
classifier hα : X → {0, 1} is defined as hα(x) = 1{h(x) > α}, and the threshold hypothesis
set (THS) of h is given by HT (h) = {hα}α∈[0,1]. In Theorem 4.1 we show that there exists
hα∗ ∈ HT (h) such that Rε(hα∗) ≤ Rε(h). The following lemma plays a crucial role in proving
Theorem 4.1.
Lemma 4.1. Let h : X → [0, 1] be any measurable function. For any �∈ {>,≥}, the following
inequality holds, and it becomes an equality if h is continuous or takes finitely many values:

1

{(
sup

x′∈Bε(x)
h(x′)

)
� α

}
≥ sup
x′∈Bε(x)

1{h(x′) � α} (11)

Note that Lemma 4.1 is a generalization of the layer-cake representation of h(x) given by,

h(x) =

∫ 1

0

1{h(x) > α}dα =

∫ 1

0

1{h(x) ≥ α}dα.

Theorem 4.1. Let h : X → [0, 1] be any probabilistic binary classifier. Let hα be the α-threshold
classifier. Then the following equation holds:

Rε(h) ≥
∫ 1

0

Rε(hα)dα ≥ inf
α
Rε(hα). (12)

Further, if h is either continuous or takes finitely many values, the first inequality in (12) becomes an
equality.

Note that h takes finitely many values in the case of RECs, and h is continuous in the case of INCs
and WNCs whenever the noise distribution admits a density. Hence, Rε(h) =

∫ 1

0
Rε(hα)dα in all

these cases.
Remark 4. Theorem 4.1 says that in the binary case (K = 2), if one is able to consider complex
enough hypotheses sets that contain theHT (h), then randomization is not necessary because there is
a deterministic classifier with equal or better adversarial risk.

It was very recently shown with a toy example [45, Section 5.2] that Theorem 4.1 does not hold in the
multi-class case K > 2. This example shows that even when the family of probabilistic classifiers
considered is very general (all Borel measurable functions), simple data distributions can create a
situation in which the optimal classifier is probabilistic, and there is no optimal deterministic classifier.
In other words, there is a strict gap in adversarial risk between the best deterministic classifier and the
best probabilistic one.

4.2 Applications: Connections to Weighted Ensembles and Randomized Smoothing

In this section, we apply Theorem 4.1 to probabilistic classifiers presented in Section 2.3.

RECs. When µ =
∑
m∈[M ] pmδhm and Y = {0, 1}, the REC hµ can be written as hµ(x) =∑M

m=1 pmhm(x). Let us introduce the constant classifier h0(x) = 1 for all x, and p0 = −α. Then
hα (x) = 1{

∑K
m=1 pmhm(x) > α} = 1{

∑M
m=0 pmhm(x) > 0}. This shows that hα is a weighted

ensemble, such as those that the boosting algorithm can learn [17].

Further, a REC h built with M base binary classifiers can take at most p ≤ 2M distinct values,
corresponding to all possible partial sums of the weights pm. Let 0 = r1 ≤ . . . ≤ rp = 1 be
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the possible values. Then, for any α ∈ [ri, ri+1), hα = hri . Applying Theorem 4.1 yields,

Rε(h) =

∫ 1

0

Rε(hα)dα =

p−1∑
i=1

∫ ri+1

ri

Rε(hri)dα =

p−1∑
i=1

(ri+1 − ri)Rε(hri) (13)

Equation (13) shows that the THS HT (h) = {hα}α∈[0,1] is composed of at most p ≤ 2M distinct
classifiers, each of which is in turn a weighted ensemble. In case of uniform weights i.e. pm = 1

M ,
there are only M distinct weighted ensembles inHT (h).

INCs. Let hη : X → {0, 1} be the deterministic binary classifiers created from a
base classifier h, as defined in Section 2.3. The probabilistic classifier hµ is defined as
hµ(x) = Pη∼µ(h(x + η) = 1). Thus, the α-threshold classifier takes a similar form to
the well-known classifier obtained by randomized smoothing.

hα(x) = 1{ P
η∼µ

(h(x+ η) = 1) > α}. (14)

Randomized smoothing was first introduced in [26] and refined in [8, 27, 42] as a way to create
classifiers that are certifiably robust. Given a deterministic classifier h : X → Y and a noise
distribution µ ∈ P(X ), the smoothed model will output a prediction according to the following rule:

hRS(µ)(x) = argmax
y∈Y

Pη∼µ (h(x+ η) = y) = 1
{
Pη∼µ (h(x+ η) = 1) > 1

2

}
(15)

In other words, Equation (14) generalizes the randomized smoothing classifier in the binary case by
replacing the 1

2 threshold by α. Theorem 4.1 then states that for any INC, there exists a deterministic
randomized smoothing classifier with threshold α that is at least as robust.

5 Families of Binary Classifiers for Which Randomization Does not Help

In Sections 3 and 4, we discussed two types of hypothesis sets for binary classification: 1) base set
Hb from which a probabilistic classifier is built using some µ ∈ P(Hb), and 2) threshold setHT (h)
which is built from a base probabilistic classifier h. Recapitulating this two-step process, one may
define the completion of a base set Hb of binary classifiers w.r.t. a set of probability distributions
M ⊆ P(Hb) as, Hb(M) = ∪µ∈MHT (hµ). Observe that Hb ⊆ Hb(P(Hb)). In the following
theorem, we show that ifHb = Hb(M), then probabilistic binary classifiers built fromHb using any
µ ∈M do not offer robustness gains compared to the deterministic classifiers inHb.
Theorem 5.1. If Hb = Hb(M) and δh ∈ M for all h ∈ Hb, then infh∈Hb Rε(h) =
infµ∈MRε(hµ).

Proof.

inf
h∈Hb(M)

Rε(h) = inf
µ∈M

inf
h∈HT (hµ)

Rε(h) ≤ inf
µ∈M

Rε(hµ) ≤ inf
h∈Hb

Rε(h), (16)

where the first inequality follows from Theorem 4.1 and the second by considering µ = δh for any
h ∈ Hb. The desired conclusion follows by observing that the first and last terms in (16) are identical
from the assumptionHb = Hb(M).

