
HAL Id: hal-04311936
https://hal.science/hal-04311936

Preprint submitted on 28 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Encoding impredicative hierarchy of type universes with
variables
Yoan Géran

To cite this version:

Yoan Géran. Encoding impredicative hierarchy of type universes with variables. 2023. �hal-04311936�

https://hal.science/hal-04311936
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Encoding impredicative hierarchy of type universes1

with variables2

Yoan Géran #3

Mines Paris - PSL, Centre de Recherche en Informatique4

Université Paris-Saclay, Laboratoire Méthodes Formelles, ENS Paris-Saclay5

Abstract6

Logical frameworks can be used to translate proofs from a proof system to another one. For this7

purpose, we should be able to encode the theory of the proof system in the logical framework. The8

Lambda Pi calculus modulo theory is one of these logical frameworks. Powerful theories such as pure9

type systems with an infinite hierarchy of universes have been encoded, leading to partial encodings10

of proof systems such as Coq, Matita or Agda. In order to fully represent systems such as Coq and11

Lean, we introduce a representation of an infinite universe hierarchy with an impredicative universe12

and universe variables where universe equivalence is equality, and implement it as a terminating and13

confluent rewrite system.14

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting; Theory15

of computation → Type theory16

Keywords and phrases type theory, logical framework, rewriting theory, type universes17

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2318

Supplementary Material An implementation is available at https://gitlab.crans.org/geran/19

dedukti-level-implementation20

Acknowledgements I want to thank my PhD advisors Olivier Hermant and Gilles Dowek for the21

helpful discussions and comments.22

1 Introduction23

The formalization of mathematical theorems and the verification of softwares are done24

in several tools, and many logical systems and theories are developed as the research on25

proof-checking makes progress. Interoperability is then a big challenge which aims to avoid26

the redevelopment of the same proof in each system. Instead of developing translators from27

each system to another one, logical frameworks propose to define theories in a common28

language, which makes translation easier. Thus, the logical framework should be expressive29

enough and work should be done to define the wanted theories in the framework.30

In this paper, our goal is to show how to define the universe levels of the theory of the31

Coq proof system in one of these frameworks, the λΠ-calculus modulo rewriting. Since32

a lot of theories are expressed as extensions of Pure Type Systems, the first part of this33

introduction will define them. Then, we will present the λΠ-calculus modulo rewriting and34

the type system behind Coq, in particular the universe levels.35

Pure Type Systems36

A lot of theories are based on extensions of Church’s simply-typed λ-calculus (STLC). In [5],37

Barendregt introduced the λ-cube which classifies type systems depending on the possibility38

to quantify on types or terms to build new types or new terms. It captures systems such as39

System F (with type polymorphism), λω (with type operators), λΠ (with dependent types),40

and the Calculus of Constructions (CC) which allows all these quantifications.41

© Yoan Géran;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yoan.geran@minesparis.psl.eu
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://gitlab.crans.org/geran/dedukti-level-implementation
https://gitlab.crans.org/geran/dedukti-level-implementation
https://gitlab.crans.org/geran/dedukti-level-implementation
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Encoding impredicative hierarchy of type universes with variables

More generally, these constructions can be extended, leading to more powerful systems42

called Pure Type Systems [6, 8].43

▶ Definition 1. A Pure Type System (PTS) is defined by a set of sorts S (that we will also44

call universes), a set of axioms A ⊆ S2 and a set of rules R ⊆ S3.45

A describes the sorts typing (s1 has the type s2 when (s1, s2) ∈ A), and R describes the46

possible quantifications and their typing rules. The terms are the following, where s ∈ S and47

x is an element of a countable set of variables X .48

t := s | x | Πx : t · t | (λx : t · t) | t t49

and the typing rules are given in Figure 1.50

(Empty) [] WF (Decl)
Γ ⊢ A : s x ̸∈ Γ

Γ, x : A WF
(Var) Γ WF (x : A) ∈ Γ

Γ ⊢ x : A
51

(Sort) (s1, s2) ∈ A
⊢ s1 : s2

(Prod)
Γ ⊢ A : s1 Γ, x : A ⊢ B : s2 (s1, s2, s3) ∈ R

Γ ⊢ Πx : A · B : s3
52

(App)
Γ ⊢ t : Πx : A · B Γ, ⊢ u : A

Γ ⊢ t u : B[x := u]
(Abs) Γ, x : A ⊢ t : B Γ ⊢ Πx : A · B : s

Γ ⊢ λx · t : Πx : A · B
53

(Conv)
Γ ⊢ B : s Γ ⊢ t : A A ≡β B

s ∈ S
Γ ⊢ t : B

54

Figure 1 Typing rules

▶ Definition 2 (Functional and full PTS). A PTS is said to be functional if A and R are55

functional relations from S and S × S to S, that is to say (s1, s2) ∈ A ∧ (s1, s3) ∈ A =⇒56

s2 = s3 and (s1, s2, s3) ∈ R ∧ (s1, s2, s4) ∈ R =⇒ s3 = s4.57

A PTS is called full if A and R are total functions from S and S × S to S.58

The λΠ-calculus modulo rewriting59

λΠ, the extension of STLC with dependent types, is the language of the Edinburgh Logical60

Framework (ELF) [22]. However, computation plays an essential role in type theories, then61

in modern proof assistant, and λΠ is not well-suited for this. To address this point, the62

λΠ-calculus modulo rewriting (λΠ/ ≡) [12] extends λΠ by allowing user-defined higher-order63

rewrite rules [16, 30] that can be used to define functions but also types. Types are then64

identified modulo β and these rewrite rules.65

In order to have good properties such as the decidability of the type-checking, the rewrite66

rules introduced should preserve typing and form a confluent and strongly normalizing rewrite67

system, which adds some restrictions and requires more efforts to show that these properties68

are respected.69

▶ Remark 3. In the rest of this article, we will use the syntax u −→ v (where u may contains70

free variables used for matching) to define a rewrite rule and the syntax u ↪→ v to indicate71

that the term u rewrites to the term v.72

The λΠ/ ≡ can express CC and its subtheories [10], and, in [15], Cousineau and Dowek73

show how to embed functional PTS (with a possibly infinite number of symbols and rules):74

1. for each sort s, symbols Us : Type and Els : Us → Type,75

2. for each axiom (s1, s2), a symbol us1 : Us2 and a rewrite rule Els2(s1) −→ Us1 ,76

Y. Géran 23:3

3. for each rule (s1, s2, s3), a symbol π(s1,s2) : (x : Us1) → (Els1(x) → Us2) → Us3 and a77

rewrite rule Els3(π(s1,s2)(A, B)) −→ (x : Els1(A)) → Els2(B).78

us corresponds to the sort s as a term, Us to the sort s as a type, and Els associates a sort79

(as term) of type s to its corresponding type, hence the rewrite rule added for each axiom,80

and π(s1,s2)AB is the term corresponding to the types of the function from A to B(A), hence81

the rewrite rule added to obtain the type associated to this term.82

Several systems have been encoded in λΠ/ ≡: HOL-Light [31, 2], Agda [20], Matita83

[2], but also parts of Coq, on which we will come back to later. Besides, since there exist84

multiple implementations of the λΠ/ ≡ such as Dedukti [3], Lambdapi [24], or Kontroli85

[18], these embeddings have been effectively implemented leading to translations from the86

proofs systems to these implementations, but also to translations from these implementations87

of λΠ/ ≡ to proof assistants [31, 32].88

Coq’s type system89

The theory of Coq is based on CC extended with an infinite hierarchy of universes and an90

impredicative universe Prop. It corresponds to a slightly different version of the following91

PTS (where Prop is denoted as Type0).92

▶ Definition 4 (Impredicative max). We define imax : N → N → N by imax(i, 0) = 0 and93

imax(i, j + 1) = max(i, j + 1).94

▶ Definition 5 (CC∞). CC∞ is the full PTS defined with an infinite sequence of sorts Typei95

indexed on N, the axioms
(
Typei, Typei+1

)
, and the rules

(
Typei, Typej , Typeimax(i,j)

)
.96

▶ Remark 6. One can also define a predicative PTS where the products from Typei to Typej97

are elements of Typemax(i,j) instead of Typeimax(i,j). This latter is the building on Agda98

proof system while CC∞ is the one of Coq but also of Lean or Matita.99

In both cases, the sorts are characterized by levels indexed on N; the functions R and A100

can be defined in the λΠ/ ≡, and we can adapt the general embedding of Cousineau and101

Dowek to a finite embedding. For that, we define the natural numbers N with the successor102

function s, max : N → N → N, imax : N → N → N, and103

symbols U : N → Type and El : (i : N) → U(i) → Type,104

a symbol u : (i : N) → U(s(i)) and a rewrite rule El _ i −→ U i,105

a symbol π : (i : N) → (j : N) → (A : U i) → (El i A → U j) : U (imax i j) and a rewrite rule106

