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Tianben Wang, Zhangben Li, Xiantao Liu, Tao Gu, Senior Member, IEEE, HongHao Yan, Jing Lv, 

Jin Hu, Daqing Zhang, Fellow, IEEE 

Abstract—In recent years, we have seen efforts made to monitor respiration for multiple users. Existing approaches capture 

chest movement relying on signals directly reflected from chest or separate breath waves based on breath rate difference between 

subjects. However, several limitations exist: 1) they may fail when subjects face away from the transceiver or are blocked by 

obstacles or other subjects; 2) they may fail to separate subjects’ breath waves with the same or similar rates (i.e., breath rate 

difference < 1 bpm); 3) they assume a priori knowledge of number of subjects and cannot adapt to dynamic change of subject 

number during monitoring. To overcome these limitations, in this paper we propose MultiResp, a multi-user respiration monitoring 

system using acoustic signal. By fully leveraging the abundant acoustic signals reflected indirectly from subjects’ chest, MultiResp 

can robustly capture chest movement even when they face away from the transceiver or are blocked. By extracting fine-grained 

breath rate and phase difference between different subjects, MultiResp can separate the breath waves with the same or similar 

rates and adapt to dynamic change of subject number during monitoring. Extensive experiments show that MultiResp is able to 

accurately monitor the respiration of multiple users with a median error of 0.3 bpm in various indoor scenarios, however, it fails 

when the sound pressure is lower than 55 dB or body movement is happening. 

Index Terms— Multi-user respiration monitoring, Acoustic sensing, Multipath reflection  

——————————   ◆   —————————— 

1 INTRODUCTION

ESPIRATION monitoring plays a crucial role in diag-
nosing diseases such as chronic obstructive pulmonary 

disease (COPD)[1], heart failure[2], and sleep Apnea[3]. 
Monitoring respiration in clinical settings requires dedi-
cated devices such as thoracic impedance pneumography 
[4], capnography [5] or pulse oximeter [6] which produce 
highly accurate results but may cause discomfort and even 
affect the underlying physiological parameters being 
measured [7]. In addition, these devices are costly and usu-
ally operated by well-trained professionals. Respiration 
monitoring in home settings include a range of devices and 
sensors such as wearable devices [8,9], smart mattress, 
smart pillow embedded with air pressure sensors [10], fi-
ber optic sensor [11,12] and camera-based systems [13]. 
However, they can be still costly [10-12], may require long-
time wearing [8,9] and raise privacy concerns [13]. 

Contactless respiration monitoring typically relies on 

RF or ultrasonic signals. Many approaches have been pro-
posed, including RFID [14-17], Doppler radar [18-20], 
UWB radar [21-24], FMCW radar [25], WiFi [26-39] and 
acoustic devices [40-45], however these systems focus on 
single user only. Recent efforts have been made to enable 
multi-user respiration monitoring, e.g., FMCW radar [46-
48], UWB radar [49], WiFi [50-54], Lora [55] and acoustic 
devices [56]. However, several limitations exist: 1) Existing 
systems rely on signals directly reflected from subjects’ 
chests, thus they may not work when subjects face away 
from the transceiver, or they are blocked by furniture or 
other subjects. 2) They may not be able to separate breath 
waves with the same or similar rates (i.e., breath rate dif-
ference smaller than 1 bpm). 3) Existing systems assume 
priori knowledge of number of subjects and cannot adapt 
to dynamic change during monitoring. These limitations 
make existing systems impractical for real-world deploy-
ment.  

To address the aforementioned limitations, in this paper, 
we present MultiResp, an acoustic based respiration moni-
toring system for multiple users. Our preliminary experi-
ments show that when subjects breathe with different rates, 
the multipath signals belonging to the same subject vary 
with the same frequency (i.e., the subject’s breath rate) and 
similar phases, while the multipath signals belonging to 
different subjects vary with different frequencies. When 
subjects breathe with the same rate but different phases, 
the multipath signals belonging to the same subject vary 
with the same frequency and similar phases, while the 
multipath signals belonging to different subjects vary with 
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the same frequency but different phases. Driven by this ob-
servation, we firstly extract all multipath signals reflected 
from subjects’ chests. We then group multipath signals cor-
responding to chest movement by frequency. Multipath 
signals in the same group are further grouped by phase. In 
this way, we can exactly obtain the multipath signal group 
corresponding to each subject even when subjects breathe 
with the same or similar rates, and the number of groups 
is exactly the number of subjects. However, this is not a 
trivial task due to several challenges: 

1) When subjects face away from the transceiver or are 
blocked, there is no signal reflected directly from subjects’ 
chests. We may use indirectly reflected signals, however, 
due to multipath effect and relatively long propagation 
distance, indirectly reflected signals can be very weak. 

