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1 Introduction

The classical Ginzburg-Landau model describes the macroscopic theory for phenomena in superconduc-
tivity at low temperatures. It is derived from the Helmholtz free energy, which consists of a complex order
parameter u and the magnetic potential A [4]. In the physical literature, ∣ ∣u 2 represents the density of the
superconducting electron pairs in the superconducting material. The state ∣ ∣ =u 02 implies that the material
remains in normal conducting state, whereas the material is superconducting if ∣ ∣ =u 12 .

The Ginzburg-Landau theory also gives a good insight into understanding various topological defects
arising from cosmology. The superconducting state is achieved at the vacuum level of the potential, and it
can be regarded as a broken symmetry during a phase transition. For instance, this idea is realized by the
(special) relativistic extension of the planar Ginzburg-Landau theory, called the Abelian-Higgs model [8].
This model describes a charged scalar field ψ interacting with a ( )U 1 gauge field A and allows vortex
solutions that are charged magnetically but electrically neutral.

The Abelian-Higgs model is considered in the (2+1)-dimensional Minkowski space �1,2 with the metric
( )−diag 1, 1, 1 . The metric is used to raise or lower indices. The Lagrangian density for the model is defined

as follows:

� (∣ ∣ )= − + − −F F D uD u
ε

u1
4

1
2

1
8

1 .μν
μν

μ
μ

0 2
2 2 (1.1)

Here, =μ ν, 0, 1, 2, >ε 0 is the Higgs coupling constant, � �→u : 1,2 is the Higgs field, and � �→A :μ
1,2

is ( )U 1 gauge fields. In addition, = = ∂ − ∂F F A Aμν μν
A

μ ν ν μ represents the electromagnetic field and =D uμ

= ∂ +D u u iA uμ
A

μ μ is the covariant derivative. The Lagrangian �0 is invariant under the local ( )U 1 gauge
transform
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↦ ↦ − ∂u e u A A α,iα
μ μ μ

for any smooth function � �→α : 1,2 . The Euler-Lagrange equations are
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which are the (special) relativistic Ginzburg-Landau equations.
As a direct generalization of (1.1), Vachaspati and Achucarro proposed a new model in [12], which

contains n scalar fields:

� �( )= … → = …u u u k nΨ , , , where : for 1, , .n k1
1,2

The Lagrangian �0 is modified as follows:

� (∣ ∣ )= − + − −F F D D
ε
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It is easy to show that � is invariant under the local ( )U 1 gauge transformation

↦ ↦ − ∂e A A αΨ Ψ,iα
μ μ μ

for any smooth function � �→α : 1,2 . Indeed, if we write = eΦ Ψiα and = − ∂B A αμ μ μ , then the invariance
of � follows from the following two identities:

( ) ( )= ∂ − ∂ − ∂ − ∂ =

= ∂ + =

F A α A α F

D iB e D

,

Φ Φ Φ Ψ.
μν
B

μ ν ν ν μ μ μν
A

μ
B

μ μ
iα

μ
A

It is also invariant under the global ( )nSU gauge transformation

↦ eΨ Ψ,iα τk
k

where �∈αk for = … −k n1, , 12 and { }
=

−τk
k
n

1
12
are the generators of the Lie algebra su( )n . The Euler-Lagrange

equations are obtained as follows:
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which we will refer to as n-component Ginzburg-Landau equations.
Model (1.3) is useful in the study of some issues in cosmology, for instance, the formation of cosmic

strings that have both local and global natures [12]. So, the string solutions for (1.3) are called semilocal.
The semilocal string solutions for (1.3) are similar to those for (1.1) which reflect the local gauge transforma-
tion. But they have additional features that have some resemblance to global defects. For further physical
implications of model (1.3), one may refer to the study by Hindmarsh [7] and Vachaspati and Achucarro [12].

In this article, we are interested in static solutions for (1.2) and (1.4). In particular, we assume that the
electromagnetic fields vanish, that is, =A 0μ for =μ 0, 1, 2. Then, the main topic is to study the asymptotic
behavior of solutions for (1.2) and (1.4) as →ε 0. For the case (1.2), there have been lots of research on this
topic after the seminal work of Bethuel-Brezis-Helein [1,2]. More specifically, let �⊂Ω 2 be a smooth,
bounded, simply connected domain. Given a smooth map

�{ ∣ ∣ } ( )∂ → = ∈ = = ∂g S z z d g: Ω : 1 with deg , Ω ,1

the Ginzburg-Landau equations (1.2) with =A 0μ reduce to
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The associated energy functional is

( ) ∣ ∣ ( ∣ ∣ )∫ ∫= ∇ + −E u u x
ε

u x1
2

d 1
4

1 d .ε
b
,Ω

Ω

2
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Ω
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Then, Eε
b
,Ω has a minimizer uε g

b
, in

� �( ) { ( ) }= ∈ = ∂H u H u gΩ; Ω; : on Ω ,g
1 1

that is,

�( ) { ( ) ( )}= ∈E u E u u Hinf : Ω; .ε
b

ε g
b

ε
b

g,Ω , ,Ω
1 (1.7)

We often write Hg
1 instead of �( )H Ω;g

1 if there is no confusion.
The asymptotic behavior of solutions of (1.5) as →ε 0 has attracted lots of interest for three decades.

The behavior of global minimizers for uε g
b
, was studied in detail by Bethuel et al. [1,2]. If =d 0, uε g

b
, converges

to a harmonic map that minimizes

∣ ∣∫ ∇u xd
Ω

2

over the space

( ) { ( ) }= ∈ = ∂H S u W S u gΩ; Ω, : on Ω .g
1 1 1,2 1

This problem has a solution u b
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When ≠d 0, the analysis is more delicate because ( ) = ∅H SΩ;g
1 1 . There exists a set { }… ⊂a a, , Ωd1 such

that, up to a subsequence, uε g
b
, converges to the map

∗
u that satisfies the harmonic map equation [2,6]
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Moreover, we have

( )
∣ ∣ ∣ ∣

( )
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−
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d

iψ x1
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where ψ is harmonic onΩ and the singularities …a a, , d1 of
∗

u minimize the associated renormalized energy.
We refer to [3,5,10,11] for the study of the Ginzburg-Landau model with and without a magnetic field that
describes superconductivity.

Now, we turn to the n-component Ginzburg-Landau equations (1.4). If we assume =A 0μ , then (1.4) is
reduced to
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for each = …i n1, , . One may regard (1.11) as a direct extension of (1.5) to n-component equations. Here,
… ∂ →g g S, , : Ωn1

1 are smooth maps such that

�( ) ( ) { }≔ ∂ = ∈ ∪ = …g g d j ndeg deg , Ω 0 for 1, , .j j j (1.12)

The system (1.11) is the Euler-Lagrange equations of the functional
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2
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for a pair of maps � �( ) ( ) ( )… ∈ ×⋯×u u H H, , Ω; Ω;n g g1
1 1

n1
. For simplicity, we write Eε

b and Eε instead of Eε
b
,Ω

and Eε,Ω if there is no confusion on the domain Ω. It is easy to check that

� �{ ( ) ( ) ( ) ( )}… … ∈ ×⋯×E u u u u H Hinf , , : , , Ω; Ω;ε n n g g1 1
1 1

n1
(1.14)

is achieved by some � �( ) ( ) ( )… ∈ ×⋯×u u H H, , Ω; Ω;ε n ε g g1, ,
1 1

n1
. We also denote by uj ε

b
, a minimizer for Eε

b

on �( )H Ω;g
1

j
.