El _ (π i j A B) −→ (x : El i A) → El j (B x).107

Coq extend CC∞ with other features. Some of them have been encoded, leading to a108

partial translator from Coq to Dedukti [11, 17], and to the sharing of developements of the109

GeoCoq library [7], a formalization of geometry, to other proof assistants [21]. Extensions110

such as inductive types [13, 28] and cumulativity [27] have been widely covered: Burel and111

Boespflug in [11], then Férey in his thesis [17] proposes embeddings of inductive constructions112

and cumulativity have been studied by Assaf [1, 2], Férey [17] and Thiré [32].113

In this paper, we are interested in another feature, the level variables, which permits to114

extend CC∞ with floating universes [25] or with universe polymorphism [29, 23, 14].115

Level variables116

We extend the syntax of the levels with variables.117

CVIT 2016

23:4 Encoding impredicative hierarchy of type universes with variables

▶ Definition 7 (Levels). A level is a term of the grammar118

t := 0 | s(t) | max(t, t) | imax(t, t) | x119

where x is an element of a countable set of variables X . We denote by L the set of the levels,120

and we say that t is a concrete level if t does not contain any variable.121

▶ Definition 8 (Valuation). A valuation is a function σ : X → N.122

▶ Definition 9. Let σ : X → N be a a valuation. We define inductively the value of a level t123

over σ, denoted as JtKσ with124

J0Kσ = 0 Js(t)Kσ = s(JtKσ) JxKσ = σ(x)125

Jmax(t1, t2)Kσ = max
(
Jt1Kσ, Jt2Kσ

)
Jimax(t1, t2)Kσ = imax

(
Jt1Kσ, Jt2Kσ

)
126

We use the same symbol s, max, and imax for the syntax of the levels and the functions127

of the natural numbers. However, levels are abstract terms and are interpreted through128

valuations. Besides, the concrete levels can clearly be identified as the natural numbers which129

justifies the use of the same symbol and permits to see the interpretation as a function that130

concretizes a level, turning it into a concrete level.131

▶ Definition 10 (Level comparison). Let t1, t2 ∈ L. We say that t1 ⩽L t2 if for all valuations132

σ, Jt1Kσ ⩽ Jt2Kσ. In the same way, we say that t1 =L t2 if for all valuations σ, Jt1Kσ = Jt2Kσ.133

Hence t1 =L t2 if and only if t1 ⩽L t2 and t2 ⩽L t1.134

With level variables, the equivalence is no more the syntactic equality and the above135

embedding does not reflect it anymore: max(x, y) and max(y, x) are not convertible and adding136

rules for that would lead to a non-terminating system. In the same way, commutativity and137

equivalences such as max(x, x) =L x or max(s(x), x) =L s(x) are hard to express, and the138

impredicativity introduces other:imax(x, x) =L x, max(imax(x, y), x) =L max(x, y), etc.139

And yet, a correct embedding of the levels should reflect these equivalences. For instance,140

a term of the universe Typex is also a term of the universe Typeimax(x,x), and then we should141

be able to identify the universes such as Typex and Typeimax(x,x). This paper presents a142

new embedding that faithfully represents levels with variables.143

Related work144

Some solutions have been studied in the predicative case. The big issue is the associativity and145

commutativity of the max symbol. In [20], Genestier solved this problem to encode Agda’s146

universe polymorphism. For that, he used rewriting modulo associativity and commutativity147

(AC). The idea, also mentionned in a draft of Voevodsky [33], is to represent each level148

as max(n, n1 + x1, . . . , nk + xk) where n ⩾ max(n1, . . . , nk). Besides, if there exists i ̸= j149

such that xj = xi, we simplify the term and keep only max(ni, nj) + xi. Then, we obtain a150

minimal representation of terms of the max-successor algebra.151

Blanqui gives another presentation of this algebra in [9], with an encoding without152

matching modulo AC. However, this solution requires to keep the level in some AC canonical153

form, and can then require the modification of the λΠ/ ≡ type-checker.154

The imax-successor algebra is less studied and we do not know easy ways to reflect its155

equalities. A confluent encoding is proposed in [4], but it does not fully reflect the equalities;156

for instance, the levels max(imax(x, y), x) and max(x, y) are not convertible. Besides, Férey157

designed a non-confluent encoding of universe polymorphism in [17].158

Y. Géran 23:5

Contribution and outline159

We introduce a new representation for the levels, using the idea presented above in the160

predicative case: find a set of subterms such that any level can be expressed as a maximum161

of subterms. They should be easily comparable to simplify max(u, v) into u if u ⩽L v and162

obtain minimal representations, and they should ensure the uniqueness property:163

max(u1, . . . , un) =L max(v1, . . . , vm) ⇐⇒ {u1, . . . , un} = {v1, . . . , vm}.164

Intuitively, the subterms should be very basic and simple: a subterm u must not be equivalent165

to a maximum of other subterms. With this representation, we obtain a deep understanding166

of the imax-successor algebra, and an easy procedure-decision for the level inequality problem.167

In the Section 2, we study the semantic of the imax operator and establish a suitable168

set of subterms. Then, in the Section 3, we introduce the minimal representation and169

show that equivalent terms have the same minimal representation. And the Section 4 is170

dedicated to the implementation of this representation into the λΠ/ ≡ as a first-order171

confluent and terminating rewrite system. An implementation in Dedukti is available on172

https://gitlab.crans.org/geran/dedukti-level-implementation.173

2 Universe representation in impredicative hierarchy174

In this section, we study the imax operators and its interaction with max and the successor175

and establish semantic equalities that permits to simplify the levels in order to find a set of176

sublevels for the desired representation.177

2.1 Levels as maximum178

The very first step is to show that any level can be expressed as a maximum of levels that do179

not contain any max, that is the principle of our idea of representation. The succesor can be180

distributed over max, the two next propositions show how to distribute imax over max.181

▶ Proposition 11. For all u, v, w ∈ L, imax(u, max(v, w)) =L max(imax(u, v), imax(u, w)).182

Proof. Let σ be a valuation, t = imax(u, max(v, w)), t1 = imax(u, v) and t2 = imax(u, w).183

If JvKσ = JwKσ = 0, then Jmax(t1, t2)Kσ = 0 = JtKσ.184

If JvKσ ̸= 0 and JwKσ = 0, then Jmax(t1, t2)Kσ = max(JuKσ, JvKσ) = JtKσ.185

If JvKσ = 0 and JwKσ ̸= 0, then Jmax(t1, t2)Kσ = max(JuKσ, JwKσ) = JtKσ.186

Else, Jmax(t1, t2)Kσ = max(JuKσ, JvKσ, JwKσ) = JtKσ.187

◀188

▶ Proposition 12. For all u, v, w ∈ L, imax(max(u, v), w) =L max(imax(u, w), imax(v, w)).189

Proof. Let σ be a valuation.190

If JwKσ = 0, then Jmax(imax(u, w), imax(u, w))Kσ = 0 = Jimax(max(u, v), w)Kσ.191

Else, Jmax(imax(u, w), imax(v, w))Kσ = max(JuKσ, JvKσ, JwKσ) = Jimax(max(u, v), w)Kσ.192

◀193

Then, any level can then be expressed as a maximum of levels without max. Note that194

for this, we consider that max takes a set of levels as argument. We obtain this theorem.195

▶ Theorem 13. For all t ∈ L, there exists u1, . . . , un in the grammar t := 0 | s(t) | imax(t, t) |196

x such that t =L max(u1, . . . , un).197

CVIT 2016

https://gitlab.crans.org/geran/dedukti-level-implementation

23:6 Encoding impredicative hierarchy of type universes with variables

2.2 Simplification of the levels198

We can now focus on levels without maximum. The uniqueness property sought for the199

representation requires the subterms to be very basic, and then search to simplify the levels.200

The main issue is imax: its asymmetry complicates its interaction with other symbols.201

The previous equalities show how to remove the interaction between imax and max, now, we202

will study the interactions between imax and the other symbols. The goal is to restrict the203

localisation of the imax symbols to specific parts of the levels in order to understand and204

control their influence on the levels semantic.205

Firstly, we recall these equalities that are direct consequences of the semantic of imax.206

They permit to deal with 0 and the successor.207

▶ Proposition 14. For all u, v ∈ L, imax(u, 0) =L 0 and imax(u, s(v)) = max(u, s(v)).208

And we show how to remove imax symbol in second argument of imax.209

▶ Proposition 15. For all u, v, w ∈ L, imax(u, imax(v, w)) =L max(imax(u, w), imax(v, w)).210

Proof. Let σ be a valuation.211

If JwKσ = 0, then Jmax(imax(u, w), imax(u, w))Kσ = 0 = Jimax(u, imax(v, w))Kσ.212