2) To address the limitation that existing systems fail to 
separate breath waves with the similar rates, we can meas-
ure the frequency of multipath signals, then group them by 
frequency. However, existing frequency measuring meth-
ods, e.g., fast Fourier transform (FFT), may not work effec-
tively due to limited frequency resolution.  

3) When subjects breathe with the same rate, we may 
group multipath signals by phase to separate breath waves. 
However, the phase derived from the phase spectrum is 
heavily distorted due to ambient and hardware noise. 

To address these challenges, we first quantify multipath 
signals with channel impulse response (CIR) and globally 
search multipath signals with obvious periodicity. This 
method retains both directly and indirectly reflected sig-
nals. Thus, when directly reflected signal is not presented, 
we can use indirectly reflected signals. In this way, we im-
prove system robustness when subjects face away from 
transceiver or are blocked. To tackle the second challenge, 
we propose a frequency measuring method to effectively 
group multipath signals by frequency. For the third chal-
lenge, we compute correlation coefficient to obtain pair-
wise phase differences rather than absolute phase infor-
mation. We then further group multipath signals with the 
same frequency by phase. 

We develop a prototype system and evaluate MultiResp 
in various indoor scenarios: 1) subjects face away from the 
transceiver or are blocked by furniture or other subjects; 2) 
subjects breathe with the similar rates; 3) subjects breathe 
with the same rate; 4) the number of subjects changes dy-
namically. Results demonstrate that MultiResp can simul-
taneously track the respiration of multiple users in various 
scenarios. However, it fails when the sound pressure is 
lower than 55 dB or body movement is happening. The 
demo video of MultiResp is available at https://ti-
nyurl.com/2p9c93v3 and https://youtu.be/naB3rFrNSfE.   

The main contributions of this paper can be summa-
rized as follows: 

1) We propose a novel human respiration extraction 
method leveraging on both directly and indirectly re-
flected acoustic signals to reliably monitor chest movement 
of multiple users. This method fills the gap in existing sys-
tems when directly reflected signals are not presented.  

2) We propose a novel breath wave separation method 
to separate breath waves with the same or similar rates. 
More importantly, it can adapt to scenarios where the 

number of subjects changes dynamically.  
3) We implement and evaluate MultiResp through ex-

tensive experiments in various indoor scenarios. Results 
demonstrate that MultiResp is able to robustly measure res-
piration for multiple users.  

2 RELATED WORK 

2.1 RF-based Approach 

2.1.1 Single-user Scenario 

RFID [14-17], UWB radar [21-24], FMCW radar [25], Dop-
pler radar [18-20] have been used in monitoring respiration. 
Comparing with these systems, commodity WiFi devices 
are cost-effective and widely available in home settings. 
Ubibreathe [26], WiBreathe [27] and Breathfinding [28] 
monitor respiration leveraging the amplitude change of 
WiFi Received Signal Strength Indicator (RSSI). Wi-Sleep 
[19] extracts WiFi channel state information (CSI) for res-
piration monitor. This system has been further improved 
by considering sleep posture and abnormal respiration [32]. 
Wang et al. [35] propose Fresnel zone theory to study WiFi 
sensing limitations. FullBreath [38], FarSense [57] and Fres-
nel Diffraction Model [39] improve the robustness of respi-
ration monitoring through overlapped Fresnel zones, CSI 
ratio between multiple receiving antennas and WiFi dif-
fraction phenomenon, respectively. However, these RF 
based approaches cannot be directly applied in a multi-
user scenario and they rely on directly reflected signals. 