The purpose of this article is to study the asymptotic behavior of minimizers ( )…u u, ,ε n ε1, , as →ε 0. In
this study, there is a remarkable difference between (1.5) and (1.11). First, we consider the possible limit
equation, which could be an n-component generalization of (1.9) in some sense. For (1.5), if ≠d 0, then the
limit function

∗
u in (1.10) has d singularities. However, even for the case ( ) ( )… ≠ …d d, , 0, ,0n1 , the limit

functions for (1.11) turn out to have no singularities. This difference is related to the nonexistence of singular
harmonic map in ( )H SΩ;g

1 1 . In fact, we have ( ) = ∅H SΩ;g
1 1 for the single equation (1.5). For the system

(1.11), it is natural to define a function space analogously:

� ��( )
⎧

⎨
⎩

( ) ( ) ( ) ∣ ∣
⎫

⎬
⎭

∑… = … ∈ × ⋯× =

=

g g u u H H u n, , ; Ω , , Ω; Ω; : a.e. on Ω .n n g g
j

n

j1 1
1 1

1

2
n1

We write �( )…g g, , n1 if there is no confusion on domains.
The asymptotic behavior of minimizers for Eε is closely related to the maps in �( )…g g, , n1 . Since

it is expected that ∣ ∣ ∣ ∣+ ⋯+ →u u nε n ε1,
2

,
2 as →ε 0, the limit functions, say, ( )…

∗ ∗u u, , n1 will satisfy
∣ ∣ ∣ ∣+ ⋯+ =

∗ ∗u u nn1
2 2 a.e. on Ω. Thus, it is important to know whether �( )…g g, , n1 is nonempty or not. We

can see that if �( ) ( )= … ∈ …u u g gΨ , , , ,n n1 1 , then

⎛

⎝

⎞

⎠
= … ∈

−
u
n

u
n

SΨ̃ , , .n n1 2 1

Since the homotopy group ( )+π S n
1

2 1 is trivial, there is no topological obstruction, and we expect that the
limit problem will not have singularities. More precisely, the next theorem tells us that �( )…g g, , n1 is
nonempty if ≥n 2.

Theorem 1.1. If ≥d 0j for all ≤ ≤j n1 , then �( )… ≠ ∅g g, , n1 . Furthermore, if

( ) ∣ ∣∫∑… = ∇

=

I u u u x, , d ,n
j

n

j1
1 Ω

2 (1.15)

the minimization problem

�( ) { ( ) ( ) ( )}… = … … ∈ …β g g I u u u u g g, , inf , , : , , , ,n n n n1 1 1 1 (1.16)

is achieved in �( )…g g, , n1 .

Proof. We choose smooth functions �( )∈v H Ω;j g
1

j
such that (∣ ∣ ∣ ∣)+ ⋯+ >v vinf 0nΩ 1

2 2 on Ω. Set

∣ ∣
=

(∑ )

= …

=

/

w
n v
v

j nfor each 1, , .j
j

k
n

k1
2 1 2
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Then, �( ) ( )… ∈ … ≠ ∅w w g g, , , ,n n1 1 . Moreover,

∣ ∣
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⎝
⎜

∣ ∣

∣ ∣

∣ ∣ ∣ ∣

∣ ∣

⎞

⎠
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∇

∑
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(∑ )

≤w x C
v
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v v
v

x Cd d .j
j

k k

j k k

k k
Ω

2

Ω

2

2

2 2 2

2 3

Thus, ( )… < ∞β g g, , n1 and it is achieved in �( )…g g, , n1 by a standard variational argument. □

The associated Euler-Lagrange equations for (1.15) are

⎧

⎨

⎪⎪

⎩

⎪
⎪

∣ ∣

∣ ∣

∑

∑

− = ∇ = ∂

=

=

=

u
n

u u u g

u n

Δ 1 in Ω, on Ω,

in Ω.

j j
k

n

k j j

j

n

j

1

2

1

2
(1.17)

Indeed, if ( )…u u, , n1 is a critical point of I , then we are led to

( )
⎡

⎣
⎢

∣ ∣
⎤

⎦
⎥∫∑ ∑= ′ = − + ∇

= =

i u
n

u u ψ x0 0 Δ 1 d
j

n

j j
k

n

k j
1 Ω 1

2

by using the fact ∣ ∣( )∇ ∑ =
=

u 0j
n

j1
2 . Here, we set ( ) ( ( ) ( ))= …i t I u t u t, , n1 for ( ) ( ) ( )… ∈ ×⋯×ψ ψ H H, , Ω Ωn1 0

1
0
1

and

�( )
( )

∣ ∣
( )=

+

∑ +

∈ …

=

u t
n u tψ

n u tψ
g g, , .j

j j

k
n

k k
n

1
2 1

We will refer to (1.17) as n-component harmonic map equations. The condition ∣ ∣ =
∗

u 1 in (1.9) makes its
zeros singular, whereas the condition ∣ ∣ ∣ ∣+ ⋯+ =u u nn1

2 2 in (1.17) does not force its zeros to be singular
since it does not mean ∣ ∣ ∣ ∣= ⋯= =u u 1n1 . We also note from (1.17) that …u u, , n1 share the same singularities
if any.

Now, we are ready to state the first main result of this article.

Theorem 1.2. Let ( )…u u, ,ε n ε1, , be a minimizer for (1.14). Then, as →ε 0, up to a subsequence,

( ) ( ) ( ) ( )… → … ×⋯×
∗ ∗u u u u in C C, , , , Ω̄ Ω̄ .ε n ε n

α α
1, , 1

1, 1, (1.18)

Here, ( )…
∗ ∗u u, , n1 is a minimizer of I defined by (1.15) and satisfies a system (1.17) of harmonic map equations.

Moreover, for any positive integer k,

( ) ( ) ( ) ( )… → … ×⋯×
∗ ∗u u u u in C C, , , , Ω Ω ,ε n ε n

k k
1, , 1 loc loc (1.19)

⎛

⎝
⎜

∣ ∣
⎞

⎠
⎟

∣ ∣ ( ) ( )∑ ∑− → ∇ ×⋯×

= =

∗

ε
n u

n
u in C C1 1 Ω Ω .

j

n

j ε
j

n

j
k k

2
1

,
2

1

2
loc loc (1.20)

The key ingredient of the proof is the uniform boundedness of the energy. We will show that although
the degrees of the minimizers ( )…u u, ,ε n ε1, , are not 0, our energy ( )…E u u, ,ε ε n ε1, , is still bounded as →ε 0.
This situation is very interesting since the energy of the Ginzburg-Landau energy in (1.6) tends to infinity as

→ε 0. Indeed, it is known that ( )E uε
b

ε g
b
, grows logarithmically in the limit →ε 0 if ( )∂ ≠gdeg , Ω 0. See

Sandier’s study [9] for optimal lower bounds for the energy Eε
b and many applications.

The convergences (1.19) and (1.20) imply that …
∗ ∗u u, , n1 are smooth. The condition ∣ ∣ ∣ ∣+ ⋯+ =

∗ ∗u u nn1
2 2

makes each ∗uj smooth at its zeros. It is an interesting question whether ∣ ∣ =
∗u 1j on Ω for some j. This is not

true if >d 0j . As the following theorem says, we are not sure that this can happen even for the case =d 0j .