Else, Jmax(imax(u, w), imax(v, w))Kσ = max(JuKσ, JvKσ, JwKσ) = Jimax(u, imax(v, w))Kσ.213

◀214

Thus, we can consider that the second argument of a imax is always a variable. It is215

more complicated to directly enforce the form of its first argument, but we can obtain one216

restriction by distributing the successor over the imax. However, we cannot do it as directly217

as we distribute the successor over the max, as shown in the next example.218

▶ Example 16. We show that s(imax(y, x)) ̸=L imax(s(y), s(x)) by considering a valuation219

σ such that σ(x) = 0 and σ(y) = 1.220

▶ Proposition 17. For all u, v, w ∈ L, s(imax(v, w)) =L max(s(w), imax(s(v), w)).221

Proof. Let σ be a valuation.222

If JwKσ = 0, then Js(imax(v, w))Kσ = s(0) = Jmax(s(w), imax(s(v), w))Kσ.223

Else Js(imax(v, w))Kσ = s(max(JvKσ, JwKσ)) = Jmax(s(w), imax(s(v), w))Kσ.224

◀225

Finally, all of these propositions lead to this grammar restriction.226

▶ Theorem 18. For all u ∈ L, there exists u1, . . . , un in the grammar t := sk(x) | sk(0) |227

imax(t, x) such that u =L max(u1, . . . , un).228

▶ Remark 19. For all t in the grammar of Theorem 18, there exists x1, . . . , xn ∈ X , and229

v = sk(0) or v = sk(x) such that t = imax(imax(imax(· · · imax(v, x1), x2) · · ·)), xn−1), xn).230

2.3 Introducting new levels231

Here, we continue the simplification of the levels under max in order to find simple enough232

terms to reach the uniqueness property. Indeed, the terms of the grammar of Theorem 18233

are still not enough.234

▶ Example 20. Let us consider t = max(imax(x, y), imax(y, x)). Then, t =L max(x, y).235

Y. Géran 23:7

To better understand the issue, we should have a deep understanding of the semantic of236

imax(x, y). It means that we always consider the value of y, but we only consider the value237

of x if y is not zero: the position of the variables is essential in the levels. But, taking into238

account imax(y, x) leads to offset this, and the value of x and y are always considered.239

Here, we come to a solution that consists of introducing new symbols that permit to240

represent the current levels, without taking into account the order of the variables.241

▶ Definition 21 (Sublevels). We define new symbols A and B. A takes as argument a set242

of variables, a variable and an integer, and B takes as argument a set of variables and an243

integer. They have the following semantic.244

JA(E, x, S)Kσ =
{

0 if there exists y ∈ E such that σ(y) = 0
JxKσ + S else

245

JB(E, S)Kσ =
{

0 if there exists y ∈ E such that σ(y) = 0
S else

246

In the next proposition, we show that any level of the grammar of Theorem 18 can be247

written as a maximum of terms of this new grammar.248

▶ Proposition 22. If t = imax
(
imax

(
imax

(
· · · imax

(
sk(y), x1

)
) · · ·)

)
, xn−1

)
, xn

)
, then249

t =L max(A(∅, xn, 0), A({xn}, xn−1, 0), . . . , A({x2, . . . , xn}, x1, 0), A({x1, . . . , xn}, y, k)).250

And if t = imax
(
imax

(
imax

(
· · · imax

(
sk(0), x1

)
) · · ·)

)
, xn−1

)
, xn

)
, then251

t =L max(A(∅, xn, 0), A({xn}, xn−1, 0), . . . , A({x2, . . . , xn}, x1, 0), B({x1, . . . , xn}, k)).252

Proof. We show the result for the first case. Let σ be a valuation. If forall 1 ⩽ i ⩽ n,253

σ(xi) ̸= 0, then254

JtKσ = max(σ(xn), . . . , σ(x1), k + σ(y))255

∀1 < i ⩽ n, JA({xn, . . . , xi+1}, xi, 0)Kσ = σ(xi)256

JA({xn, . . . , x1}, y, k)Kσ = k + σ(y)257

and else, we take the largest 1 ⩽ i ⩽ n such that σ(xi) = 0, then258

JtKσ = max(σ(xn), . . . , σ(xi+1)) ∀1 < j ⩽ i, JA({xn, . . . , xj+1}, xj , 0)Kσ = 0259

JA({xn, . . . , x1}, y, k)Kσ = 0 ∀i < j ⩽ n, JA({xn, . . . , xj+1}, xj , 0)Kσ = σ(xj)260

hence the equality.261

And the second case is very similar. Let σ be a valuation. If forall 1 ⩽ i ⩽ n, σ(xi) ̸= 0,262

then263

JtKσ = max(σ(xn), . . . , σ(x1), k)264

∀1 < i ⩽ n, JA({xn, . . . , xi+1}, xi, 0)Kσ = σ(xi)265

JB({xn, . . . , x1}, k)Kσ = k266

and else, we take the largest 1 ⩽ i ⩽ n such that σ(xi) = 0, then267

JtKσ = max(σ(xn), . . . , σ(xi+1)) ∀1 < j ⩽ i, JA({xn, . . . , xj+1}, xj , 0)Kσ = 0268

JB({xn, . . . , x1}, k)Kσ = 0 ∀i < j ⩽ n, JA({xn, . . . , xj+1}, xj , 0)Kσ = σ(xj)269

hence the equality. ◀270

CVIT 2016

23:8 Encoding impredicative hierarchy of type universes with variables

The two equivalences are quite similar, the difference being in the very last subterm of271

the max which is a A in the first case (we have to take into account sk(y) that is to say272

k + y) and a B in the second one (k is taken into account with a B).273

The sublevels that we search for our representation are elements of this grammar. We274

just have two slightly modifications, two simplifications to make. The first one is illustrated275

by this example.276

▶ Example 23. With t1 = A(∅, x, 0) and t2 = A({x}, x, 0), we have t1 =L t2 since for all277

valuation σ, Jt1Kσ = σ(x) = Jt2Kσ.278

The issue here is the fact that the second argument of a A symbol does not necesarily279

appear in its first argument. This creates equalities as shown in the next proposition.280

▶ Proposition 24. Let x ∈ X , E ⊂ X \ {x} and S ∈ N. Then281

A(E, x, S) =L max(A(E ∪ {x}, x, S), B(E, S)).282

Proof. Let σ be a valuation, t = A(E, x, S), u = A(E ∪ {x}, x, S) and v = B(E, S).283

If there exists y ∈ E such that σ(y) = 0, then JtKσ = JuKσ = JvKσ = 0.284

Else, if σ(x) = 0, then JtKσ = S, JuKσ = 0 and JvKσ = S.285

Else, σ(x) ̸= 0, and then JtKσ = σ(x) + S, JuKσ = σ(x) + S and JvKσ = S.286

Hence the result. ◀287

Then, we will only consider elements of the form A(E, x, S) such that x ∈ E.288

The second modification is related to the representation of 0. Indeed, for all E ⊂ X ,289

B(E, 0) =L 0, and we should then keep at most one of them. However, since we already have290

0 =L max(∅), we can remove all of them.291

And we end up with this set of sublevels which permits to express any level of L.292

▶ Definition 25. We denote by Ls the set of the sublevels that check the following conditions.293

1. A(E, x, S) ∈ Ls ⇐⇒ x ∈ E,294

2. B(E, S) ∈ Ls ⇐⇒ S > 0.295

▶ Theorem 26. Let t ∈ L. Then there exists u1, . . . , un ∈ Ls such that t =L max(u1, . . . , un).296

▶ Remark 27. By convenience, we will note ui ∈ t if there exists u1, . . . , un ∈ Ls such that297

t =L max(u1, . . . , un).298

3 A minimal representation299

In the previous section, we find a set Ls and showed that any level can be represented300

as a maximum of elements of Ls. The goal of this one is to show that any level has a301

minimal representation as maximum of elements of Ls and that this representation is unique.302

Intuitevely, the sublevels of a minimal representation should be incomparable (else one of303

the sublevels could be removed).304

▶ Definition 28 (Minimal representation). Let t be a term. We say that t is a minimal305

representation if and only if there exists u1 . . . , un ∈ Ls such that306

1. t = max(u1, . . . , un),307

2. forall i ̸= j, ui and uj are incomparable.308

We denote by Lr the set of the minimal representations.309

Y. Géran 23:9

Of course, any level t has a minimal representation. We can express t as a maximum310

of elements of Ls (by Theorem 26) and we remove elements if they are comparabe. The311

challenging part is its uniqueness. To show it, we study the core of the definition of a minimal312

representation: the sublevel comparison.313

▶ Theorem 29 (Sublevels comparison). Elements of Ls are compared as follows.314

A(E, x, S) ̸⩽L B(F, K) (1)315

B(E, S) ⩽L B(F, K) ⇐⇒ F ⊂ E ∧ S ⩽ K (2)316

B(E, S) ⩽L A(F, x, K) ⇐⇒ (F ⊂ E ∧ S ⩽ K + 1) (3)317

A(E, x, S) ⩽L A(F, y, K) ⇐⇒ F ⊂ E ∧ x = y ∧ S ⩽ K (4)318

Proof. With σ such that σ(x) = K + 1 and σ(y) = 1 if y ̸= x, we show the first case. Indeed,319