2.1.2 Multi-user Scenario 

CW radar [58], UWB radar [49], and millimeter-wave radar 
[59] have been applied for multi-user respiration monitor-
ing. Adib et al. [46] and Ahmad et al. [47] use FMCW radar 
to track multi-user respiration by simultaneously estimate 
the distance from chest to transceiver. DeepBreath [48] 
firstly transforms multi-user breath wave separation to a 
Blind Source Separation problem and solve it with the In-
dependent Component Analysis (ICA) algorithm. It is able 
to separate breath waves with very different rates, but the 
number of subjects has to be known in advance, and it does 
not work when subjects breathe with similar rates. Zhang 
et al. [55] search and extract breath rate using Lora beam-
forming. Due to directional searching, this system fails if 
multiple subjects stay in the same direction. A popular RF 
based solution is to extract respiration rates from WiFi CSI. 
Liu et al. [34] firstly extract multi-user respiration rates 
from the power spectral density (PSD) of CSI amplitude. 
However, the Fresnel zone model demonstrates that CSI 
amplitude may have little variation at some locations. 
PhaseBeat [51] and TensorBeat [52] mitigate this problem 
leveraging on CSI phase. TR-BREATH [53] projects CSI to 
the Time-Reversal Resonating Strength (TRRS) feature 
space and extract subjects’ respiration rate by the Root-
MUSIC algorithm. MultiSense [54] tracks respiration by 
solving a blind source separation (BBS) problem with the 
ICA algorithm on CSI. The above systems rely on directly 
reflected signals and need priori knowledge of the number 
of subjects. It’s hard for them to separate breath waves 
with very similar rates (breath rate difference < 1 bpm) and 
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same rate. 

2.2 Audio-based Approach 

2.2.1 Single-user Scenario 

Acoustic signal has also been used to monitor respiration 
in recent years. Apneapp [40] measures breath rate and de-
tects sleep Apnea by estimating the distance variation 
caused by chest movement during breathing with 
18KHz~20KHz audio chirp signal. However, limited by its 
ranging resolution (7 mm), it may fail to measure chest dis-
placement smaller than 1.4 cm. To improve range resolu-
tion, 240KHz ultrasonic is applied to measure chest move-
ment in [41]. Although the system achieves accurate rang-
ing, it requires costly ultrasonic transceiver. Wang et al. [42] 
propose a novel acoustic ranging method C-FMCW, which 
achieves a range resolution of around 0.4 cm on commod-
ity acoustic device. Wang et al. [45] expand the frequency 
band of acoustic signal by transforming white noise into 
FMCW chirp and enhance SNR with mic array beamform-
ing to achieve accurate respiration monitoring for infant. 
Xu et al. [60] propose a fine-grained breathing monitoring 
system by combining Energy Spectrum Density, Ensemble 
Empirical Mode Decomposition and Generative Adversar-
ial Network in driving environments. In addition to meas-
uring chest movement, directly sensing exhaled airflow is 
another way to monitor respiration. Arlotto et al. [43] pro-
pose minute Doppler shift caused by scattering effect of ex-
haled airflow on acoustic signal for respiration monitoring. 
The work [44] enhances the theory by building the model 
of the Doppler effect caused by exhaled airflow. Based on 
this model, it improves the robustness of respiration mon-
itoring.  

The above audio-based approaches are designed for 
single-user scenario. In addition, they rely on directly re-
flected signals, therefore fail to work when subjects face 
away from the transceiver or are blocked by furniture. 

2.2.2 Multi-user Scenario 

Wan et al. [56] propose the first multi-user respiration 
monitoring system using acoustic signals, named 
RespTracker, leveraging the distance derived from the 
time delay of reflected signals. However, there are several 
limitations remain to be addressed. Firstly, when subjects 
face away from the transceiver, there is no signal directly 
reflected from subject’s chest. The time delays of indirectly 
reflected signals from the same subject are not gathering 
any more. The time delays of multipath signals belonging 
to different subjects may overlap heavily. In this case, it is 
difficult, to get accurate distance information. Secondly, 
RespTracker requires priori knowledge of number of sub-
jects because the K-means cluster algorithm is used to sep-
arate multipath signals. Thirdly, it may fail to separate 
breath waves when subjects locate closely or breathe with 
very similar rates and same rate. 