Theorem 1.3. Let ( )…u u, ,ε n ε1, , be a minimizing sequence for (1.13).
(i) If >d 0j for some ≤ ≤j n1 , then we have

On a system of multi-component Ginzburg-Landau vortices  5



( ∣ ∣ )∫ − → ∞

ε
u x1 1 d .j ε2

Ω

,
2 2

(ii) Suppose that =d 0j for all = …j n1, , . If ( ) ( )… > …α g g β g g, , , ,n n1 1 , then there is some { }∈ …k n1, , such
that

( ∣ ∣ )∫ − → ∞

ε
u x1 1 d .k ε2

Ω

,
2 2

Here, ( )…α g g, , n1 is defined by Remark 4.2.
(iii) For =n 2, if either one of d1 and d2 is positive or ( ) ( )>α g g β g g, ,1 2 1 2 , then

( ∣ ∣ )∫ − → ∞ =

ε
u x for each j1 1 d 1, 2.j ε2

Ω

,
2 2

This article is organized as follows. In Sections 2 and 3, we prove Theorem 1.2. The basic idea is based on
the study by Bethuel et al. [1]. We deal with interior and boundary estimates, respectively, in Sections 2
and 3. We will focus on how the argument in [1] for single equation (1.5) can be generalized to the system
(1.11) nontrivially. In Section 4, we prove Theorem 1.3. We consider another minimization problem for (1.15)
on a smaller space and see how it is related to the question that ∣ ∣ =

∗u 1j for some j. We also study some
additional properties of solutions for (1.11) and (1.17).

We list some notations and facts that are used hereafter. The vector ν stands for the outward unit
normal vector field on a given domain. We write ( )B xr or ( )B x r, to denote the ball of radius r centered at
point x. We often use the following fact: there exists ( )= >γ γ Ω 00 0 such that

( ( ))∩ ≥ ∀ ∈ ∀ ≤B x γ r x rmeas Ω Ω, 1.r 0
2 (1.21)

2 Interior estimates

In this section, we will prove Theorem 1.2. In what follows, we often use the following lemma.

Lemma 2.1. [1, Lemma A.1] Let − =u fΔ in an open set �⊂Ω 2. Given any ⋐K Ω, we have

( )( ) ( ) ( ) ( )‖∇ ‖ ≤ ‖ ‖ ‖ ‖ + ‖ ‖∞ ∞ ∞ ∞u C u u f ,L K K L L L
2

Ω Ω Ω

where C depends only on Ω and K . In addition, if =u 0 on ∂Ω, then

( ) ( ) ( )‖∇ ‖ ≤ ‖ ‖ ‖ ‖∞ ∞ ∞u C u f ,L K L L
2

Ω Ω

where C depends only on Ω.

The next lemma provides ∞L -estimates for uj ε, and their gradients for = …j n1, , .

Lemma 2.2. Let ( )…u u, ,ε n ε1, , be any solution of the system (1.11). Then, for < <ε0 1, we have

∣ ∣∑ <

=

u n on Ω,
j

n

j ε
1

,
2 (2.1)

( )‖∇ ‖ ≤ = …∞u C
ε

for j n1, , .j ε L, Ω
0 (2.2)

Here, C0 is a constant that depends only on gj and Ω.
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Proof. Let ∣ ∣= − ∑
=

f n uj
n

j ε1 ,
2. Then,

⎛

⎝
⎜

∣ ∣
⎞

⎠
⎟

∣ ∣
⎛

⎝
⎜

∣ ∣
⎞

⎠
⎟∑ ∑ ∑≤ − ∇ ≤

= = =

f
ε

u f u
ε

u fΔ 2 2 2 in Ω.
j

n

j ε
j

n

j ε
j

n

j ε2
1

,
2

1
,

2
2

1
,

2

Since =f 0 on ∂Ω, we have >f 0 in Ω by the strong maximum principle.
To show (2.2), let us decompose = +u u uj ε j ε j ε, ,

1
,
2 , where

⎧

⎨

⎪

⎩
⎪

( ∣ ∣ )∑− = − = ∂

− = = ∂

=

u
ε

u n u u

u u g

Δ 1 in Ω, 0 on Ω,

Δ 0 in Ω, on Ω.

j ε j ε
j

n

j ε j ε

j ε j ε j

,
1

2 ,
1

,
2

,
1

,
2

,
2

Then, ‖∇ ‖ ≤ /
∞

u C εj ε,
1 by Lemma 2.1 and ‖∇ ‖ ≤

∞
u Cj ε,

2 by elliptic estimates for = …j n1, , . □

In the remaining part of this article, we simply write

� �( ) ( )×⋯× = ×⋯×H H H HΩ; Ω;g g g g
1 1 1 1

n n1 1

as long as there is no confusion.

Proposition 2.3. Let ( )…u u, ,ε n ε1, , be a minimizer for the problem (1.14). Then,

( ) ( )… → … ×⋯× →
∗ ∗u u u u in H H as ε, , , , 0,ε n ε n g g1, , 1

1 1
n1

where ( )…
∗ ∗u u, , n1 is a minimizer for (1.16). Moreover,

⎛

⎝
⎜

∣ ∣
⎞

⎠
⎟∫ ∑− =

→

=

ε
n u xlim 1 d 0.

ε j

n

j ε
0 2

Ω 1
,

2
2

(2.3)

Proof. Let ( )… ∈ ×⋯×
∼ ∼u u H H, , n g g1

1 1
n1
be any minimizer for (1.16). Since ∣ ∣∑ =

∼

=

u nj
n

j1
2 a.e. on Ω and

( ) ( )… ≤ …
∼ ∼E u u E u u, , , ,ε ε n ε ε n1, , 1 , we have

∣ ∣
⎛

⎝
⎜

∣ ∣
⎞

⎠
⎟

∣ ∣∫ ∫ ∫∑ ∑ ∑∇ + − ≤ ∇
∼

= = =

u x
ε

n u x u x1
2

d 1
4

d 1
2

d .
j

n

j ε
j

n

j ε
j

n

j

Ω 1
,

2
2

Ω 1
,

2
2

Ω 1

2 (2.4)

Hence,

� �{( )} ( ) ( )… ×⋯×u u H H, , is uniformly bounded in Ω; Ω;ε n ε1, ,
1 1 (2.5)

and there exists an n-tuple ( )… ∈ ×⋯×
∗ ∗u u H H, , n g g1

1 1
n1
such that, up to a subsequence,

( ) ( )… → …
∗ ∗u u u u, , , ,ε n ε n1, , 1

weakly in ×⋯×H H1 1 and strongly in ×⋯×L Lp p for all ≥p 1. Moreover, ∣ ∣∑ =
=

∗u nj
n

j1
2 a.e. on Ω by (2.4) and

thus �( ) ( )… ∈ …
∗ ∗u u g g, , , ,n n1 1 . Since ( ) ( )… ≤ …

∗ ∗E u u E u u, , , ,ε ε n ε ε n1, , 1 , we obtain

∣ ∣ ∣ ∣∫ ∫∑ ∑∇ ≤ ∇

= =

∗u x u xd d .
j

n

j ε
j

n

j

Ω 1
,

2

Ω 1

2

This implies that

∣ ∣ ∣ ∣∫ ∫ ∫∑ ∑ ∑∇ − ∇ ≤ ∇ − ∇ ⋅∇ →

=

∗

=

∗

=

∗u u x u x u u xd 2 d 2 d 0.
j

n

j ε j
j

n

j
j

n

j ε j

Ω 1
,

2

Ω 1

2

Ω 1
,

So, ( ) ( )… → …
∗ ∗u u u u, , , ,ε n ε n1, , 1 strongly in ×⋯×H H1 1. Taking

→
liminfε 0 on (2.4), we are led to

∣ ∣ ∣ ∣∫ ∫∑ ∑∇ ≤ ∇
∼

=

∗

=

u x u xd d ,
j

n

j
j

n

j

Ω 1

2

Ω 1

2
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and we conclude that ( )…
∗ ∗u u, , n1 is also a solution for the minimization problem (1.16). Moreover, (2.3) is a

direct consequence of (2.4). □

Lemma 2.4. ∣ ∣∑ →
=

u nj
n

j ε1 ,
2 uniformly on Ω.