A trivial example where the assumptions of Theorem 5.1 hold is whenHb is the set of all measurable
functions h : X → {0, 1}. Such a Hb is commonly used in the study of optimal adversarial risk
[2, 40]. In the following corollary, we show that the assumptions of Theorem 5.1 also hold in the
case of RECs built usingHb that satisfy a “closure” property.

Corollary 5.1. Let Hb be any family of deterministic binary classifiers. Let M = PM (Hb) ⊂
P(Hb) be the subset of probability measures over Hb defining RECs as in Section 2.3. Let A ={
h−1(1) : h ∈ Hb

}
. If A is closed under union and intersection, then

inf
h∈Hb

Rε(h) = inf
µ∈PM (Hb)

Rε(hµ).
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Remark 5 (Implications on the optimal adversarial classifier). Pydi and Jog [40, Theorem 8] show
the existence of a binary deterministic classifier attaining the minimum adversarial risk over the space
of all Lebesgue measurable classifiers in Rd. Awasthi et al. [2, Theorem 1] prove a similar result
over the space of universally measurable classifiers in Rd. For both these families the assumptions of
Theorem 5.1 hold forM = P(Hb), and so probabilistic classifiers offer no additional advantage over
deterministic ones. Further, supposeH∗ is a finite subset of classifiers achieving optimal adversarial
risk. Then by Theorem 3.2, for any µ ∈ P(H∗), the expected matching penny gap for hµ must be
zero, otherwise we could strictly improve the adversarial risk by considering the mixture built using µ.
In other words, any pair of optimally robust binary deterministic classifiers in the settings of [2, 40]
can only be in a matching penny configuration on a null subset E ⊂ X × Y .

6 Conclusion and Future Work

In this paper, we have studied the robustness improvements brought by randomization. First, we
studied the situation in which one expands a base family of classifiers by considering probability
distributions over it. We showed that under some conditions on the data distribution and the configu-
ration of the base classifiers, such a probabilistic expansion could offer gains in adversarial robustness
(See Corollary 3.1), characterized by the matching penny gap. These results generalize previous
work that focused on RECs [13]. Next, we showed that for any binary probabilistic classifier, there is
always another deterministic extension with classifiers of comparable or better robustness. This result
is linked with the existence results in [2, 40]. As a direct consequence of this result, we show that in
the binary setting, deterministic weighted ensembles are at least as robust as randomized ensembles
and randomized smoothing is at least as robust as noise injection.

There are many avenues for future research.

Improving the Matching Penny Gap. An interesting direction would be finding tighter bounds
on the matching penny gap for particular and widely used probabilistic classifiers like RECs, INCs
and WNCs. It would be interesting to establish the conditions under which each method can offer
robustness gains, and to quantify those gains in terms of parameters such as the strength of the noise
injected or the number of classifiers in the REC.

Studying the Threshold Hypothesis Sets. We have seen in Section 4.2 that different probabilistic
classifiers induce different THS. In particular, we showed the THS corresponding to RECs and INCs.
It would be useful to formally describe the THS induced by other popular families of probabilistic
classifiers in the literature. It would also be useful to quantify the complexity gap between the initial
Hb and the THS to understand the risk-complexity trade-off we would have to incur.

Multiclass Setting. The toy example in [45, Section 5.2] shows that randomization might be
necessary in the multi-class setting, as it is no longer true that there is always a deterministic optimal
classifier, even when considering very general families of deterministic classifiers like all measurable
functions. A natural road for future work is to further characterize the situations in which probabilistic
classifiers strictly outperform deterministic ones in the multi-class setting.

Training algorithms for diverse ensembles and RECs. There are numerous works based on the
idea of training diverse classifiers that are not simultaneously vulnerable to create robust ensembles
[11, 24, 33, 41, 49, 50]. Most of these approaches try to induce orthogonality in decision boundaries so
that gradient-based attacks do not transfer between models. This intuition is validated by Corollary 3.1,
since such diversification would tend to increase the matching penny gap. It should be noted that
ensembles and RECs have different inference procedures, and attacking them represents different
optimization problems. One avenue of research would be to make the link between the matching penny
gap and the diversity more formal. In addition, designing training algorithms explicitly optimizing
the matching penny gap would be valuable, particularly because existing training algorithms for
RECs [31, 38] have been shown to be inadequate [12].
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Supplementary Material

Appendix A Measurability of the `0-1 under attack

In this section, we will go over the conditions that ensure the well-definedness of the adversarial
risk defined in (1). We will show that the assumptions we make are verified in the settings that are
of interest to our work. We highlight that the main purpose of this paper is not to deeply study the
existence of measurable solutions to the adversarial problem, as was done in previous work [1, 40, 44].
In this work, we allow ourselves to add hypothesis on the input space X and the families of classifiers
Hb that we consider, as long as they are valid in practice.

A.1 Discussion

Recall that in our setting we have the following. The input space X is some subset (almost always
bounded or even compact) of Rd, Y = [K] and P(Y) = ∆K . On the other hand, for all the
applications of interest to our work, we consider base hypothesis sets Hb that are either finite or
discrete (for randomized ensembles), or identifiable with subsets of some Rp (for weight and input
noise injection). For all these sets, we assume the usual topology and the Borel σ-algebra that
is generated by the open sets. We further assume that X and Hb are Borel spaces, which is not
restrictive. It allows, for example, any open or closed set of Rn, which already encompasses all
practical applications of interest. This hypothesis makes it simpler to work on the product measure
space X ×Hb.
In the adversarial attacks literature, the question of measurability is always with respect to X [2, 40].
For a deterministic classifier h : X → Y = [K] to be measurable, the sets h−1(k) must be
measurable. In other words, each classifier h creates a K-partition of X into measurable subsets
h−1(1), . . . , h−1(K). This immediately translates into the `0-1, as a function of x, being measurable,
because `0-1((·, y), h)−1(1) = {x ∈ X | h(x) 6= y} = X \ h−1(y). In other words, assuming
classifiers are measurable functions translates into measurability of the 0-1 loss, so the arguments in
previous work [1, 16, 40] can be used to justify that the adversarial risk is well-defined.