JA(E, x, S)Kσ = K + 1 + S > K = JB(F, K)Kσ hence A(E, x, S) ̸⩽L B(F, K). The cases 2, 3320

and 4 correspond to Propositions 30–32 proved below. ◀321

▶ Proposition 30. Let E, F ⊂ X , x ∈ E, y ∈ F and S, K ∈ N. Then322

A(E, x, S) ⩽L A(F, y, K) ⇐⇒ F ⊂ E ∧ x = y ∧ S ⩽ K.323

Proof. We note t1 = A(E, x, S) and t2 = A(F, y, K). Let us suppose F ⊂ E, x = y and324

S ⩽ K. Let σ be a valuation.325

If there exists y ∈ F such that σ(y) = 0, then Jt2Kσ = 0 and since F ⊂ E, Jt1Kσ = 0.326

Else, Jt1Kσ ⩽ σ(x) + S ⩽ σ(x) + K = Jt2Kσ.327

In both cases, Jt1Kσ ⩽ Jt2Kσ hence t1 ⩽L t2.328

Now, we show the other implication by contraposition.329

If there exists z ∈ F such that z ̸∈ E, we take σ such that σ(z) = 0 and forall j ̸= z,330

σ(j) = 1. We note that z ̸= x (since z ̸∈ E and x ∈ E) hence σ(x) = 1. Then,331

Jt1Kσ = S + 1 > 0 = Jt2Kσ.332

If x ̸= y we take σ such that σ(x) = K + 2, σ(y) = 1 and forall z ̸= x and z ≠ y, σ(z) = 1.333

Then, Jt1Kσ = K + S + 2 > K + 1 = Jt2Kσ.334

If S > K we take σ such that forall z, σ(z) = 1. Then, Jt1Kσ = S + 1 > K + 1 = Jt2Kσ.335

◀336

▶ Proposition 31. Let E, F ⊂ X and S, K ∈ N. Then337

B(E, S) ⩽L B(F, K) ⇐⇒ F ⊂ E ∧ S ⩽ K.338

Proof. We note t1 = B(E, S) and t2 = B(F, K). Let us suppose F ⊂ E and S ⩽ K. Let σ339

be a valuation.340

If there exists y ∈ F such that σ(y) = 0, then Jt2Kσ = 0 and since F ⊂ E, Jt1Kσ = 0.341

Else, Jt1Kσ ⩽ K ⩽ S = Jt2Kσ.342

In both cases, Jt1Kσ ⩽ Jt2Kσ hence t1 ⩽L t2.343

Now, we show the other implication by contraposition.344

If there exists y ∈ F such that y ̸∈ E, we take σ such that σ(y) = 0 and forall z ̸= y,345

σ(z) = 1. Then, Jt1Kσ = S > 0 = Jt2Kσ.346

If S < K we take σ such that forall y, σ(y) = 1. Then, Jt2Kσ = K > S = Jt1Kσ.347

◀348

▶ Proposition 32. Let E, F ⊂ X , x ∈ E and K, S ∈ N. Then349

B(E, S) ⩽L A(F, x, K) ⇐⇒ (F ⊂ E ∧ S ⩽ K + 1).350

CVIT 2016

23:10 Encoding impredicative hierarchy of type universes with variables

Proof. We note t1 = B(E, S) and t2 = A(F, x, K). Let us suppose F ⊂ E and S ⩽ K + 1.351

Let σ be a valuation.352

If there exists y ∈ F such that σ(y) = 0, then Jt2Kσ = 0 and since F ⊂ E, Jt1Kσ = 0.353

Else, σ(x) ≥ 1 (because x ∈ F) and then Jt2Kσ = σ(x) + K ≥ 1 + K ≥ S ≥ Jt1Kσ.354

In both cases, Jt1Kσ ⩽ Jt2Kσ hence t1 ⩽L t2.355

Now, we show the other implication by contraposition. First, we note that S > 0.356

If there exists y ∈ F such that y ̸∈ E, we take σ such that σ(y) = 0 and forall z ̸= y,357

σ(z) = 1. Then, Jt1Kσ = K > 0 = Jt2Kσ.358

If S > K + 1 we take σ such that forall y, σ(y) = 1. Then, Jt1Kσ = S > K + 1 = Jt1Kσ.359

◀360

As a corollary, we get that the sublevel equivalence is a syntactic equality, which is quite361

natural; the uniqueness property would be impossible otherwise.362

▶ Corollary 33. Let t1, t2 ∈ Ls. Then t1 =L t2 ⇐⇒ t1 = t2.363

Proof. We have t1 =L t2 ⇐⇒ t1 ⩽L t2∧t2 ⩽L t1, and we conclude with the Theorem 29. ◀364

And we can show the uniqueness of the minimal representation. First, we show that two365

equivalent minimal representations have the same A.366

▶ Proposition 34. Let t1, t2 ∈ Lr such that t1 =L t2. Then367

A(E, x, S) ∈ t1 ⇐⇒ A(E, x, S) ∈ t2.368

Proof. Let us note369

t1 = max(A(E0, x0, S0), . . . , A(En, xn, Sn), B(G0, T0), . . . , B(Gp, Tp))370

t2 = max(A(F0, y0, K0), . . . , A(Fm, ym, Km), B(H0, L0), . . . , B(Hq, Lq)).371

Let A(E, x, S) be an sublevel of t1. We consider σ such that372

σ(y) =


max(S0, . . . , Sn, K0, . . . , Km, T0, . . . , Tp, L0, . . . , Lq) + 1 if y = x

1 if y ∈ E \ {x}
0 else

373

We have Jt1Kσ = JA(E, x, S)Kσ = S + σ(x) and then Jt2Kσ = S + σ(x). Then, there exists374

A(F, y, K) in t2 such that F ⊂ E ∪ {x} = E (else F contains a variable z such that σ(z) = 0)375

and σ(y) + K = σ(x) + S or there exists B(F, K) in t2 such that K = σ(x) + S. Since376

σ(x) > max(S0, . . . , Sn, K0, . . . , Km), we deduce that it is the first case and y = x.377

Then, there is (F, x, S) in t2 with F ⊂ E and σ(y) + K = σ(x) + S. If F ⊊ E, then by378

the same reasoning, we show that there exists A(G, x, S) ∈ t1 with G ⊂ F ⊊ E. But, by379

Definition 28, it is impossible to have A(E, x, S) and A(G, x, S) in t1 with G ⊂ E since they380

are comparable.381

Then E = F and A(E, x, S) is also an element of t2. ◀382

And we show the same for the B.383

▶ Proposition 35. Let t1, t2 ∈ Lr such that t1 =L t2. Then384

B(E, S) ∈ t1 ⇐⇒ B(E, S) ∈ t2.385

Y. Géran 23:11

Proof. Let us note386

t1 = max(A(E0, x0, S0), . . . , A(En, xn, Sn), B(G0, T0), . . . , B(Gp, Tp))387

t2 = max(A(F0, y0, K0), . . . , A(Fm, ym, Km), B(H0, L0), . . . , B(Hq, Lq)).388

We show the result by induction on E. Let B(E, S) be a sublevel of t1. If E = ∅, we consider389

σ the zero function. Then, Jt1Kσ = S, hence Jt2Kσ = S. Since S > 0, it follows that B(∅, S)390

is a sublevel of t2.391

In the induction case, we consider σ such that σ(x) = 1 if x ∈ E and σ(x) = 0 otherwise,392

hence Jt1Kσ = S. Then, Jt2Kσ = S and since S > 0, there exists A(F, x, K) in t2 such that393

F ⊂ E and σ(x) + K = S or there exists B(F, S) in t2 such that F ⊂ E and K = S.394

In the first case, we have x ∈ F ⊂ E, then σ(x) = 1 and K = S − 1. Then, by395

Proposition 34, A(F, x, S − 1) ∈ t1 which is impossible by Definition 28 since it would be396

comparable with B(E, S) ∈ t1.397

Then, we have B(F, S) ∈ t2. If F ⊊ E, we apply the induction hypothesis and obtain398

B(F, S) ∈ t1, impossible because it would be comparable with B(E, S).399

Then E = F and B(E, S) is also an element of t2. ◀400

We immediately obtain that equivalence of minimal representations is the syntactic401

equality.402

▶ Proposition 36. For all t1, t2 ∈ Lr, t1 =L t2 ⇐⇒ t1 = t2.403

Proof. The reverse implication is trivial and the first one is a consequences of the Proposi-404

tions 34 and 35. ◀405

And finally, we obtain the main theorem: the existence and uniquennes of a minimal406

representation for each level. First, we show the intuitive property that the minimal407

representation of a maximum of sublevels is formed with elements of these sublevels.408