Proof. Fix ∈x Ω0 . By (2.2), we have that for ∣ ∣− <x x ερε0 ,

∣ ( )∣ (∣ ( )∣ )≤ + = …u x u x C ρ j nfor 1, , .j ε j ε ε,
2

, 0 0
2

Since ∣ ∣ ≤u nj ε, for all = …j n1, , , we obtain

∣ ( )∣ ∣ ( )∣
⎛

⎝
⎜

∣ ( )∣
⎞

⎠
⎟∑ ∑ ∑− ≥ − − − ≥ −

= = =

n u x n u x n n C ρ nC ρ n u x2 1
2

,
j

n

j ε
j

n

j ε ε ε
j

n

j ε
1

,
2

1
, 0

2
0 0

2 2

1
, 0

2

where the last inequality holds if and only if

( )
⎛

⎝
⎜

∣ ( )∣
⎞

⎠
⎟∑≔ − ≥ +

=

a x n u x n n C ρ nC ρ1
2

2 ,ε
j

n

j ε ε ε0
1

, 0
2

0 0
2 2

in other words,

( )
( )< ≤

− + +

≕ρ
n n n na x

nC
b x0 .ε

ε
ε

3
0

0
0

By taking =ρ bε ε, we deduce from (1.21) and (2.3) that

( )
⎛

⎝
⎜

∣ ∣
⎞

⎠
⎟

( ) ( )

( )

∫ ∑= − ≥

∩

=

o
ε

n u x γ a x b x1 1 d .
B x j

n

j ε ε ε2
Ω 1

,
2

2

0
2

0
2

0

ερε 0

Hence, ( ) →a x 0ε 0 uniformly. □

Lemma 2.5. ( )‖ … ‖ ≤
× ⋯ ×

u u C, ,ε n ε H H1, , loc
2

loc
2 .

Proof. We note that

⎛

⎝
⎜

∣ ∣
⎞

⎠
⎟

∣ ∣ ( )∑ ∑ ∑∇ = + ∇ ⋅∇

= = =

u D u u uΔ 2 2 Δ .
j

n

j ε
j

n

j ε
j

n

j ε j ε
1

,
2

1

2
,

2

1
, ,

Hence, we have

⎜ ⎟∣ ∣ (∣ ∣ ) ∣ ∣
⎛

⎝

∣ ∣
⎞

⎠

⎛

⎝
⎜

⎞

⎠
⎟∑ ∑ ∑ ∑ ∑= ∇ + ∇ − − ⋅∇

= = = = =

D u u
ε

u n u
ε

u u1
2

Δ 1 2 .
j

n

j ε
j

n

j ε
j

n

j ε
i

n

i ε
j

n

j ε j ε
1

2
,

2

1
,

2
2

1
,

2

1
,

2
2

1
, ,

2

Since ∣ ∣∑ →
=

u nj
n

j ε1 ,
2 uniformly on Ω, at least one of uj ε, satisfies that ∣ ∣ ≥ /u 1 2j ε, on Ω for all small ε. If

∣ ∣ ≥ /u 1 2k ε, for some { }∈ …k n1, , , then

⎜ ⎟
⎛

⎝

∣ ∣
⎞

⎠

∣ ∣

∣ ∣
∣ ∣∑− = ≤

=

ε
n u

u
u

u1 Δ
2 Δ .

i

n

i ε
k ε

k ε
k ε2

1
,

2 ,

,
,

Hence, we can write

∣ ∣ (∣ ∣ ) ∣ ∣ ∣ ∣∑ ∑ ∑≤ ∇ + ∇

= = =

D u u u u1
2

Δ 2 Δ ,
j

n

j ε
j

n

j ε
j

n

j ε k ε
1

2
,

2

1
,

2

1
,

2
,

which implies that
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∣ ∣ (∣ ∣ ) ∣ ∣∑ ∑ ∑≤ ∇ + ∇

= = =

D u u C u1
2

1
2

Δ .
j

n

j ε
j

n

j ε
j

n

j ε
1

2
,

2

1
,

2

1
,

4 (2.6)

Fix x0 and ( )= ∂ /r xdist , Ω 40 . Let ζ be a smooth function such that =ζ 1 on ( )B xr 0 , ( )⊂ζ B xsupp r2 0 , and
≤ ≤ζ0 1. Multiplying (2.6) by ζ 2 and using the Sobolev embedding ( ) ( )↪W LΩ Ω1,1 2 , we are led to

∣ ∣ ∣ ∣ ( ∣ ∣ )

∣ ∣ ∣ ∣ ∣ ∣

( ) ( ) ( )

( ) ( )

∫ ∫ ∫

∫ ∫

∑ ∑ ∑

∑ ∑

≤ ∇ + ∇

≤ ∇ + ∇

= = =

= =

ζ D u x C u x C ζ u x

C u x C ζ u D u x

1
2

d d d

d d .

B x j

n

j ε

B x j

n

j ε

B x j

n

j ε

B x j

n

j ε

B x j

n

j ε j ε

2

1

2
,

2

1
,

2

1
,

2 2

1
,

2

1
,

2
,

r r r

r r

2 0 2 0 2 0

2 0 2 0

In the sequel, by (2.5),

∣ ∣ ∣ ∣

( )

∫ ∫∑ ∑≤ ∇ ≤

= =

ζ D u x C u x C1
2

d d .
B x j

n

j ε
j

n

j ε
2

1

2
,

2

Ω 1
,

2

r2 0

Now, the standard covering argument shows that each uj ε, is uniformly bounded in ( )H Ωloc
2 . □

Let

⎛

⎝
⎜

∣ ∣
⎞

⎠
⎟∑= −

=

f
ε

n u1 .ε
j

n

j ε2
1

,
2 (2.7)

Then, we can rewrite (1.11) as follows:

⎧

⎨
⎩

− =

= ∂

u f u
u g

Δ in Ω,
on Ω.

j ε ε j ε

j ε j

, ,

,
(2.8)

A simple calculation provides

⎧

⎨

⎪

⎩
⎪

∣ ∣ ∣ ∣∑ ∑− + = ∇

= ∂

= =

ε f u f u

f

Δ 2 2 in Ω,

0 on Ω.

ε
j

n

j ε ε
j

n

j ε

ε

2

1
,

2

1
,

2
(2.9)

Given a compact set ⊂K Ω, we define

� { ∣ }= ⊂ ⋐ ⋐K K K˜ Ω ˜ Ω .K

For �∈K̃ K , we define a set �( )K K, ˜ of smooth functions by

�( ) { ( ) ∣ }= ∈ ≤ ≤ ≡ ⊂
∞K K φ C φ φ K φ K, ˜ Ω 0 1, 1 on and supp ˜ .

In what follows,CK, or simplyC, denotes a generic constant depending on a compact set K but independent
of ε. For simplicity, we also often write ( )‖ … ‖

× ⋯ ×
u u, , n X X1 as ( )‖ … ‖u u, , n X1 for a function space X .

Lemma 2.6. For any ≥p 1, we have ( )‖ … ‖ ≤
× ⋯ ×

u u C, ,ε n ε W W1, , p p
loc
2,

loc
2, and ‖ ‖ ≤f Cε Cloc

0 .