We introduce a new component, the BHSHb, and we now compute integrals over it. For this reason,
we now consider more general functions of the form f : X ×Hb → {0, 1}, f(x, h) = 1{h(x) 6= y}
and study their measurability. If one fixes h, the function fh(x) = 1{h(x) 6= y} becomes the same
0-1 loss considered earlier, so assuming every h is a measurable function translates into the fact that
f is measurable w.r.t. x for every fixed h. The new part we have to deal with is the measurability of
f w.r.t h for every fixed x.

As a first example, let us consider the case of linear classifiers. In this case, a classifier h can be
represented as a K × d matrix A with the classification rule h(x) = argmaxk(Ax)k, meaning h
classifies x using the row with higher score. In this case, we can directly see the measurability of f
in each component (fh and fx) by looking at the pre-images of 1, which are the sets that induce an
error (recall y is fixed). For fh, the pre-image is the set of x ∈ X such that h(x) 6= y. This can be
seen as the complement of the set Xy in which h predicts y.

(fh)−1(1) = {x ∈ X | h(x) 6= y} = {x ∈ X | h(x) = y}C = XC
y

The set Xy is described by K − 1 linear equations using the rows aj of the matrix A that defines the
linear classifier h, as follows

Xy = {x ∈ X | aTy x ≥ aTj x, ∀j 6= y}

This set is the finite intersection of hyperplanes, so it is Borel measurable, and therefore the function
fh is measurable on X for any h linear classifier.

For the measurability of fx, we have to consider the set Hy of classifiers that produce a prediction of
y for a fixed x. Let us recall that each classifier is represented by a matrix A ∈ RK×d, then

Hy = {h ∈ Hb | h(x) = y} = {A ∈ RK×d | aTy x ≥ aTj x, ∀j 6= y}

Hy is a convex cone, because if A,B ∈ Hy , then for a positive α, αA ∈ Hy and A+B ∈ Hy . This
set is therefore measurable, and so we can conclude that fx is measurable for every x.

15



When considering neural networks with weights parametrized by w, we can think of them as non-
linear functions plus a last linear layer as the one described earlier. Then, if the non-linear function is
continuous w.r.t both x and w, the function f we are considering is again measurable w.r.t to x and w.

In summary, all the situations that are of interest to our work verify that the function f is defined over
a product space Rd × Rp, and it has good properties when seen as functions of x or h separately
(measurable, continuous or differentiable). These separately measurable functions [7, Definition 4.47]
might not be jointly measurable, i.e. measurable on the product space, which is one condition that
would grant us the well-definedess of (1). Nevertheless, we can make use of the stronger properties
these functions have and assume they are Carathéodory functions [7, Definition 4.50]. This will
imply the joint measurability of f . For completeness, we rewrite the results from [7]:
Definition 2 (Carahéodory function [7, Definition 4.50]). Let (S,Σ) be a measurable space, and let
X and Y be topological spaces. Let BY be the Borel σ-algebra on Y . A function f : S ×X → Y is
a Carathéodory function if:

• For each x ∈ X , the function fx = f(·, x) : S → Y is (Σ,BY )-measurable.

• For each s ∈ S, the function fs = f(s, ·) : X → Y is continuous.

As we have seen, the functions f : X × Hb → R we consider can be assumed to be Carthéodory
functions, as they are in general differentiable or continuous in both components. Even going away
from practice, in theoretical works it is usual to consider classifiers h : X → ∆K as Borel measurable
functions from X , and adding the assumption of continuity w.r.t h for every fixed x it not restrictive
(for example neural networks with continuous activation functions [31]).
Lemma A.1 (Carahéodory functions are jointly measurable [7, Lemma 4.51]). Let (S,Σ) be a mea-
surable space, X a separable metrizable space, and Y a metrizable space. Then every Carathéodory
function f : S ×X → Y is jointly measurable

A.2 Conclusion

If we assume the hypotheses of Lemma A.1, that is

1. We assume that for every component y, the function f : X × Hb → {0, 1} defined as
f(x, h) = 1{h(x) 6= y} is a Carathéodory function, which translates in our case into:

• Each h ∈ Hb, h is a measurable function on X (very common assumption).
• For each x, the function fx : Hb → {0, 1}, fx(h) = f(x, h) is continuous (not

unrealistic, satisfied by neural networks with continuous activation functions)
2. The input space X is a measurable space (satisfied by hypothesis, X ⊆ Rd is some Borel

set).
3. The base hypothesis setHb is a separable metrizable space (valid whenHb is a Borel subset

of Rp).
4. The output space {0, 1} is a metrizable space (satisfied).

then, by Lemma A.1, the function f is jointly measurable.

By Fubini-Tonelli’s Theorem, the function x →
∫
Hb f(x, h)dµ(h) is measurable on X . Then,

following the same arguments as in [1, 16], the loss under attack can be defined and is measurable
over the universal σ-algebra U(X ) onX . Then, considering U(X ), the adversarial risk is well-defined
as it is an integral over X using the completions of the class conditioned measures ρy over U(X ) (see
(1)).

Appendix B On the name Matching penny gap

In the original matching penny game between player 1 (attacker) and player 2 (defender), each
player has a penny coin and has to secretly position its penny in either heads or tails. Then, both coins
are simultaneously revealed and the outcome of the game is decided as follows: attacker wins if
both pennies match. If they do not match, then defender wins. This situation can be represented
using the following matrix (attacker wants to maximize), where heads and tails have been replaced
by f1 and f2 for reasons that will be explained later:
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Attacker

D
ef

en
de

r f1 f2

f1 1 0

f2 0 1

This game has no Pure Nash Equilibrium. It has, however, a mixed Nash equilibrium which consist
of the strategies ( 1

2 ,
1
2 ) for both players [18]. In the context of the matching pennies game, this can be

seen as the strategy in which players toss the coin to obtain either heads or tails uniformly at random
(assuming the coins are fair) instead of choosing one of the sides. Using this strategy, each player
can be sure that, on average over multiple realizations of the game, they will win half of the times
each. The fact that it is a Nash Equilibrium means that, if one player deviated from this strategy, the
other player could find a way to win more than half the times. To see this, imagine that the defender
player plays heads with probability 1

2 + δ. Then, if attacker knew this, he could play the strategy
always heads. Then, from all the realizations of the game, with probability 1

2 + δ the coins would be
both on the same side (heads), meaning attacker would win 1

2 + δ of the times, gaining δ w.r.t the
equilibrium strategy.