▶ Proposition 37. For all u1, . . . , un ⊂ Ls, there exists a unique {v1, . . . , vm} ⊆ {u1, . . . , un}409

such that max(u1, . . . , un) = max(v1, . . . , vm) and max(v1, . . . , vm) ∈ Lr.410

Proof. We apply the following procedure. We consider E = {u1, . . . , un}. While there exists411

u, v ∈ E such taht u ⩽L v, we remove u from E. The Proposition 36 permits to obtain the412

uniqueness of this minial representation. ◀413

▶ Theorem 38 (Representation). For all t ∈ L, there exists a unique {u1, . . . , un} ⊂ Ls such414

that t =L max(u1, . . . , un). We say that max(u1, . . . , un) is the minimal representation of t415

and we denote it as repr(t).416

Proof. By Theorem 26, there exists u1, . . . , un ∈ Ls such that t =L max(u1, . . . , un), and by417

Proposition 37, there exists a unique minimal representation of max(u1, . . . , un). ◀418

Having a unique minimal representation is useful to have a faithful embedding of L in the419

λΠ/ ≡, which is done in Section 4. Moreover, this representation also gives us an easy way to420

compare two terms. Indeed, a sublevel can be compared to a level using the representation.421

▶ Lemma 39. Let u, v1, . . . , vn ∈ Ls. Then u ⩽L max(v1, . . . , vn) if and only if there exists422

i such that u ⩽L vi.423

Proof. The reverse implication is trivial. We show the direct implication by contraposition.424

We suppose that forall i, u ̸⩽L vi.425

If u = B(E, S), we consider σ such that σ(x) = 1 if x ∈ E and 0 otherwise. Then, forall426

vi, we have either427

CVIT 2016

23:12 Encoding impredicative hierarchy of type universes with variables

vi = A(F, x, K) or vi = B(F, K) and F ̸⊂ E hence JviKσ = 0 < S = JuKσ,428

or vi = A(F, x, K) with F ⊆ E and K < S − 1 hence JviKσ = K + 1 < S = JuKσ,429

or vi = B(F, K) with K < S − 1 hence JviKσ = K < S = JtKσ.430

Then u ̸⩽L max(v1, . . . , vn).431

If u = A(E, x, S), then, each vi is of the form A(Fi, xi, Ki) or B(Fi, Ki), we consider M432

the maximum of these Ki and σ such that σ(x) = M + 2, σ(y) = 1 if y ∈ E \ {x} and 0433

otherwise. Then, forall vi, we have either434

vi = B(F, K) hence JviKσ ⩽ K < S + M + 2 = JuKσ,435

or vi = A(F, y, K) and F ̸⊂ E hence JviKσ = 0 < S = JuKσ,436

or vi = A(F, y, K) with F ⊆ E and x ̸= y, hence JviKσ = K + 1 < S + M + 2 = JuKσ,437

or vi = A(F, x, K) with F ⊆ E and K < S, hence JviKσ = K +M +2 < S +M +2 = JuKσ.438

Then u ̸⩽L max(v1, . . . , vn). ◀439

And we use this lemma to compare two levels, for instance by comparing each sublevel440

of the minimal representation of the first one to the second one. More generally, two441

representations are compared in the following way.442

▶ Theorem 40. Let u1, . . . , un, v1, . . . , vm ∈ Ls. Then, max(u1, . . . , un) ⩽L max(v1, . . . , vm)443

if and only if forall i, there exists j such that ui ⩽L vj.444

Proof. If max(u1, . . . , un) ⩽L max(v1, . . . , vn), then for all i, ui ⩽L max(v1, . . . , vn) and by445

the Lemma 39, there exists vj such that ui ⩽L vj . The reverse implication is trivial. ◀446

One can note that the Lemma 39 gives us a new proof of the uniqueness property stated447

in Proposition 36.448

Proof. Let u = max(u1, . . . , un) and v = max(v1, . . . , vm) be two minimal representations449

such that u =L v. We want to show that forall i, there exists j such that ui = vj .450

We have ui ⩽L u ⩽L v, hence by Lemma 39, there exists vj such that ui ⩽L vj . In451

the same way, there exists uk such that vj ⩽L uk. Then, by Definition 28, i = k (because452

u1, . . . , un are incomparable), and then ui =L vj hence ui = vj by Corollary 33. ◀453

This shows that there is a link between the Lemma 39 and the uniqueness property. In454

fact, this lemma should be understood as an independence lemma. Indeed, if we consider455

max(u1, . . . , un) as a linear combination of u1, . . . , un, then this lemma states that the only456

way to be smaller than a linear combination is to depend on and be smaller than one of the457

elements of this combination.458

This analogy provides a new point of view on our work: Ls is a ‘linearly independent’459

family (uniqueness of the minimal representation) which generates at least L (for instance,460

max(A({x}, y, 0)) or max(B({x}, 1)) are not equivalent to any level).461

4 A rewriting system for this universe representation462

This section is dedicated to the implementation of this representation in the λΠ/ ≡.463

4.1 Basic tools464

Here, we define the very basic term that we will used. The booleans and the natural numbers,465

to begin with, are necessary.466

Y. Géran 23:13

▶ Definition 41 (Booleans). We define a type B, with constructors true : B, false : B and467

functions and : B → B, or : B → B and not : B → B. B is interpreted as the Booleans, true,468

false, and, or and not as ⊤, ⊥, the conjunction, the disjunction and the negation.469

▶ Definition 42 (Natural numbers). We define a type N, with constructors 0 : N, s : N → N470

and functions + : N → N → N, <=N : N → N → B, =N : N → N → B, <N : N → N → B (with infix471

notation) and maxN : N → N → N. N is interpreted as N, 0 as 0, s, +, <=N, =N and maxN as 0,472

s, +, ≤, = and max.473

Moreover, we define a if-then-else structure. It is not really necessary, but will be very474

convenient to facilitate the writing of some rules.475

▶ Definition 43. Let T be a type. We define the function iteT : B → T → T → T such that476

∀u, v ∈ T , iteT true u v ↪→ u and iteT false u v ↪→ v. For convenience reasons, we will477

denote iteT b u v by if b then u else v.478

And finally, we show how to define a type of sets for all ordered types. It will be used for479

set of natural numbers (to define the sublevels), but also for set of sublevels (to define the480

representations).481

▶ Definition 44 (Sets). Let T be a type equipped with a total order function leqT : T →482

T → B. Then, we define a type S[T] corresponding to the finite set of elements of T with a483

constructor {}T : S[T] and the functions (all with infix notation) «T : S[T] → T → S[T],484

++T : S[T] → S[T] → S[T], inT : T → S[T] → B, subT : S[T] → S[T] → B and485

=S[T] : S[T] → S[T] → B.486

S[T] is interpreted as the set of finite subsets of T , {}T as the empty set, «T as the487

function that adds an element to a set, ++T , inT , subT and =S[T] as ∪, ∈, ⊆ and =.488

For convenience reasons, we will denote the term {}T «T x1 «T · · · «T xn by {x1, . . . , xn}T .489

In particular, {x}T will represent a singleton.490

S[T] is implemented as a sorted list of elements of T with the constructors {}T : S[T]491

and ::T : T → S[T] → S[T], and the function «T adds an element to a list while keeping492

the uniqueness and order properties. Then, a set will be built through {}T and «T and the493

constructor ::T will only be used in patterns of rewrite rules.494

▶ Definition 45 (Set order). Let T be a type with a total order function leqT . Then, we495

define a total order leqS[T] by considering the lexicographic order on sorted word of T .496

Besides, we define the corresponding strict total order lqS[T].497

We do not give the rules for these elements since they are quite basic. However, the498

Dedukti implementation is available if necesary.499

4.2 Level encoding500

In order to implement the sets of sublevels and to compare two sublevels, we should be able501

to compare and sort level variables. That is why we use a deep encoding where each variable502

is encoded as a natural number. We denote by γ : X → N a bijection that associates each503

variable to a natural number.504

▶ Definition 46. We define L, the type of the levels together with the constructors 0L : L,505

sL : L → L, maxL : L → L → L, imaxL : L → L → L and varL : N → L. We define inductively a506

translation function |·| : L → L with507

|0| = 0L |s(t)| = sL |t| |x| = varL |γ(x)|N508

|max(u, v)| = maxL |u| |v| |imax(u, v)| = imaxL |u| |v|509

CVIT 2016

23:14 Encoding impredicative hierarchy of type universes with variables

▶ Definition 47. We define LS, the type of the sublevels, with the constructors a : S[N] →510