Proof. By Lemma 2.4, we may assume that ∣ ∣∑ ≥
=

u 1j
n

j ε1 ,
2 on Ω. Given ⋐K Ω, we denote =K K0 and choose

compact sets �∈
−

Kj Kj 1 for =j 1, 2, 3 and �( )∈φ K K,3 2 . Set =F φfε ε. Then,

⎛

⎝
⎜

∣ ∣
⎞

⎠
⎟

( ) ∣ ∣ ∣ ∣

⎛

⎝
⎜

∣ ∣
⎞

⎠
⎟

∑ ∑ ∑ ∑

∑

− = − − ∇ ⋅∇ −

= − − + ∇ ⋅∇ − + ∇

≤ − + + ∇

= = = =

=

ε F ε f φ ε φ f ε φ f

n u φ u φ u F u φ u

F C u

Δ Δ 2 Δ

Δ 4 2 2

2 1 .

ε ε ε ε

j

n

j ε
j

n

j ε j ε ε
j

n

j ε
j

n

j ε

ε K
j

n

j ε

2 2 2 2

1
,

2

1
, ,

1
,

2

1
,

2

1
,

2
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Hence,

⎛

⎝
⎜

∣ ∣
⎞

⎠
⎟∑− + ≤ + ∇

=

ε F F C u KΔ 2 1 on .ε ε K
j

n

j ε
2

1
,

2
3 (2.10)

For >p 2, multiplying (2.10) by −Fε
p 1, we are led to

( ) ∣ ∣

⎛

⎝

⎜
⎜

⎛

⎝
⎜

∣ ∣
⎞

⎠
⎟

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

( ) ( ) ( ) ( )

∫ ∫

∫ ∫∑

− ∇ +

≤ + ∇

≤ ‖ … ‖ ‖ ‖ ≤ ‖ ‖

−

=

− −

−

ε p F F x F x

C u x F x

C u u F C F

1 d 2 d

1 d d

, , .

K

ε ε
p

K

ε
p

K

K j

n

j ε

p

K

ε
p

K ε n ε H K ε L K
p

K ε L K
p

2 2 2

1
,

2

1, ,
1 1

p
p

p

p p

3 3

3

1

3

1

2
3 3 3

Here, we used Lemma 2.5 in the last inequality. Then, we deduce from Young’s inequality that

( )‖ ‖ ≤F Cε L K Kp
3 . This implies by (2.8) that ( )‖ ‖ ≤u CΔ j ε L K K, p

2 for any >p 2 and = …j n1, , . Therefore,

( ) ( )‖ … ‖ ≤u u C, ,ε n ε W K K1, , p2,
1

by the interior regularity. Moreover, ( ) ( )‖ … ‖ ≤u u C, ,ε n ε C K K1, , 1
1 by the Sobolev embedding.

Now choose �( )͠
∈ϕ K K, 1 and set ͠ ͠

=F ϕfε ε. Then, as above, we have

⎛

⎝
⎜

∣ ∣
⎞

⎠
⎟

͠ ͠
∑− + ≤ + ∇

=

ε F F C u KΔ 2 1 on .ε ε K
j

n

j ε
2

1
,

2
1

By applying the maximum principle to this inequality, we are led to

⎛

⎝
⎜

⎞

⎠
⎟

͠
( )∑≤ + ‖∇ ‖ ≤

=

∞F C u Cmax 1 .
K

ε K
j

n

j ε L K K
1

,
2

1
1

In particular, we conclude that ( )‖ ‖ ≤∞f Cε L K K . □

Lemma 2.7. Given a nonnegative integer k and a real number ≥p 1, we have

( )‖ … ‖ ≤ ‖ ‖ ≤
× ⋯ ×

+ +u u C and f C, , .ε n ε W W ε C1, , k p k p k
loc

2,
loc

2,
loc (2.11)

Proof.We use an induction on k. The case =k 0 follows from Lemma 2.6. Suppose that (2.11) is true for k . By
the Sobolev embedding, ( )‖ … ‖ ≤+u u C, ,ε n ε C1, , k

loc
1 . By the induction hypothesis, we note from (2.9) that

⎛

⎝
⎜

∣ ∣ ∣ ∣
⎞

⎠
⎟

( )∑ ∑− ∂ = ∂ − + ∇ =

= =

ε f u f u OΔ 2 2 1k
ε

k

j

n

j ε ε
j

n

j ε
2

1
,

2

1
,

2

on every compact set. Then, by applying Lemma 2.1, we obtain that

‖∂ ‖ ≤
+ −

∞f Cε .k
ε L

1 1
loc (2.12)

By (2.8) and (2.12), on every compact set,

( ) ( )− ∂ = ∂ =
+ + −u f u O εΔ .k

j ε
k

ε j ε
1

,
1

,
1

Hence, by Lemma 2.1 again,

‖∂ ‖ ≤
+ − /

∞u Cε .k
j ε L

2
,

1 2
loc (2.13)

By (2.12) and (2.13), we obtain
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⎛

⎝
⎜

∣ ∣ ∣ ∣
⎞

⎠
⎟

( )∑ ∑− ∂ = ∂ − + ∇ =
+ +

= =

−ε f u f u O εΔ 2 2k
ε

k

j

n

j ε ε
j

n

j ε
2 1 1

1
,

2

1
,

2 1

on every compact set. Applying Lemma 2.1 to this equation, we are led to

‖∂ ‖ ≤
+ −

∞f Cε .k
ε L

2 2
loc (2.14)

Now, given ⋐K Ω, we denote =K K0 and choose compact sets �∈
−

Kj Kj 1 for =j 1, 2, 3 and �( )∈φ K K,2 3 .

Set = ∂
+F φ fε

k
ε

1 . It follows from (2.12) and (2.14) that

( )− = − ∂ − ∇ ⋅∇∂ − ∂ = − ∂
+ + + +ε F ε f φ ε φ f ε φ f O ε φ fΔ Δ 2 Δ 1 Δ .ε

k
ε

k
ε

k
ε

k
ε

2 2 1 2 1 2 1 2 1

On the other hand, by (2.9),

∣ ∣
⎛

⎝
⎜

∣ ∣
⎞

⎠
⎟

⎛

⎝
⎜

∣ ∣
⎞

⎠
⎟

⎛

⎝
⎜

∣ ∣
⎞

⎠
⎟

∑ ∑ ∑ ∑

∑

− ∂ = − − ∂ ∂ + ∂ ∇

≤ − + +

+

= + = + < + =

+

=

=

+

ε φ f u F φ u f φ u

F C D u

Δ 2 2 2

2 1 .

k
ε

j

n

j ε ε
i l k l k

i

j

n

j ε
l

ε
k

j

n

j ε

ε K
j

n
k

j ε

2 1

1
,

2

1, 1 1
,

2 1

1
,

2

1

2
,

Hence,

⎛

⎝
⎜

∣ ∣
⎞

⎠
⎟∑− + ≤ +

=

+ε F F C D u KΔ 2 1 on .ε ε K
j

n
k

j ε
2

1

2
, 3 (2.15)

For >p 2, multiplying (2.15) by −Fε
p 1, we are led to

( ) ∣ ∣

⎛

⎝

⎜
⎜

⎛

⎝
⎜

∣ ∣
⎞

⎠
⎟

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

( ) ( ) ( ) ( )

∫ ∫

∫ ∫∑

− ∇ +

≤ +

≤ ‖ … ‖ ‖ ‖ ≤ ‖ ‖

−

=

+

− −

−

+

ε p F F x F x

C D u x F x

C u u F C F

1 d 2 d

1 d d

, , ,

K

ε ε
p

K

ε
p

K

K j

n
k

j ε

p

K

ε
p

K ε n ε W K ε L K
p

K ε L K
p

2 2 2

1

2
,

1, ,
1 1

p
p

p

k p p p

3 3

3

1

3

1

2,
3 3 3

which implies that ( )‖ ‖ ≤F Cε L K Kp
3 . As a consequence, by (2.8),

( )‖ ∂ ‖ ≤ = …
+ u C j nΔ for 1, , .k

j ε L K K
1

, p
2

Therefore,

( ) ( )‖ … ‖ ≤+u u C, , .ε n ε W K K1, , k p3,
1 (2.16)

In particular, ( ) ( )‖∂ … ‖ ≤
+ u u C, ,k

ε n ε C K K
2

1, , 0
1 .