The parallel with our work can be simply explained as follows (see Figure 2): Take a point (x0, y0)
and two classifiers f1, f2 that correctly classify x0. Suppose that both f1 and f2 are vulnerable
at x0, which is represented by the colored areas in Figure 2. However, add the key assumption that
they cannot be attacked at the same time, which is represented by the fact that the colored areas
do not intersect inside the ε-ball around x0. That is, even though an optimal attacker can fool each

Figure 2: Example of classifiers in a matching penny configuration around a point x0.

classifier individually, there is no point in the allowed perturbation region Bε(x0) in which both are
simultaneously fooled.

Consider now that the defender is using a randomized ensemble that picks either f1 or f2 at random
for inference. This was introduced in [38] with the name mixtures of classifiers, related to mixed
strategies in the context of game theory. In such setting, the optimal attacker that faces such mixture
is now in a matching pennies game situation. At each inference pass, the attacker must choose which
classifier to attack in order to craft the adversarial example x′, and if the chosen classifier matches
with the one the defender used, then the attacker wins. If they do not match, the prediction made by
the defender will be correct and the attacker would have lost. This is exactly the game of matching
pennies!

What is particularly worse for defender is that, in the traditional formulation of adversarial attacks,
the attacker is given the chance to play second and therefore can adapt to the classifier. In other
words, attacker can craft its perturbation for the particular classifier proposed by defender, while
defender has to propose a classifier that should be robust to every conceivable attack. This means
that if defender uses f1 or f2 individually, then attacker would be able to craft an attack that
induces an error. In this situation, and inspired by the game of matching pennies, defender can
turn these two strategies, that have 0 robust accuracy on their own, into a strategy that guarantees
an expected accuracy of 1

2 by randomizing over f1 and f2. Recall that attacker is optimal for any
fixed classifier, but it has no control over randomness, which means that when faced against a
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mixture of f1 and f2, attacker can compute any perturbation δ from them, but he has no knowledge
of which classifier will be used for each independent inference pass. This can be interpreted as
follows: for a given inference run, there is a chance of 1

2 that the perturbation proposed by attacker
is indeed an adversarial attack and induces an error.

Notice that if we increase the number of choices (classifiers) in matching pennies’ configuration to
M > 2, the game becomes harder for the attacker. Indeed, for every possible choice of classifier at
each inference pass, there is one out of M choices that lead to a successful attack (attacking the one
that was sampled for the inference pass), and M − 1 that lead to a correct classification. An extreme
example of such benefit to the defender is shown in Example 1.

Appendix C Details on the examples and remarks

C.1 Example 1: Maximum mathing penny gap

Note that for this example, each classifier w satisfies that wTx = 0, and therefore 1{wTx < 1} = 1,
which means that all w predict the correct label for the clean input x. Now we want to see that every
w is vulnerable at x.

Recall that we defined Hb as the space of linear classifiers w such that ‖w‖2 = 1
ε . We can rewrite

this norm as a dual norm ‖w‖2 = sup‖z‖=1 w
T z. Moreover, this supremum is attained by some zw,

so for each w we get zw of norm 1, such that wT zw = 1
ε .

(x, 1)ε

w

ε · zw

Figure 3: Visualization of Example 1. Best viewed in color. Here w is one of the linear classifiers
considered inHb. For the budget ε, there is exactly one point ε · zw of intersection between the ε-ball
around (x, 1) and the hyperplane defined by the equation wTx = 1. All the points in the half-space
wTx ≥ 1 are classified as 0. This includes ε · zw, and this is the only point in the ε-ball that belongs
to this half-space. That is why ε · zw is the only adversarial attack that can fool w, and it cannot fool
any other w′ 6= w.

Now, for each w ∈ Hb, consider the adversarial example ε · zw. It is a valid adversarial ex-
ample because it has norm ε, and wT (ε · zw) = ε · 1

ε = 1, meaning that the classifier predicts
1{wT (ε · zw) < 1} = 0, the wrong class. The next step is to guarantee that this perturbation is
unique for each w, which holds because we are using the Euclidean norm.

Having that ε · zw fools w and only w, we can consider for simplicity µ the uniform distribution
overHb. Let us compute the setsHvb(x, 1) and µmax(x, 1) = 0 to be able to compute the matching
penny gap for this example.

As we just saw, every w is itself vulnerable. This means that Hvb(x, 1) = Hb, and therefore
µ(Hvb(x, 1)) = 1.
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Given the unicity of zw, we know that no two classifiers can be fooled by the same perturbation.
Therefore the family of simultaneously vulnerable classifiers only contains singletons {w}. As
µ({w}) = 0 for every w, taking the supremum gives µmax(x, 1) = 0.

Finally, expected the matching penny gap for this example with only one point is

E
x,y

[πhµ(x, 1)] = πhµ(x, 1) = µ(Hvb(x, 1))− µmax(x, 1) = 1− 0 = 1.

In other words, the mixture in this example has the best adversarial risk possible, even though it is
built from classifiers with the worst adversarial risk possible individually.

C.2 Example 2: Minimum mathing penny gap / Parallel sets

To simplify the example, consider the compact set A = {0} ⊂ R. Then, the family of all parallel
classifiers hr = A⊕Br(0) are the classifiers of the form hr(x) = 1{x ∈ (−r, r)} for r > 0.

Recall that a matching penny configuration arises when 1) both classifiers are vulnerable, but 2)
not simultaneously. That is, each one of them must be vulnerable, but no allowed perturbation can
induce an error on both at the same time. We will see that this cannot happen with this family of
classifiers that are “parallel”.

W.l.o.g, take any point x > 0 and suppose it is of class is 0. Take any two classifiers hr1 , hr2 with
r1 < r2 and fix the attacker budget to ε. Note that hr1 is vulnerable at x if an only if x− ε ≤ r1. That
is, the attacker must be able to move x inside (−r, r) with its budget of ε. This also holds for hr2 .