N → N → LS and b : S[N] → N → LS. We define a translation function |·|s : Ls → LS by511

|A(E, x, S)|s = a |E| |x| |S| and |B(E, S)|s = b |E| |S|.512

In order to define S[LS], we need a total order on LS. We consider the order where all the513

a are before the b, and the a (respectively) the b are sorted according to the lexicographic514

order:515

a E x S ⩽ b F K,516

a E x S ⩽ a |F | |y| |K| is the lexicographic order between (E, x, S) and (F, y, K) (which517

is a total order since N and S[N] are equipped with a total order by Definition 45),518

b E S ⩽ b F K is the lexicographic order between (E, S) and (F, K).519

▶ Definition 48 (Total order on sublevels). We define a total leqLS
on LS (and its corresponding520

strict order lqLS
). Indeed, we consider these rewrite rules.521

(a E x S) leqLS
(b F K) −→ true522

(a E x S) leqLS
(a F y K) −→ or (E lqS[N] F)523

and (E =S[N] F) ((or (x <N y) (and (x =N y) (S <=N K))))524

b E S leqLS
b F K −→ or

(
E lqS[N] F, and(E =S[N] F, S <=N K)

)
525

And we can then define the representations.526

▶ Definition 49. We define a function maxLS : S[LS] → L that embeds a set of LS into a L and a527

translation function |·|r : Lr → L defined by |max(u1, . . . , un)|r = maxLS

(
{|u1|s, . . . , |un|s}

T

)
.528

Now, we have defined all the types and the elements of Lr have translations in λΠ/ ≡.529

The next step is to provide rewrite rules that transform a level into its minimal representation.530

The cases of 0L and of variables are easy.531

0L −→ maxLS({}LS) varL(x) −→ maxLS

(
{a({x}N, x, 0)}LS

)
532

For the other cases, and in particular for the max, the sublevel comparison will be useful,533

so we define it.534

▶ Definition 50 (Sublevels comparison). We define <=LS : LS → LS → B interpreted as ⩽L535

with these rewrite rules.536

a(E, x, S) <=LS b(F, K) −→ false (1)537

b(E, S) <=LS b(F, K) −→ and(F subN E, S <=N K) (2)538

b(E, sL(S)) <=LS a(F, y, K) −→ and(F subN E, S <=N K + 1) (3)539

a(E, x, S) <=LS a(F, y, K) −→ and(F subN E, and(x =N y, S <=N K)) (4)540

▶ Proposition 51. Let u, v ∈ Ls. Then, u ⩽L v ⇐⇒ |u| <=LS |v| ↪→∗ true.541

Proof. Each rule (i) corresponds to the case i of the Theorem 29. ◀542

And now, we can give the rules to normalize the other levels.543

Y. Géran 23:15

4.3 The successor544

We show how to compute the minimal representation of s(max(u1, . . . , un)).545

▶ Definition 52. We define ss on the sublevels by ss(A(E, x, S)) = A(E, x, S + 1) and546

ss(B(E, S)) = B(E, S + 1). Then ss(u) =L s(u).547

▶ Proposition 53. repr(s(max(∅))) = max(B(∅), s(0)) and for all n > 0 and t = max(u1, . . . , un) ∈548

Lr, repr(s(t)) = max(ss(u1), . . . , ss(un)).549

We create a function sLS : S[LS] → S[LS] corresponding to ss.550

sLS({}LS) −→ {}LS sLS(b(E, S)::LSq) −→ sLS(q) «LS b(E, s(S))551

sLS(a(E, x, S)::LSq) −→ sLS(q) «LS a(E, x, s(S))552

And we compute the minimal representation of a successor according to Proposition 53.553

sL(maxLS({}LS)) −→ maxLS(b({}LS , s(0))) sL(maxLS(u::LSq)) −→ maxLS(sLS(u::LSq))554

▶ Proposition 54. For all t ∈ Lr, sL(|t|r) ↪→∗ |repr(s(t))|r.555

4.4 The maximum556

For the maximum, we define maxs, that adds a sublevel to a minimal representation.557

▶ Definition 55. We define inductively maxs : P(Ls) × Ls → P(Ls) inductively defined by558

maxs(∅, u) = {u} and559

maxs({u1, . . . , un} ∪ {u}, v) =


{u1, . . . , un, u} if v ⩽L u,
{u1, . . . , un, v} if u ⩽L v,
maxs({u1, . . . , un}, v) ∪ {u} else.

560

▶ Proposition 56. For all minimal representations t = max(u1, . . . , un) ∈ Lr and v ∈ Ls,561

repr(max(u1, . . . , un, v)) = maxs({u1, . . . , un}, v).562

We implement maxs as a function maxhelper : S[LS] → LS → S[LS] with these rewrite563

rules.564

maxhelper({}LS , u) −→ {u}LS565

maxhelper(u::LSE, v) −→ if v <=LS u then E «LS u566

else if u <=LS v then E «LS v else maxhelper(E, v) «LS u567

And we compute the minimal representation for maxL according to Proposition 56.568

maxL(maxLS(E), maxLS({}LS)) −→ maxLS(E)569

maxL(maxLS(E), maxLS(u::LSF)) −→ maxL(maxhelper(E, u), maxLS(F))570

▶ Proposition 57. For all t1, t2 ∈ Lr, maxL(|t1|r, |t2|r) ↪→∗ |repr(max(t1, t2))|r.571

4.5 The impredicative maximum572

To begin, we study imax(u, v) where u, v ∈ Ls.573

▶ Proposition 58. Let f(E, S) be either A(E, x, S) or B(E, S) and g(F, K) be either574

A(F, x, K) or B(F, K). Then575

imax(f(E, S), g(F, K)) =L max(f(E ∪ F, S), g(F, K)).576

CVIT 2016

23:16 Encoding impredicative hierarchy of type universes with variables

Proof. We note u = f(E, x, S) and v = g(F, K). Let σ be a valuation.577

If there exists y ∈ F such that σ(y) = 0, then Jimax(u, v)Kσ = 0 = Jmax(f(E ∪ F, S), v)Kσ.578

Else,JvKσ = K > 0 and then Jimax(u, v)Kσ = max(JuKσ, K). Besides, since σ(y) ̸= 0 forall579

y ∈ F , there exists y ∈ E ∪ F such that σ(y) = 0 if and only if there exists y ∈ E such580

that σ(y) = 0, hence JuKσ = Jf(E ∪ F, S)Kσ.581

Hence the result. ◀582

We implement it as a function imaxLS : LS → LS → L.583

imaxLS(a(E, x, S), b(F, K)) −→ maxL(maxLS(a(E ++N F, x, S)), maxLS(b(F, K)))584

imaxLS(b(E, S), b(F, K)) −→ maxL(maxLS(b(E ++N F, S)), maxLS(b(F, K)))585

imaxLS(b(E, S), a(F, x, K)) −→ maxL(maxLS(b(E ++N F, S)), maxLS(a(F, x, K)))586

imaxLS(a(E, x, S), a(F, y, K)) −→ maxL(maxLS(a(E ++N F, x, S)), maxLS(a(F, y, K)))587

588

Then, following the equalities imax(0, t) =L t and imax(t, 0) =L 0, and Propositions 11589

and 12, we define imax_aux : LS → L → L and add these rewrite rules.590

imaxL(maxLS({}LS), t) −→ t591

imaxL(maxLS(u::LSq), t) −→ maxL(imax_aux(u, t), imaxL(q, t))592

imax_aux(u, maxLS({}LS)) −→ maxLS({}LS)593

imax_aux(u, maxLS(v::LSq)) −→ maxL(imaxLS(u, v), imax_aux(u, q))594

▶ Proposition 59. For all t1, t2 ∈ Lr, imaxL(|t1|r, |t2|r) ↪→∗ |repr(imax(t1, t2))|r.595

Proof. By Propositions 57 and 58, for all u, v ∈ Ls, imaxLS(|u|s, |v|s) ↪→∗ |repr(imax(u, v))|.596

Then, by induction on t ∈ Lr and using Proposition 57, we show that forall u ∈ Ls,597

imax_aux(|u|s, |t|r) ↪→∗ |repr(imax(u, t))|r. And finally, we show the result by induction on598

t2 using Propositions 11 and 12 and the equivalences imax(0, t) =L t and imax(t, 0) =L 0. ◀599

4.6 Implementing the substitution600

Since we use a deep encoding, β-reduction cannot be used for substitution. Then, we601

implement a substitution function. First, we implement evalLS : LS → N → N → L for the602

sublevels following the semantic given in the Definition 21.603

evalLS(b(E, S), y, n) −→ if and(y inN E, n =N 0) then maxLS({}LS)604

else maxLS(b(E \N y, S))605

evalLS(a(E, x, S), y, n) −→ if and(y inN E, n =N 0) then maxLS({}LS)606

else if x =N y then maxLS(b({}N, S + n))607

else maxLS(a(E \N y, x, S))608

Then, we create a function evalL : L → N → N → L that evaluate a level using the fact that609