Now choose �( )͠
∈ϕ K K, 1 and set ͠ ͠

= ∂
+F ϕ fε

k
ε

1 . As above, we obtain

⎛

⎝
⎜

∣ ∣
⎞

⎠
⎟

͠ ͠
∑− + ≤ +

=

+ε F F C D u KΔ 2 1 on .ε ε K
j

n
k

j ε
2

1

2
, 1

Then, we deduce from the maximum principle that

⎛

⎝
⎜

⎞

⎠
⎟

͠
( )∑≤ + ‖ ‖ ≤

=

+
∞F C D u Cmax 1 .

K
ε K

j

n
k

j ε L K K
1

2
,

1
1

In the sequel, we conclude that

( )‖∂ ‖ ≤
+

∞f C .k
ε L K K

1 (2.17)

Therefore, (2.11) is true for +k 1 by (2.16) and (2.17). This completes the proof. □
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3 Boundary estimates and Proof of Theorem 1.2

Lemma 3.1. For any solution of problem (1.11), there is a constant C such that for all >ε 0,

∫∑

∂

∂

≤

∂

=

u
ν

σ Cd .
j

n
j ε

Ω 1

,
2

(3.1)

Here, ν is the outward unit normal vector field on ∂Ω.

Proof. For simplicity, we drop the subscript ε. Let us multiply (1.11) by ⋅∇V ui, where ( )=V V V,1 2 is a smooth
vector field on Ω such that =V ν on ∂Ω. By integrating them by part, we obtain

( ) ∣ ∣ ( )∫ ∫ ∫( ) = ⋅∇ =

∂

∂

− ∇ +

∂ ∂

u V u x u
ν

σ u σ OLHS Δ d d 1
2

d 1i i
i

i

Ω Ω

2

Ω

2

since ∇ui is uniformly bounded in ( )L Ω2 . On the other hand,

⎛

⎝
⎜

∣ ∣
⎞

⎠
⎟

( ∣ ∣ )∫ ∑( ) = − ⋅∇

=

ε
n u V u xRHS 1

2
d .

j

n

j i2
Ω 1

2 2

Adding these for each = …i n1, , , we have

⎛

⎝

⎜⎜
∣ ∣

⎞

⎠

⎟⎟

⎛

⎝
⎜

∣ ∣
⎞

⎠
⎟

( ∣ ∣ ) ( )

⎛

⎝
⎜

∣ ∣
⎞

⎠
⎟

( ) ( ) ( )

∫ ∫

∫

∫

∑

∑ ∑

∑

∂

∂

− ∇

= − ⋅∇ +

= − ∇⋅ + =

=

∂ ∂

= =

=

u
ν

σ u σ

ε
n u V u x O

ε
n u V x O O

d 1
2

d

1
2

d 1

1
4

d 1 1 ,

i

n
i

i

j

n

j
i

n

i

j

n

j

1 Ω

2

Ω

2

2
Ω 1

2

1

2

2
Ω 1

2
2

where the last inequality comes from (2.4). Combining these identities, we conclude that

( ) ( )∫ ∫∑ ∑

∂

∂

=

∂

∂

+ =

=

∂

=

∂

u
ν

σ
g
τ

σ O Od d 1 1 .
i

n
i

i

n
i

1 Ω

2

1 Ω

2

Here, τ is the tangential vector field on ∂Ω. □

In this section, the estimates of solutions for problem (1.11) would be proved up to the boundary.

Lemma 3.2. ( ) ( ) ( )‖ … ‖ ≤
× ⋯ ×

u u C, ,ε n ε H H1, , Ω Ω2 2 .

Proof. In view of Lemma 2.5, it suffices to prove uniform H2-boundedness near each ∈ ∂x Ω0 . We may
assume =x 00 and change local coordinates ( ) ( ) ( ( ))→ = −x x y y x x h x, , ,1 2 1 2 1 2 1 , where h represents ∂Ω locally
and ( )′ =h 0 0. We set ( ) ( )=

∼u y y u x x, ,i ε i ε, 1 2 , 1 2 and ( ) ( )=g y y g x x˜ , ,i i1 2 1 2 on {( ) } ( )= > ∩U y y y B, : 0 0r1 2 2 for some
>r 0 and rewrite (1.11) as follows:

⎧

⎨

⎪

⎩
⎪

⎛

⎝
⎜

∣ ∣
⎞

⎠
⎟

{ }

∑− = −

= = ∩ ∂

∼ ∼ ∼

∼

=

Lu
ε

u n u U

u g y U

1 on ,

˜ on 0 .

i ε i ε
j

n

j ε

i ε i ε

, 2 ,
1

,
2

, , 2

Here,
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⎜ ⎟
⎛

⎝

⎞

⎠

( )∑=

∂

∂

∂

∂

= = = − ′ = + ′

=

L
y

a
y

a a a h a hwith 1, , and 1
k l l

kl
k, 1

2

11 12 21 22
2

is a strongly elliptic operator if r is small enough. For simplicity, we write ∼uj ε, as uj in what follows.

Let ∣ ∣= ∑ ∇
=

A uj
n

j
1
2 1

2. By a direct calculation,

[ ] ( ( ) ( ) ( ) [( ) ])

∣ ∣ ( ) [( ) ]

∑ ∑

∑ ∑∑

= + ⋅

≥ + ⋅

= =

= = =

L A a u u u L u

α D u u L u ,

j

n

k l r
kl j y y j y y j y j y

j

n

j
j

n

r
j y j y

1 , , 1

2

1

2 2

1 1

2

k r l r r r

r r

where α is the ellipticity constant of L. We note that

⎜ ⎟ ⎜ ⎟

⎜ ⎟

( ) [( ) ] ( ) {( [ ]) [( ) ( ) ] }

∣ ∣
⎛

⎝

∣ ∣
⎞

⎠

⎛

⎝
⎜

( )
⎞

⎠
⎟

⎛

⎝

( )
⎞

⎠

( ) [( ) ( ) ( ) ( ) ]

∣ ∣
⎛

⎝

∣ ∣
⎞

⎠

(∣ ∣ ∣ ∣ )

∑∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

∑ ∑

∑ ∑ ∑

⋅ = ⋅ −

= − ∇ − + ⋅ ⋅

− +

≥ − ∇ − − ∇ +

= = = =

= = = = =

= =

= = =

u L u u L u a u

ε
u n u

ε
u u u u

u a u a u

ε
u n u C u D u

1 2

1 .

j

n

r
j y j y

j

n

k l r
j y j y kl y j y y

j

n

j
i

n

i
r j

n

j j y
i

n

i i y

j

n

k l r
j y kl y y j y kl y j y y

j

n

j
i

n

i
j

n

j j

1 1

2

1 , , 1

2

2
1

2

1

2
2

1

2

1 1

1 , , 1

2

2
1

2

1

2

1

2 2 2

r r r r r k l

r r

r l r k r k l

By Lemma 2.4, given ∈y U , if ε is small, then we can find ( )=k k y such that ∣ ( )∣ ≥ /u y 1 2k . Then,