Note that to satisfy the condition that both classifiers are vulnerable, we must ensure that x− ε ≤ r1
and x − ε ≤ r2. However, any x that satisfies x − ε ≤ r1 immediately satisfies x − ε ≤ r2, as
r1 < r2, meaning that the same perturbation induces an error on both classifiers. In conclusion, they
cannot be both individually vulnerable without being simultaneously vulnerable at x.

0−r1 r1−r2 r2

h1

h2

(a) Example of parallel classifiers in R

Ar1

Ar2

(b) Example of parallel classifiers in R2

For the case of general parallel sets Ar1 , Ar2 , note that if r1 < r2 then Ar1 ⊂ Ar2 . Assuming that the
classifiers predict 1 if the point is inside the setAr, then the condition both classifiers are vulnerable
means that a point x of class 0 is at a distance of at most ε from both Ar1 , Ar2 . However, for any
given x, being ε-close to Ar1 implies that x is ε-close to Ar2 , so any adversarial example of Ar1 will
be also adversarial for Ar2 . In conclusion, they can never be in a matching penny configuration.

C.3 Multiple optimal classifiers in matching penny configuration

In this section, we are going to explain in more detail Remark 2. First, we rewrite Equation (9) which
states the condition under which a mixture outperforms the individual classifiers composing it:

E
(x,y)∼ρ

[πhµ′ (x, y)] > E
h∼µ′

[Rε(h)]− inf
h∈Hb

Rε(h)

For simplicity, assume Hb consist of two different classifiers h1, h2 with the same adversarial
risk and with a strictly positive matching penny gap, i.e. E(x,y)∼ρ[πhµ(x, y)] > 0 for some
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µ = (µ(h1), µ(h2)). Then the REC hµ that consists of these two classifiers will outperform each
one of them. This is because the LHS of equation (9) is positive, while the RHS is exactly 0 because
both classifiers have the same risk, so their average risk is equal to the best risk among them. If we
add the assumption that h1 and h2 were optimal deterministic classifiers from a larger familyHb, we
would have created a mixture that outperforms all classifiers in it.

If now we try to soften the assumptions on h1, h2, and say that they have very similar adversarial
risks, i.e. Rε(h2) = Rε(h1) + δ for some small δ, then the RHS of (9) is no longer 0 but δ2 . In this
case, for condition (9) to hold we need the matching penny gap to be not only strictly positive, but
greater than δ

2 .

The important intuition is that mixing classifiers that have very different adversarial risks is not ideal,
as one will then need a much greater expected matching penny gap in order to actually outperform
the best individual classifier. Another interesting intuition is that one can create a good mixture from
very bad classifiers, as was seen in Example 1, where individual classifiers had adversarial risk of 1
(the worst possible), but mixing them resulted in an adversarial risk of 0 (the best possible). Even if
Example 1 is merely a toy example, it highlights the intuition that it is possible for many non-robust
classifiers to gain robustness as a mixture if they interact nicely between them and the dataset (have a
high expected matching penny gap).

C.4 Example with linear classifiers: Mixtures can improve robustness (Figure 1b)

Figure 5: The mixture of f1 and f2 with uniform weights has lower adversarial risk than any linear
classifier, motivating the use of mixtures as a robust alternative.

C.4.1 Detailed description of the example

Here is the exact description of the example that was introduced in Figure 1b. We will use
colors to simplify the distinction between points. The points have the following coordinates:
x1 = (0, 1), x2 = (−2.7, 1.1), x3 = (2.7, 1.1), x4 = (0,−2). For this extended analysis, it will be
easier to work with classes in {−1, 1}, so we have labels y1 = 1 and y2 = y3 = y4 = −1. We set
ε = 1.

Let f = (w, b) be a generic linear classifier in R2, where w = (w1, w2) is the normal vector
of the hyperplane and b is the bias term. The classification is done using the rule sign(f(x)) =
sign(wTx+ b), as in standard binary classification with labels {−1, 1}.
In this setting, a point (x, y) ∈ R2 × {−1, 1} is correctly classified if y · f(x) > 0. Moreover, for
linear classifiers, the optimal adversarial perturbation is known and robustness at a point can be easily
studied. Note that given a perturbation δ, we can check if it induces a misclassification by simply
computing y · f(x+ δ). We can say f is robust at (x, y) if, for every perturbation of norm at most ε,

20



we have that y · f(x+ δ) > 0. This can be developed to get

y · f(x+ δ) > 0 ⇐⇒ y(wT (x+ δ) + b) > 0

⇐⇒ y(wTx+ b) + y(wT δ) > 0

⇐⇒ y(wTx+ b) > −y(wT δ)

(17)

For f to be robust at (x, y), Equation (17) must hold for all δ, in particular for the quantity maximizing
the RHS. This happens for δ∗ = −yε w

‖w‖ . Inserting this worst case perturbation, we obtain a simple
condition for robustness in the linear case:

y(wTx+ b) > ε ‖w‖ (18)

Without loss of generality, we can assume w has norm 1 so the last equation further simplifies. We
can use these inequalities to show that no linear classifier can be robust at x1, x2 and x4 at the same
time. Indeed, being robust at each point gives us the following inequalities:

(x1) : w2 + b > 1 =⇒ b > 1− w2

(x2) : 2.7w1 − 1.1w2 − b > 1 =⇒ b < 2.7w1 − 1.1w2 − 1
(x4) : 2w2 − b > 1 =⇒ b < 2w2 − 1

Using the inequalities for x1 and x4, we get the condition w2 >
2
3 . Using the inequalities for x1 and

x2 gives us that 2.7w1 − 0.1w2 > 2. Together with the bound on w2, we get the bound w1 >
62
81 .

These two bounds make it impossible for w to have norm 1, contradicting our hypothesis. An
analogous reasoning shows that no linear classifier can be robust at x1, x3 and x4 at the same time.