[max(u1, . . . , un)]{x 7→ n} = max([u1]{x 7→ n}, . . . , [un]{x 7→ n}).610

evalL({}LS , y, n) −→ {}LS evalL(u::LSq, y, n) −→ maxL(evalLS(u, y, n), evalL(q, y, n))611

▶ Proposition 60. Let t ∈ L. Then, the normal form of |[t]{x 7→ u}| is evalL(|t|, |u|).612

Y. Géran 23:17

4.7 Properties of the rewrite system613

The rewrite system that we designed have strong properties. First, one can note that it614

is does not use any higher-order rewrite rule, hence it can be implemented in a first order615

system.616

▶ Theorem 61. The rewrite system is confluent and strongly normalizing.617

Proof. The termination has been proved with two termination checkers, TTT2 [26] and618

SizeChangeTool [19], and the confluence with CSI [34]. ◀619

And of course, we show that it is sound relatively to the minimal representation.620

▶ Theorem 62 (Soundness). Let t ∈ L. Then, the normal form of |t| is |repr(t)|r.621

Proof. We show that t ↪→∗ |repr(t)|r by induction on t: varL(x) ↪→ maxLS

(
{a({x}N, 0, x)}LS

)
,622

0 ↪→ maxLS {}LS , and we show the cases s, max and imax using Propositions 54, 57, and 59.623

Since no rewrite rule can be applied to maxLS , the normal form of |t| is |repr(t)|r. ◀624

Theorems 38 and 62 give us that the translations of two equivalent levels are convertible,625

and even more, they have the same normal form. In other words, this embedding faithfully626

represent the level equivalences.627

Besides, one could note some drawbacks of this embedding. First, we do not have a back628

translation from λΠ/ ≡ to L. There are two main reason for this.629

1. a and b are not exact translations of A and B.630

2. Lr and L are not equivalent.631

The first reason is linked to the restrictions that we added to A and B. Here, it is possible to632

write terms b E 0 or a E x k where x is not an element of E. In the same way, it is possible633

to write maxLS L while two sublevels of L are comparable.634

A solution could be to add a dependent term as argument, to check these conditions.635

For instance, a would have the type (E : S[N]) → (x : N) → Prf (x inN E) → N → LS where636

Prf : B → Type represents the proof of a proposition. We declare I : Prf true and we use637

a E x k I using the fact that x inN E reduces to true if and only if x is an element of E.638

The second reason is not related to the embedding, but to the representation that we639

introduced. Indeed, we already noted that some minimal representations are not equivalent640

to any level (max(A({x}, y, 0)) or max(B({x}, 1)) as examples). Then, it could be a good641

idea to find a characterization of the elements of Lr that actually correspond to levels.642

5 Conclusion643

We introduced a new representation of the levels of the impredicative PTS where equivalent644

levels have the same representation. It provides us an easy procedure decision for the645

inequality problem in the imax-sucessor algebra, and it permits us to get a sound encoding646

of these levels in the λΠ/ ≡, in the sense that equivalent levels have convertible translations.647

Moreover, this encoding corresponds to a first-order, confluent and strongly normalizing648

rewrite system, and in particular it permits to decide level equality.649

This encoding of the levels permits to encode CC∞ with universe polymorphism. Besides,650

we still have to study how this encoding behaves well together with encodings of inductive651

types or cumulativity in order to get a better encoding of Coq. The ideas mentioned at the652

end of Section 4 are also interesting. In particular, the characterization of the elements of Lr653

that are actually levels would lead to a better understanding of the imax-successor grammar.654

CVIT 2016

23:18 Encoding impredicative hierarchy of type universes with variables

Finally, this idea of representation, with the linear algebra analogy, could certainly be655

adapted to some sets of terms built over a maximum, a supremum or other similar operations.656

In addition to providing decision procedures, it would permit to define a concept similar657

to the basis of a vector space on these spaces on these sets, and then it seems to be an658

interesting direction to explore.659

References660

1 Ali Assaf. A calculus of constructions with explicit subtyping. In Hugo Herbelin, Pierre661

Letouzey, and Matthieu Sozeau, editors, 20th International Conference on Types for Proofs662

and Programs (TYPES 2014), volume 39 of LIPICS, Institut Henri Poincaré, Paris, France,663

May 2014. URL: https://hal.archives-ouvertes.fr/hal-01097401.664

2 Ali Assaf. A framework for defining computational higher-order logics. Theses, École polytech-665

nique, 09 2015. URL: https://pastel.archives-ouvertes.fr/tel-01235303.666

3 Ali Assaf, Guillaume Burel, Raphaël Cauderlier, David Delahaye, Gilles Dowek, Catherine667

Dubois, Frédéric Gilbert, Pierre Halmagrand, Olivier Hermant, and Ronan Saillard. Dedukti :668

a logical framework based on the λπ-calculus modulo theory. 2016.669

4 Ali Assaf, Gilles Dowek, Jean-Pierre Jouannaud, and Jiaxiang Liu. Encoding Proofs in670

Dedukti: the case of Coq proofs. In Proceedings Hammers for Type Theories, Proc. Higher-671

Order rewriting Workshop, Coimbra, Portugal, July 2016. Easy Chair. URL: https://inria.672

hal.science/hal-01330980.673

5 Henk Barendregt. Introduction to generalized type systems. Journal of Functional Program-674

ming, 1(2):125–154, 1991. doi:10.1017/S0956796800020025.675

6 Henk Barendregt, S. Abramsky, D. Gabbay, T. Maibaum, and Henk (Hendrik) Barendregt.676

Lambda calculi with types. 10 2000.677

7 Michael Beeson, Pierre Boutry, Gabriel Braun, Charly Gries, and Julien Narboux. GeoCoq,678

June 2018. URL: https://inria.hal.science/hal-01912024.679

8 Stefano Berardi. Type dependence and constructive mathematics. PhD thesis, PhD thesis,680

Dipartimento di Informatica, Torino, Italy, 1990.681

9 Frédéric Blanqui. Encoding Type Universes Without Using Matching Modulo Associativity and682

Commutativity. In Amy P. Felty, editor, 7th International Conference on Formal Structures for683

Computation and Deduction (FSCD 2022), volume 228 of Leibniz International Proceedings in684

Informatics (LIPIcs), pages 24:1–24:14, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-685

Zentrum für Informatik. URL: https://drops.dagstuhl.de/opus/volltexte/2022/16305,686

doi:10.4230/LIPIcs.FSCD.2022.24.687

10 Frédéric Blanqui, Gilles Dowek, Émilie Grienenberger, Gabriel Hondet, and François Thiré.688

Some Axioms for Mathematics. In Naoki Kobayashi, editor, 6th International Conference689

on Formal Structures for Computation and Deduction (FSCD 2021), volume 195 of Leibniz690

International Proceedings in Informatics (LIPIcs), pages 20:1–20:19, Dagstuhl, Germany,691

2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.692

de/opus/volltexte/2021/14258, doi:10.4230/LIPIcs.FSCD.2021.20.693

11 Mathieu Boespflug and Guillaume Burel. Coqine: Translating the calculus of inductive694

constructions into the λπ-calculus modulo. In in "Second International Workshop on Proof695

Exchange for Theorem Proving, 2012.696

12 Mathieu Boespflug, Quentin Carbonneaux, and Olivier Hermant. The λΠ-calculus Modulo as697

a Universal Proof Language. CEUR Workshop Proceedings, 878, 06 2012.698

13 Thierry Coquand and Christine Paulin. Inductively defined types. In Per Martin-Löf and699

Grigori Mints, editors, COLOG-88, pages 50–66, Berlin, Heidelberg, 1990. Springer Berlin700

Heidelberg.701

14 Judicaël Courant. Explicit universes for the calculus of constructions. In Victor A. Carreño,702

César A. Muñoz, and Sofiène Tahar, editors, Theorem Proving in Higher Order Logics, pages703

115–130, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.704

https://hal.archives-ouvertes.fr/hal-01097401
https://pastel.archives-ouvertes.fr/tel-01235303
https://inria.hal.science/hal-01330980
https://inria.hal.science/hal-01330980
https://inria.hal.science/hal-01330980
https://doi.org/10.1017/S0956796800020025
https://inria.hal.science/hal-01912024
https://drops.dagstuhl.de/opus/volltexte/2022/16305
https://doi.org/10.4230/LIPIcs.FSCD.2022.24
https://drops.dagstuhl.de/opus/volltexte/2021/14258
https://drops.dagstuhl.de/opus/volltexte/2021/14258
https://drops.dagstuhl.de/opus/volltexte/2021/14258
https://doi.org/10.4230/LIPIcs.FSCD.2021.20