∣ [ ]( )∣ ∣ ( )∣
⎛

⎝
⎜

∣ ( )∣
⎞

⎠
⎟

⎛

⎝
⎜

∣ ( )∣
⎞

⎠
⎟∑ ∑= − ≥ −

= =

L u y
ε

u y n u y
ε

n u y1 1
2

.k k
j

n

j
j

n

j2
1

2
2

1

2

Hence,

⎛

⎝
⎜

∣ ( )∣
⎞

⎠
⎟

∣ [ ]( )∣ ∣( ( )( ) ( )) ∣ (∣ ( )∣ ∣ ( )∣)∑ ∑− ≤ = ≤ ∇ +

= =

ε
n u y L u y a y u y C u y D u y1 2 2 .

j

n

j k kl k y y
j

n

j j2
1

2

1

2
k l

As a consequence, by Young’s inequality, we are led to

[ ] ∣ ∣
⎛

⎝
⎜

∣ ∣
⎞

⎠
⎟∑ ∑− + ≤ + ∇

= =

L A α D u C u
2

1 .
j

n

j
j

n

j
1

2 2

1

4

Let us choose �( ( ) ( ))∈
/

ζ B B0 , 0r r2 . Then,

∣ ∣ ∣ ∣ [ ]∫ ∫ ∫∑ ∑≤ + ∇ +

= =

α ζ D u x C C ζ u x ζ L A x
2

d d d .
j

n

U

j
j

n

U

j

U1

2 2 2

1

2 4 2 (3.2)

By integrating by parts, we obtain

[ ] [ ]

[ ] ( ) ( ) ( )

{ } { } { } { }

∫ ∫

∫ ∫ ∫ ∫ ∫

=

= + + + −

= = = =

ζ L A x ζ a A x

AL ζ x a A ζ a A ζ ζ A a ζ a A

d d

d 2 .

U U

kl y y

U y

y

y

y

y

y

y

y

2 2

2

0

12
2

0

22
2

0

2
12

0

2
22

l k

2

1

2

2

2

1

2

2

The first four terms are uniformly bounded by Lemma 3.1. Furthermore,
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⎛

⎝

⎜
⎜

( ) ( ) ( ) ( )
⎞

⎠

⎟
⎟

(( ) ( ))

{ } { }

∫ ∫∑

∑

= ⋅ + ⋅

= +

=

=

=

=

ζ a A ζ a u u ζ a u u

I II .

y

y
j

n

y

j y j y y j y j y y

j

n
0

2
22

1 0

2
22

2
22

1

2

2

2

1 1 2 2 2 2

By Lemma 3.1,

( ) (( ) ( ) ( ) ( ) ( ) ) ( )

{ }

∫= − ⋅ + ⋅ =

=

I ζ a u u ζ a g u O 1 .
y

y j y j y j y y j y

0

2
22

2
22

2

1 1 2 1 1 2

Since =Lu 0j on { }=y 02 and =a 111 , we have

( ) (( ) ( ) ( ) ∣( ) ∣ ( ) ( ) ( ) ( ) ∣( ) ∣ ) ∣( ) ∣

( ) ( ) ∣( ) ∣ ( )

{ } { }

{ }

∫ ∫ ( )

∫

= − ⋅ + + ⋅ + −

= + =

= =

=

II ζ u g a u a u g a u ζ a u

O ζ a u O1 1 .

y

j y j y y y j y y j y j y y j y

y

j y y

y

y j y

0

2
12

2
21 22

2

0

2
12

2

0

2
12

2

2

2 1 1 1 2 2 2 1 2 2

2

2 1

2

1 2

Here, we also used Lemma 3.1. In the sequel, we can rewrite (3.2) as follows:

∣ ∣ ∣ ∣∫ ∫∑ ∑≤ + ∇

= =

α ζ D u x C C ζ u x
2

d d .
j

n

U

j
j

n

U

j
1

2 2 2

1

2 4

Now, using this inequality and employing the same argument of the proof of Lemma 2.5, we can show

∣ ∣

( )

∫∑ ≤

=

/

D u x Cd .
j

n

B x

j
1

2 2

r 2 0

This completes the proof. □

Proposition 3.3. For any ≥p 1, we have

( ) ( ) ( )‖ … ‖ ≤
× ⋯ ×

u u C, , .ε n ε W W p1, , Ω Ωp p2, 2,

Moreover, if fε is defined by (2.7), then ( )‖ ‖ ≤f Cε C Ω0 .

Proof. By Lemma 3.2 and the Sobolev embedding,

( ) ( ) ( )‖ … ‖ ≤ ∀ ≥
× ⋯ ×

u u C p, , 1.ε n ε W W1, , Ω Ωp p1, 1,

We keep the notation (2.7). By Lemma 2.4 and (2.9), we obtain

∣ ∣∑− + ≤ ∇

=

ε f f u2 Δ 4 on Ω.ε ε
j

n

j ε
2

1
,

2 (3.3)

For >q 1, since =f 0ε on ∂Ω, multiplying this equation by −fε
q 1, we have

∣ ∣∫ ∫∑ ∑≤ ∇ ≤ ‖∇ ‖ ‖ ‖

=

−

=

−f x u f x u fd 4 d 4 ,ε
q

j

n

j ε ε
q

j

n

j ε q ε q
q

Ω 1 Ω

,
2 1

1
, 2

2 1

which implies that ‖ ‖ ≤f Cε q for some ( )= >C C n q, 0. Hence, each uΔ j ε, is uniformly bounded in ( )L Ωq for
any ≥q 1. By applying the elliptic regularity to (2.8), we obtain

( ) ( )( ) ( )‖ … ‖ ≤ ∀ ∈
× ⋯ ×

u u C α, , 0, 1 .ε n ε C C1, , Ω Ωα α1, 1,

14  Rejeb Hadiji et al.



By the maximum principle, we obtain from (3.3) that ( )‖ ‖ ≤f Cε C Ω0 . In particular, the right-hand side of (2.8)
is uniformly bounded in ( )C Ω0 . Hence, each uj ε, is also uniformly bounded in ( )W Ωp2, for any ≥p 1. □

Proof of Theorem 1.2. The proof of (1.19) follows readily from Propositions 2.3 and 3.3. To show (1.20), let fε

be defined by (2.7) and set

∣ ∣ ∣ ∣∑ ∑= = ∇

=

∗

=

∗h u f
n

uand 1 .ε
j

n

j ε
j

n

j
1

,
2

1

2

Then, − =
∗ ∗

∗
u u fΔ j j and ( ) ( )‖ − ‖ = ‖ ‖ →h n ε f 0ε C ε CΩ

2
Ωk k

loc loc
. We note that

( ) ( ) ( )∑− − = − + −

=

∗ ∗

∗
u u u u n f f f h nΔ Δ .

j

n

j ε j ε j j ε ε ε
1

, ,

Hence, as →ε 0,

⎛

⎝
⎜

( )
⎞

⎠
⎟( ) ( ) ( )∑‖ − ‖ ≤ ‖ − ‖ + ‖ − ‖ →

∗

=

∗ ∗f f
n

f h n u u u u1 Δ Δ 0.ε C ε ε C
j

n

j ε j ε j j CΩ Ω
1

, , Ωk k k
loc loc loc

This completes the proof. □

4 Further properties of solutions

In this section, we study some properties of solutions of the n-component Ginzburg-Landau equations (1.11)
and the generalized harmonic map equations (1.17). First, the next proposition tells us that if gj is a rotation

of g1 for each j and ε is not so small, then uj is a rotation of u1 for any solution pair ( )…u u, , n1 of (1.11).
Consequently, each of uj and uk is a rotation of the other.