Knowing that a linear classifier can’t be robust at x1, x2 and x4 simultaneously, we can further ask
what is the best adversarial risk one can get. One can easily check that it is possible to be robust on
any of the pairs (x1, x2), (x2, x4) or (x1, x2). At each time, robustness on the two selected points
comes at the expense of non-robustness on the third point. This fact discards the strategy of being
robust at the pair (x2, x4), because being non-robust at x1 implies a risk of 1

2 , way higher than the
risk of 1

6 one would have to pay for being non-robust at x2 or x4. With this being said, the other two
solutions are optimal in terms of adversarial risk for linear classifiers, with an adversarial risk of 1

3 .
Nevertheless, for building a robust mixture, only one of them will be useful.

C.4.2 Matching pennies situation.

In order to show that the matching pennies situation can exist on x4, the simplest thing is to propose
two linear classifiers for which it happens. We propose the following linear classifiers:

• f1 = (w1, b1) with w1 = (0.825, 0.565132728) and b1 = 0.536876091.

• f2 = (w2, b2) with w2 = (−0.825, 0.565132728) and b2 = 0.536876091.

Using Equation (18) one can check that these classifiers match the situation that is illustrated in
Figure 5, i.e. they are both robust at x1, they are robust at x3 and x2 respectively, they are non-robust
at x4 but they can’t be attacked on the same region, as their intersections with the 1−ball around x4
are disjoint (gray circular sectors in Figure 5). Let us denote h the REC f1 and f2 with probabilities
( 1
2 ,

1
2 ).

C.4.3 Adversarial risk calculation for the mixture of f1 and f2.

For x2, f1 is not robust, meaning its adversarial 0-1 loss on x2 is 1. On the other hand, f2 is robust
on x2, as no perturbation of norm at most ε will make it predict the wrong class. For these reasons,
the adversarial 0-1 loss on x2 for h is 1

2 . The same goes for x3, and therefore they each add 1
12 to the

total adversarial risk (mass of each point times the 0-1 loss).

At the point x4, given the matching pennies situation, the adversarial 0-1 for h is 1
2 , for a total

adversarial risk of 1
12 . As both f1 and f2 are robust on x1, the adversarial risk on x1 is 0, and we can

conclude that the total adversarial risk of h is 3
12 = 1

4 , which is less than the optimal adversarial
risk when considering linear classifiers only, that is 1

3 .
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C.5 On the toy example in Trillos et al. [45, Section 5.2]

The example shown in Trillos et al. [45, Section 5.2] involves three points of different classes. We
are interested in Case 4-(i), in which each pair of points can be merged into one by the adversary,
but the three cannot be merged because their three ε-balls have an empty intersection, as depicted in
Figure 6. For simplicity, we assume each point has a probability ωi of 1

3 , which satisfies the condition
ω1 < ω2 + ω3 on Case 4 - (i) in [45].

x1 x2

x3

Figure 6: Toy example in Trillos et al. [45, Section 5.2], Case 4-(i). Best viewed in color.

Authors show that in this case, the optimal attack consist on distributing the mass of the original
points into the two neighbors in such a way that, for each of the barycenters x̄ij , the mass coming
from each of the original points xi and xj is the same. In our simplified example, this means that
each original point sends 1

6 of its mass to each neighboring barycenter, as depicted in Figure 7a.
When it comes to an optimal classifier, the one presented in Figure 7b is optimal and coincides with
the one described in the original work of [45]. This classifier predicts the original class for each xi
inside the part of the ball Bε(xi) that is not intersecting any of the other balls. For each intersection
Bε(xj) ∩ Bε(xk), the classifier predicts class j and k with probability 1

2 each, and the third class
i with probability 0. This classifier achieves an adversarial risk of 1

2 , because at any point of the
new adversarial distribution that is supported on {x̄12, x̄13, x̄23}, this classifier has probability 1

2 of
predicting the correct class.

x1 x2

x3

x̄121
6

1
6

x̄13
1
6

1
6

x̄23
1
6

1
6

(a) Optimal attack.

x1 x2

x3

(b) Optimal classifier.

Figure 7: Solution for toy example in Trillos et al. [45, Section 5.2], Case 4-(i). Best viewed in color.

From the perspective of our work, it is interesting that the optimal probabilistic classifier shown in
Figure 7b can be built as a uniform REC of 6 deterministic classifiers fijk that predict i in Bε(xi),
j in Bε(xj) \ Bε(xi) and k in Bε(xk) \ (Bε(xi) ∪ Bε(xj)) (see Figure 8). Each fijk has standard
accuracy of 1, and adversarial accuracy of 1

3 (risk of 2
3 ) against an optimal attack, like the constant
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classifiers, because it can only be robust at one point at most. They are optimal when restricting to
deterministic classifiers. Additionally, the uniform mixture of these 6 classifiers coincides with the
classifier presented in Figure 7b, which has standard accuracy of 1, and adversarial accuracy of 1

2 ,
meaning an increase in performance of 1

2 −
1
3 = 1

6 with respect to the deterministic fijk.

x3

x2x1

(a) Deterministic classifier f123

x1

x3

x2

(b) Deterministic classifier f231

Figure 8: Examples of deterministic classifiers that allow the construction of the optimal classifier as
a REC

One can compute the matching penny gap of this mixture of 6 classifiers in this dataset as follows:
at each original point xi, there are only two classifiers that are robust (fijk and fikj), which means
µ(Hvb(xi, i)) = 4

6 = 2
3 . On the other hand, a single perturbation will not fool all the four vulnerable

models. Starting from xi, the attacker might move this point towards xj or xk. Any of these
perturbations will fool three of the six classifiers. For example, the attack x1 → x̄12 will fool the
subset {f213, f231, f321}, while the other three classifiers will correctly predict the class 1 at x̄12. In
conclusion, µmax(xi, i) = 3

6 = 1
2 . We conclude that at each point, the matching penny gap is exactly

2
3 −

1
2 = 1

6 , for a total expected matching penny gap of 1
6 (recall every point had the same mass).

The average risk is 2
3 , and the risk of the mixture can be found using Equation (6) from Theorem 3.2

as 2
3 −

1
6 = 1

2 .

Appendix D Proofs

Theorem 3.1. For a probabilistic classifier hµ : X → P(Y) constructed from a BHSHb using any
µ ∈ P(Hb), we haveRε(hµ) ≤ Eh∼µ [Rε(h)].