Y. Géran 23:19

15 Denis Cousineau and Gilles Dowek. Embedding pure type systems in the lambda-pi-calculus705

modulo. pages 102–117, 06 2007. doi:10.1007/978-3-540-73228-0_9.706

16 Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Jan van Leeuwen, editor,707

Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics, pages708

243–320. Elsevier and MIT Press, 1990. doi:10.1016/b978-0-444-88074-1.50011-1.709

17 Gaspard Férey. Higher-Order Confluence and Universe Embedding in the Logical Framework .710

(Confluence d’ordre supérieur et encodage d’univers dans le Logical Framework. PhD thesis,711

École normale supérieure Paris-Saclay, France, 2021. URL: https://lmf.cnrs.fr/downloads/712

Perso/Ferey-thesis.pdf.713

18 Michael Färber. Safe, fast, concurrent proof checking for the lambda-pi calculus modulo714

rewriting. pages 225–238, 01 2022. doi:10.1145/3497775.3503683.715

19 Guillaume Genestier. SizeChangeTool: A Termination Checker for Rewriting Dependent Types.716

In Mauricio Ayala-Rincón, Silvia Ghilezan, and Jakob Grue Simonsen, editors, HOR 2019717

- 10th International Workshop on Higher-Order Rewriting, Joint Proceedings of HOR 2019718

and IWC 2019, pages 14–19, Dortmund, Germany, June 2019. URL: https://hal.science/719

hal-02442465.720

20 Guillaume Genestier. Encoding Agda Programs Using Rewriting. In Zena M. Ariola, editor, 5th721

International Conference on Formal Structures for Computation and Deduction (FSCD 2020),722

volume 167 of Leibniz International Proceedings in Informatics (LIPIcs), pages 31:1–31:17,723

Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. URL: https:724

//drops.dagstuhl.de/opus/volltexte/2020/12353, doi:10.4230/LIPIcs.FSCD.2020.31.725

21 Yoan Géran. Stt∀ geocoq, 2021. URL: https://github.com/Karnaj/sttfa_geocoq_euclid.726

22 Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. J. ACM,727

40(1):143–184, 1 1993. doi:10.1145/138027.138060.728

23 Robert Harper and Robert Pollack. Type checking with universes. In 2nd International Joint729

Conference on Theory and Practice of Software Development, TAPSOFT ’89, page 107–136,730

NLD, 1991. Elsevier Science Publishers B. V.731

24 Gabriel Hondet and Frédéric Blanqui. The New Rewriting Engine of Dedukti (System732

Description). In Zena M. Ariola, editor, 5th International Conference on Formal Structures for733

Computation and Deduction (FSCD 2020), volume 167 of Leibniz International Proceedings in734

Informatics (LIPIcs), pages 35:1–35:16, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-735

Zentrum für Informatik. URL: https://drops.dagstuhl.de/opus/volltexte/2020/12357,736

doi:10.4230/LIPIcs.FSCD.2020.35.737

25 Gérard Huet. Extending the calculus of constructions with type: Type, 1988. Unpublished738

draft. URL: https://pauillac.inria.fr/~huet/PUBLIC/typtyp.pdf.739

26 Martin Korp, Christian Sternagel, Harald Zankl, and Aart Middeldorp. Tyrolean ter-740

mination tool 2. In Ralf Treinen, editor, Rewriting Techniques and Applications, 20th741

International Conference, RTA 2009, Brasília, Brazil, June 29 - July 1, 2009, Proceed-742

ings, volume 5595 of Lecture Notes in Computer Science, pages 295–304. Springer, 2009.743

doi:10.1007/978-3-642-02348-4_21.744

27 Zhaohui Luo. Notes on universes in type theory, October, 2012. URL: https://www.cs.rhul.745

ac.uk/home/zhaohui/universes.pdf.746

28 Christine Paulin-Mohring. Inductive definitions in the system coq rules and properties. In747

Marc Bezem and Jan Friso Groote, editors, Typed Lambda Calculi and Applications, pages748

328–345, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.749

29 Matthieu Sozeau and Nicolas Tabareau. Universe polymorphism in coq. In Gerwin Klein and750

Ruben Gamboa, editors, Interactive Theorem Proving, pages 499–514, Cham, 2014. Springer751

International Publishing.752

30 Terese. Term rewriting systems., volume 55 of Cambridge tracts in theoretical computer science.753

Cambridge University Press, 2003.754

31 François Thiré. Sharing a library between proof assistants: Reaching out to the HOL family. In755

Frédéric Blanqui and Giselle Reis, editors, Proceedings of the 13th International Workshop on756

CVIT 2016

https://doi.org/10.1007/978-3-540-73228-0_9
https://doi.org/10.1016/b978-0-444-88074-1.50011-1
https://lmf.cnrs.fr/downloads/Perso/Ferey-thesis.pdf
https://lmf.cnrs.fr/downloads/Perso/Ferey-thesis.pdf
https://lmf.cnrs.fr/downloads/Perso/Ferey-thesis.pdf
https://doi.org/10.1145/3497775.3503683
https://hal.science/hal-02442465
https://hal.science/hal-02442465
https://hal.science/hal-02442465
https://drops.dagstuhl.de/opus/volltexte/2020/12353
https://drops.dagstuhl.de/opus/volltexte/2020/12353
https://drops.dagstuhl.de/opus/volltexte/2020/12353
https://doi.org/10.4230/LIPIcs.FSCD.2020.31
https://github.com/Karnaj/sttfa_geocoq_euclid
https://doi.org/10.1145/138027.138060
https://drops.dagstuhl.de/opus/volltexte/2020/12357
https://doi.org/10.4230/LIPIcs.FSCD.2020.35
https://pauillac.inria.fr/~huet/PUBLIC/typtyp.pdf
https://doi.org/10.1007/978-3-642-02348-4_21
https://www.cs.rhul.ac.uk/home/zhaohui/universes.pdf
https://www.cs.rhul.ac.uk/home/zhaohui/universes.pdf
https://www.cs.rhul.ac.uk/home/zhaohui/universes.pdf

23:20 Encoding impredicative hierarchy of type universes with variables

Logical Frameworks and Meta-Languages: Theory and Practice, LFMTP@FSCD 2018, Oxford,757

UK, 7th July 2018, volume 274 of EPTCS, pages 57–71, 2018. doi:10.4204/EPTCS.274.5.758

32 François Thiré. Interoperability between proof systems using the logical framework De-759

dukti. (Interopérabilité entre systèmes de preuve en utilisant le cadre logique Dedukti).760

PhD thesis, École normale supérieure Paris-Saclay, Cachan, France, 2020. URL: https:761

//tel.archives-ouvertes.fr/tel-03224039.762

33 Vladimir Voevodsky. A universe polymorphic type system, October 22, 2014. An763

unfinished unreleased manuscript. URL: https://www.math.ias.edu/Voevodsky/files/764

files-annotated/Dropbox/Unfinished_papers/Type_systems/UPTS_current/Universe_765

polymorphic_type_sytem.pdf.766

34 Harald Zankl, Bertram Felgenhauer, and Aart Middeldorp. Csi: a confluence tool. volume767

6803, pages 499–505, 07 2011. doi:10.1007/978-3-642-22438-6_38.768

https://doi.org/10.4204/EPTCS.274.5
https://tel.archives-ouvertes.fr/tel-03224039
https://tel.archives-ouvertes.fr/tel-03224039
https://tel.archives-ouvertes.fr/tel-03224039
https://www.math.ias.edu/Voevodsky/files/files-annotated/Dropbox/Unfinished_papers/Type_systems/UPTS_current/Universe_polymorphic_type_sytem.pdf
https://www.math.ias.edu/Voevodsky/files/files-annotated/Dropbox/Unfinished_papers/Type_systems/UPTS_current/Universe_polymorphic_type_sytem.pdf
https://www.math.ias.edu/Voevodsky/files/files-annotated/Dropbox/Unfinished_papers/Type_systems/UPTS_current/Universe_polymorphic_type_sytem.pdf
https://www.math.ias.edu/Voevodsky/files/files-annotated/Dropbox/Unfinished_papers/Type_systems/UPTS_current/Universe_polymorphic_type_sytem.pdf
https://www.math.ias.edu/Voevodsky/files/files-annotated/Dropbox/Unfinished_papers/Type_systems/UPTS_current/Universe_polymorphic_type_sytem.pdf
https://doi.org/10.1007/978-3-642-22438-6_38

	1 Introduction
	2 Universe representation in impredicative hierarchy
	2.1 Levels as maximum
	2.2 Simplification of the levels
	2.3 Introducting new levels

	3 A minimal representation
	4 A rewriting system for this universe representation
	4.1 Basic tools
	4.2 Level encoding
	4.3 The successor
	4.4 The maximum
	4.5 The impredicative maximum
	4.6 Implementing the substitution
	4.7 Properties of the rewrite system

	5 Conclusion