Proposition 4.1. Let ( )…u u, , n1 be a solution of (1.11). Assume that, for each j, there exists �∈γj such that

=g e gj
iγ

1j . Then, =u e uj
iγ

1j for all > /ε n λ1 . Here, λ1 is the first eigenvalue of −Δ on Ω with the Dirichlet
boundary condition.

Proof. Set =
∼ −u e uj

iγ
jj . Then, ∼uj satisfies

⎜ ⎟
⎛

⎝

∣ ∣
⎞

⎠

∑− = −

= ∂

∼ ∼ ∼

∼

=

u
ε

u n u

u g

Δ 1 in Ω,

on Ω.

j j
k

n

k

j

2
1

2

1

If = −
∼w u uj j 1, then

∣ ∣∑− + =

= ∂

=

w
ε

u w n
ε

w

w

Δ 1 , in Ω,

0 on Ω.

j
k

n

k j j

j

2
1

2
2

Hence, it follows that

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣∫ ∫ ∫ ∫∑∇ + = ≤ ∇

=

w
ε

u w n
ε

w n
λ ε

w1 .j
k

n

k j j j

Ω

2
2

Ω 1

2 2
2

Ω

2

1
2

Ω

2

If > /ε n λ1 , then wj is a constant. Since =w 0j on ∂Ω, we have =w 0j . □

It is not clear whether the conclusion of Proposition 4.1 is valid for arbitrary ε.
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Remark 4.2. Suppose that =d 0j for all ≤ ≤j n1 . Since ( ) ≠ ∅H SΩ;g
1 1

j
, the minimization problem

( ) { ( ) ( )}… = … ∈α g g I u u u H S, , inf , , : Ω;n n j g1 1
1 1

j

is achieved by a unique pair ( )…u u, , n1
0 0 satisfying

⎧

⎨

⎪

⎩
⎪

∣ ∣

∣ ∣

− = ∇

=

= ∂

u u u

u

u g

Δ on Ω,
1 on Ω,

on Ω.

j j j

j

j j

0 0 0 2

0

0

(4.1)

Since =d 0j for each = …j n1, , , we have that =u ej
iφ0 j for a harmonic function φj in Ω. In general,

we have ( ) ( )… ≥ …α g g β g g, , , ,n n1 1 since �( ) ( )… ∈ …u u g g, , , ,n n1
0 0

1 . An interesting question is whether
( ) ( )… = …α g g β g g, , , ,n n1 1 or not. The next proposition provides us a necessary condition that they are

equal.

Proposition 4.3. Assume that =d 0j for all { }∈ …j n1, , . If ( ) ( )… = …α g g β g g, , , ,n n1 1 and it is achieved by
( )…u u, , n1 , then ∣ ∣ ∣ ∣∇ = ∇u uj k for all { }∈ …j k n, 1, , .

Proof. By assumption, ( ) ( ) ( )… ∈ ×⋯×u u H S H S, , Ω; Ω;n g g1
1 1 1 1

n1
and

( )= …β I u u, , .n1

Since ∣ ∣ =u 1j , we can write =u ej
iφj. By plugging this in (1.17), we are led to

⎛
⎝

⎞
⎠

∣ ∣ ∣ ∣∑− = − ∇ + ∇

≠

i φ
n

φ
n

φΔ 1 1 1 in Ω.j j
k j

n

k
2 2

Thus, for all = …j n1, , ,

∣ ∣ ∣ ∣∑= ∇ =

−

∇

≠

φ φ
n

φΔ 0 and 1
1

.j j
k j

n

k
2 2

In particular,

∣ ∣ ∣ ∣ (∣ ∣ ∣ ∣ )∇ − ∇ =

−

∇ − ∇φ φ
n

φ φ1
1

,j j
2

1
2

1
2 2

which implies that ∣ ∣ ∣ ∣∇ = ∇φ φj
2

1
2, or equivalently ∣ ∣ ∣ ∣∇ = ∇u uj

2
1

2 for all ≤ ≤j n1 . □

Remark 4.4. Let us consider the case =n 2 for simplicity with = =d d 01 2 . We can write =u ej
iφj and =g ej

iφ̃j

for =j 1, 2. According to the proof of Proposition 4.3, if ( ) ( )=α g g β g g, ,1 2 1 2 , then it is necessary that

⎧

⎨

⎩

∣ ∣ ∣ ∣

= =

∇ = ∇

= = ∂

φ φ
φ φ

φ φ φ φ

Δ 0 Δ on Ω,
on Ω,

˜ , ˜ on Ω.

1 2

1 2

1 1 2 2

(4.2)

Hence, if there are no solutions for (4.2), we may conclude that ( ) ( )>α g g β g g, ,1 2 1 2 . For instance, if φ͠1 is a
constant and φ͠2 is not a constant function, then there are no solution of (4.2). Another example is the case
that ͠ ͠=φ λφ1 2 with ∣ ∣ ≠λ 1. Indeed, if ͠ ͠=φ λφ1 2, then

⎛
⎝

⎞
⎠

͠− = = ∂

φ
λ

φ
λ

φΔ 0 on Ω and on Ω.2 2
1

Since harmonic maps with the same boundary values are equal, we have = /φ φ λ1 2 . Thus, ∣ ∣ ∣ ∣∇ = ∇φ φ1 2 only
when ∣ ∣ =λ 1.

As a final subject of this section, we prove Theorem 1.3.
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Proof of Theorem 1.3.
(i) Suppose to the contrary that there is { }∈ …k n1, , such that >d 0k and

( ∣ ∣ )∫ − ≤

ε
u x C1 1 d .k ε2

Ω

,
2 2

By Theorem 1.2, we have ( )→ ∈
∗u u H Ωk ε k,

1 with ∣ ∣ =
∗u 1k . This implies that ( )∈

∗u H SΩ;k g
1 1

k
, which is

impossible since ( ) = ∅H SΩ;g
1 1

k
if >d 0k .

(ii) Suppose that = ⋯= =d d 0n1 . If

( ∣ ∣ )∫ − ≤ = …

ε
u x C j n1 1 d for all 1, , ,j ε2

Ω

,
2 2

then →
∗u uj ε j, in H 1 and ∣ ∣ =

∗u 1j for each = …j n1, , . Therefore, we have ( ) ( )… = …α g g β g g, , , ,n n1 1 that
contradicts the assumption.

(iii) If we set

( ∣ ∣ ) ( ∣ ∣ )∫ ∫= − = −X
ε

u x Y
ε

u x1 1 d and 1 1 d ,ε ε ε ε
2

2
Ω

1,
2 2 2

2
Ω

2,
2 2

we are led by (2.4) and the Cauchy-Schwartz inequality that

( ∣ ∣ ∣ ∣ )

( ∣ ∣ )( ∣ ∣ )

( )

∫

∫

≥ − −

= + + − −

≥ −

C
ε

u u x

X Y
ε

u u x

X Y

1 2 d

2 1 1 d

.

ε ε

ε ε ε ε

ε ε

2
Ω

1,
2

2,
2 2

2 2
2

Ω

1,
2

2,
2

2

Hence, both Xε and Yε are either bounded or unbounded. By (i) and (ii), at least one of Xε and Yε is
unbounded and we obtain the desired conclusion. □
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