Proof. For any µ ∈ P(Hb), we have the following.

Rε(hµ) = E
(x,y)∼ρ

[
sup

x′∈Bε(x)
`0-1((x′, y),hµ)

]
= E

(x,y)∼ρ

[
sup

x′∈Bε(x)
E
h∼µ

[1{h(x′) 6= y}]

]

≤ E
(x,y)∼ρ

[
E
h∼µ

[
sup

x′∈Bε(x)
1{h(x′) 6= y}

]]

= E
h∼µ

[
E

(x,y)∼ρ

[
sup

x′∈Bε(x)
1{h(x′) 6= y}

]]
2

= E
h∼µ

[Rε(h)] .

Taking infimum with respect to µ on both sides of the above inequality, we get the following.

inf
µ∈P(Hb)

Rε(hµ) ≤ inf
µ∈P(Hb)

E
h∼µ

[Rε(h)] (19)
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For any h ∈ Hb, we may choose the Dirac measure µh that assigns probability 1 to h in order to
obtain infµ∈P(Hb) Eh∼µ [Rε(h)] ≤ Eh∼µh [Rε(h)] = Rε(h). Taking infimum over h ∈ Hb, we get
the following.

inf
µ∈P(Hb)

E
h∼µ

[Rε(h)] ≤ inf
h∈Hb

Rε(h). (20)

The remaining assertion of the theorem follows by combining (19) with (20).

Theorem 3.2. For a probabilistic classifier hµ : X → P(Y) constructed from a BHSHb using any
µ ∈ P(Hb),

Rε(hµ) = E
h∼µ

[Rε(h)]− E
(x,y)∼ρ

[πhµ(x, y)]. (6)

Proof. Observe that for any h ∈ Hb, supx′∈Bε(x) 1{h(x′) 6= y} = 1 if and only if h ∈ Hvb(x, y).
Hence,

E
h∼µ

[
sup

x′∈Bε(x)
1{h(x′) 6= y}

]
= E
h∼µ

[1{h ∈ Hvb(x, y)}] = µ(Hvb(x, y)).

Taking expectation on both sides with respect to (x, y) ∼ ρ, we get

E
(x,y)∼ρ

[µ(Hvb(x, y))] = E
(x,y)∼ρ

E
h∼µ

[
sup

x′∈Bε(x)
1{h(x′) 6= y}

]
= E
h∼µ

[Rε(h)] , (21)

where the second equality follows from switching the order of the two preceding expectations.

For any x′ ∈ Bε(x),

E
h∼µ

[1{h(x′) 6= y}] = µ({h ∈ Hb : h(x′) 6= y}) ≤ µmax(x, y),

where the above inequality holds because the µ measure of any subset ofHb that is simultaneously
vulnerable at some x′ ∈ Bε(x) is at most µmax(x, y). Taking supremum over all x′ ∈ Bε(x) in the
above inequality, we get the following.

sup
x′∈Bε(x)

E
h∼µ

[1{h(x′) 6= y}] ≤ µmax(x, y).

We will now show that the above inequality also holds in the other direction.

Let {Hk}∞k=1 be a sequence of sets, Hk ∈ Hsvb(x, y), such that limk→∞ µ(Hk) = µmax(x, y).
For each Hk, we have by definition of Hsvb(x, y) that there exists some xk ∈ Bε(x) such that all
classifiers h ∈ Hk are fooled by xk. In other words, the total mass of classifiers that are fooled by xk
is greater or equal to µ(Hk). This gives

sup
x′∈Bε(x)

E
h∼µ

[1{h(x′) 6= y}] ≥ E
h∼µ

[
1{h(xk) 6= y}

]
≥ µ(Hk).

This is true for every k, so taking k → ∞ we get that supx′∈Bε(x) Eh∼µ [1{h(x′) 6= y}] ≥
limk→∞ µ(Hk) = µmax(x, y).

Taking expectation on both sides with respect to (x, y) ∼ ρ, we get

Rε(hµ) = E
(x,y)∼ρ

[
sup

x′∈Bε(x)
E
h∼µ

[1{h(x′) 6= y}]

]
= E

(x,y)∼ρ
[µmax(x, y)] . (22)

Combining (22) and (21) yields (6).
2We can swap expectations by Fubini-Tonelli’s theorem because the function supx′∈Bε(x) 1{h(x

′) 6= y}
is universally measurable if h is measurable (See [16, 40]) and both measure spaces X × Y ,Hb are assumed
σ-finite. We also assume the measurability w.r.t h. See Appendix A for details.
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Corollary 3.1. For µ′ ∈ P(Hb),Rε(hµ′) < infh∈Hb Rε(h) if and only if the following condition
holds.

E
(x,y)∼ρ

[πhµ′ (x, y)] > E
h∼µ′

[Rε(h)]− inf
h∈Hb

Rε(h) (9)

Additionally, infµ∈P(Hb)Rε(hµ) < infh∈Hb Rε(h) if and only if there exists µ′ ∈ P(Hb) for which
(9) holds.

Proof. Suppose (9) holds for some µ′ ∈ P(Hb). Then,

inf
µ∈P(Hb)

Rε(hµ) ≤ Rε(hµ′) = E
h∼µ′

[Rε(h)]− E
(x,y)∼ρ

[πhµ′ (x, y)]

< inf
h∈Hb

Rε(h) + E
(x,y)∼ρ

[πhµ′ (x, y)]− E
(x,y)∼ρ

[πhµ′ (x, y)]

= inf
h∈Hb

Rε(h),

where the first equality follows from Theorem 3.2 and the second inequality follows from the
assumption in (9). Suppose (9) does not hold for µ′ ∈ P(Hb). Then,

Rε(hµ′) = E
h∼µ′

[Rε(h)]− E
(x,y)∼ρ

[πh′µ(x, y)]

≥ inf
h∈Hb

Rε(h) + E
(x,y)∼ρ

[πhµ′ (x, y)]− E
(x,y)∼ρ

[πhµ′ (x, y)]

= inf
h∈Hb

Rε(h).

Suppose (9) does not hold for any µ′ ∈ P(Hb), then taking infimum with respect to µ′ ∈ P(Hb) in
the above inequality, we get infµ′∈P(Hb)Rε(hµ′) ≥ infh∈Hb Rε(h).