In contrast, we propose MultiResp to address the limita-
tions of existing work by fully leveraging abundant acous-
tic signals indirectly reflected from subjects’ chests, consid-
ering subject difference in terms of respiration rate and res-
piration phase. 

3 SYSTEM OVERVIEW 

3.1 Motivation 

To gain a clear understanding of design challenges, we 
firstly introuduce the concepts of CIR and CIR sequence, 
then conduct a preliminary experiment to provide further 
insight into these concepts. 

With respect to CSI, CIR can describe both time delay 
and amplitude attenuation of each multipath reflection sig-
nal in time domain, hence avoiding the time-consuming 
signal decomposition process. With 𝑥𝑡(𝑛) and 𝑥𝑟(𝑛)  (i.e., 
the echo received by microphone), CIR can be estimated 
using inverse filter [61]: 

ℎ̂(𝑛) = IFFT(𝑋𝑟(𝑛) × 𝐶(𝑛))                       (1) 

where 𝐶(𝑛) is the discrete Fourier transformation (DFT) of 
the inverse filter of 𝑥𝑡(𝑛). It is given by:  

𝐶(𝑛) =
𝑋𝑡

∗(𝑛)

𝑋𝑡
∗(𝑛) × 𝑋𝑡(𝑛) + 𝜀(𝑛)

                      (2) 

IFFT  denotes Inverse Fast Fourier transform. 𝑋𝑟(𝑛)  and 
𝑋𝑡(𝑛) are the DFT of 𝑥𝑟(𝑛) and 𝑥𝑡(𝑛), respectively. 𝑋𝑡

∗(𝑛) 
is the conjugate of 𝑋𝑡(𝑛). 𝜀(𝑛) is a small regularization pa-
rameter applied to avoid interference outside the fre-
quency range of  𝑥𝑡(𝑛) . Specifically, the value of 𝜀(𝑛) 
should be very small within the frequency range of 𝑥𝑡(𝑛), 
while very large beyond the frequency range of 𝑥𝑡(𝑛). In 
other word, 𝜀(𝑛) plays the role of a band stop filter.  

Fig.1 shows an example of CIR estimated in a room.  It 
describes the time delay and amplitude attenuation of all 
the multipath reflection signal, where each point denotes 
one signal path.   

 
Fig. 1. An example of CIR 

Let ℎ̂𝑡𝑖
(𝑛) denote the CIR at time 𝑡𝑖, which describes the 

time delay and amplitude of all the multipath reflection 
signal at 𝑡𝑖. CIRs over time forms a matrix 𝑺: 

𝑺 =

[
 
 
 
 
𝒉̂𝒕𝟏

𝒉̂𝒕𝟐

⋮
𝒉̂𝒕𝑵]

 
 
 
 

=

[
 
 
 
 
ℎ̂𝑡1

(1) ℎ̂𝑡1
(2) ⋯ ℎ̂𝑡1

(𝑘)

ℎ̂𝑡2
(1) ℎ̂𝑡2

(2) ⋯ ℎ̂𝑡2
(𝑘)

⋮ ⋮ ⋮ ⋮
ℎ̂𝑡𝑁

(1) ℎ̂𝑡𝑁
(2) ⋯ ℎ̂𝑡𝑁

(𝑘)]
 
 
 
 

    = [𝑺𝟏, 𝑺𝟐, ⋯ , 𝑺𝒌]

           (3) 

𝑺𝒊, 1 < 𝑖 < 𝑘, is the ith column of 𝑺. It denotes the multi-
path signal with time delay 𝑖 𝑓𝑠⁄ . For sake of simplicity, we 
call 𝑺𝒊 one CIR sequence. In each iteration cycle of Multi-
Resp, matrix 𝑺 is updated. The CIR estimated in the current 
iteration cycle is added as a new row to the end of 𝑺. If the 
number of the row is larger than 200 (the length of analysis 
window), i.e., the analysis window is overflowed, the first 
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row of 𝑺 will be eliminated. 