Lemma 4.1. Let h : X → [0, 1] be any measurable function. For any �∈ {>,≥}, the following
inequality holds, and it becomes an equality if h is continuous or takes finitely many values:

1

{(
sup

x′∈Bε(x)
h(x′)

)
� α

}
≥ sup
x′∈Bε(x)

1{h(x′) � α} (11)

Proof. As both functions only take the values 0 and 1, it suffices to show that if the RHS is equal
to 1, then so is the LHS. Suppose supx′∈Bε(x) 1{h(x′) � α} = 1. As the function 1{h(x′) � α}
takes only a finite number of values, this implies that there exists some x∗ ∈ Bε (x) such that
1{h(x∗) � α} = 1. This means that h(x∗) � α, and therefore supx′∈Bε(x) h(x′) � α. This makes
the LHS equal to 1.

If we further assume that h is continuous or takes a finite number of values, then if the LHS is equal
to one,

Theorem 4.1. Let h : X → [0, 1] be any probabilistic binary classifier. Let hα be the α-threshold
classifier. Then the following equation holds:

Rε(h) ≥
∫ 1

0

Rε(hα)dα ≥ inf
α
Rε(hα). (12)

Further, if h is either continuous or takes finitely many values, the first inequality in (12) becomes an
equality.

Proof. We begin the proof by rewriting the adversarial risk of h in terms of the adversarial risk for
each class. To alleviate notation, we denote `0-1ε ((x, y),h) = supx′∈Bε(x) `

0-1((x′, y),h). Recall
from Equation (1) that

Rε(h) = ν(0) · R0
ε(h) + ν(1) · R1

ε(h) (23)
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Let us now develop the terms Ryε (h). For any �∈ {>,≥} we obtain the following:

Ryε (h) = E
x∼py

[
`0-1ε ((x, y),h)

]
= E
x∼py

[∫ 1

0

1{`0-1ε ((x, y),h) � α}dα
]

=

∫ 1

0
E

x∼py

[
1{`0-1ε ((x, y),h) � α}

]
dα

(24)

In the last equation, we were able to interchange the two integrals using Tonnelli’s theorem. Indeed,
the function (x, α) 7→ 1{`0-1ε ((x, y),h) � α} is Lebesgue measurable in X × R if `0-1ε ((·, 0),h)
is Lebesgue measurable, which is the case [40, Theorem 1].

The next step is to use Lemma 4.1 to interchange the supremum operator and the indicator function.
This will make the adversarial risk of the hα appear. For y = 0 and replacing the operator � by >,
we obtain the following:

R0
ε (h) =

∫ 1

0
E

x∼p0

[
1{`0-1ε ((x, 0),h) > α}

]
dα

≥
∫ 1

0
E

x∼p0

[
sup

x′∈Bε(x)
1{h(x′) > α}

]
dα

≥
∫ 1

0

R0
ε(h

α)dα

(25)

Now we do a similar development for y = 1 and replacing the operator � by ≥ to obtain:

R1
ε (h) ≥

∫ 1

0
E

x∼p1

[
sup

x′∈Bε(x)
1{1− h(x′) ≥ α}

]
dα

≥
∫ 1

0
E

x∼p1

[
sup

x′∈Bε(x)
1{1− α ≥ h(x′)}

]
dα

≥
∫ 1

0
E

x∼p1

[
sup

x′∈Bε(x)
1− 1{h(x′) > 1− α}

]
dα

≥
∫ 1

0
E

x∼p1

[
sup

x′∈Bε(x)
1− h1−α(x′)

]
dα

≥
∫ 1

0
E

x∼p1

[
sup

x′∈Bε(x)
`0-1((x, 1),h1−α)

]
dα

≥
∫ 1

0

R1
ε(h

1−α)dα =

∫ 1

0

R1
ε(h

u)du

(26)

In the last equation, the change of variable u = 1 − α allows us to complete the calculations and
obtain the desired result. Putting everything together, we obtain the following result about the original
probabilistic classifier h:

Rε(h) ≥
∫ 1

0

ν(0)R0
ε(h

α) + ν(1)R1
ε(h

α)dα =

∫ 1

0

Rε(hα)dα (27)

In particular, Equation (27) implies thatRε(h) ≥ minαRε(hα), meaning that for any h probabilistic
binary classifier, there is always a deterministic α-threshold classifier with better or equal adversarial
risk.

Corollary 5.1. Let Hb be any family of deterministic binary classifiers. Let M = PM (Hb) ⊂
P(Hb) be the subset of probability measures over Hb defining RECs as in Section 2.3. Let A ={
h−1(1) : h ∈ Hb

}
. If A is closed under union and intersection, then

inf
h∈Hb

Rε(h) = inf
µ∈PM (Hb)

Rε(hµ).

26



Proof. Theorem 4.1 applied to RECs (see Section 4.2) tells us that Hb(PM (Hb)) is the set of all
weighted ensembles built from Hb. It is clear that for any h ∈ Hb, δh ∈ PM (Hb), so Hb ⊆
Hb(PM (Hb)). Let us now show the other inclusion.

Take any µ ∈ PM (Hb) and consider any weighted ensemble hα over Hb of the form hα(x) =
1{
∑
m∈[M ] pmhm > α} with pm = µ(hm). Define the function gα : {0, 1}M → {0, 1} as

gα(z1 . . . zM ) = 1
{∑M

m=1 pmzm > α
}

. Then, hα can be written as gα (h1(x) . . . hM (x)). Be-
cause the pm are positive, the function gα is a monotone boolean function. As any monotone
boolean function, gα can be written as a disjunctive normal form (DNF) without negations [9]. Thus,
the set AENS = {x ∈ X : hα(x) = 1} is a union of intersections over the sets A1 . . . AM where
Ak = h−1m (1). Because A is closed under union and intersection, AENS ∈ A, which means that
hα ∈ Hb. Thus,Hb(PM (Hb)) ⊆ Hb.
As all the hypothesis of Theorem 5.1 are met, we can conclude that infh∈Hb Rε(h) =
infµ∈PM (Hb)Rε(hµ).
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