  
(a)                                                   (b) 

  
                                  (c)                                                  (d) 

  
                                   (e)                                                (f) 

    
(g)                                               (h) 

Fig. 2. Preliminary experiments 

Fig. 2 shows the result from our preliminary experiment. 
As shown in Fig. 2(a), two subjects face away from the 
transceiver and breathe with 15 bpm and 18 bpm rates, re-
spectively. Fig. 2(b) shows a scenario where two subjects 
sit closely and are blocked by a table. They breathe with 12 
bpm and 12.5 bpm rates, respectively. Fig. 2(c) and Fig. 2(d) 
show the periodical CIR sequences obtained in the above 
two scenarios, respectively. Each line denotes one CIR se-
quence, which essentially presents the amplitude variation 
of one multipath signal. In general, there are more than one 
multipath signal reflected from subject’s chest, so the num-
ber of the CIR sequences corresponding to each subject’s 
respiration is larger than one. Because the chest movement 
during breathing is periodical, so the CIR sequences corre-
sponding to subjects’ chest movement show strong perio-
dicity. We observe that the frequencies of the red and blue 
CIR sequence clusters are consistent with two subjects’ 
breath rates, respectively. We know that in above scenarios 
there is no signal directly reflected from subjects’ chests. So, 
these CIR sequences corresponding to breathing come 
from indirectly reflected signals only. It indicates that it is 
possible to take advantage of abundant multipath reflec-
tion, especially indirectly reflected signals, for better ro-
bustness. However, due to multiple reflection and rela-
tively long propagation distance, indirectly reflected mul-
tipath signal can be very weak. So, the first question is how 
to extract indirectly reflected multipath signals in a reliable 
way.  

Fig. 2(e) and Fig. 2(f) show the magnitude spectrum, cal-
culated by FFT, of the CIR sequences in Fig. 2(c) and Fig. 

2(d), respectively. We observe that FFT can distinguish the 
CIR sequences belonging to different subjects when sub-
jects breathe with very different rates and fail when the 
subjects breathe with similar rates. Therefore, the second 
question to us is how to separate CIR sequences corre-
sponding to different subjects, especially breathing with 
similar rates, in a robust manner. 

Fig. 2(g) shows the periodical CIR sequences when a 
single subject is breathing. We observe that these CIR se-
quences have the same frequency and very similar phase. 
Fig. 2(h) shows the periodical CIR sequences when two 
subjects breathe with the same rate but different phases 
(i.e., the phase difference is about 𝜋 4⁄ ). We observe that 
the CIR sequences belonging to the same subject show the 
same frequency and similar phase, while the CIR se-
quences belonging to different subjects show the same fre-
quency but obviously different phases. It indicates that 
when subjects breathe with the same frequency, the CIR 
sequences can be separated using phase difference. How-
ever, from Fig. 2(g) and Fig. 2(h), we observe that the CIR 
sequences are mixed with irregular noise interference, i.e., 
the phase information is corrupted with non-negligible er-
ror. Hence, the third key question to us is how to accurately 
measure the phase of CIR sequences, and subsequently 
group them by phase. 

3.2 System Design 

We design MultiResp to address the aforementioned three 
questions, and Fig. 3 outlines the system framework. 

 
Fig. 3. System framework 

Firstly, we use a speaker to contiously transmit a sinus-
oidal frequency modulated signal, and a microphone to re-
ceive reflected acoustic signals from the static environment 
and subjects synchronously. Based on transmitted and re-
ceived signals, we estimate the CIR, which can quantify the 
time delay and attenuation of all multipath reflection sig-
nals. The CIRs over time form a matrix (each row is a CIR 
and each column we call it a CIR sequence), we extract the 
CIR sequences with high periodicity using autocorrelation 
function. The periodical CIR sequences correspond to sub-
jects’ chest movement during breathing. This is due to the 
fact that subjects’ chest movement during breathing is pe-
riodical, so the reflection paths affected by subjects’ chest 
movement varies periodical over time, while, the paths 
only reflected by the environment show no periodicity. 
The above method is essentially a global search method 
which ensures the robustness of chest movement infor-
mation extraction in the extreme scenarios with no directly 
reflected multipath signals. 

We then separate the periodical CIR sequences by fre-
quency, i.e., breathing rate. Specifically, we propose a 
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high-resolution frequency measuring method, providing 
better frequency resolution than FFT. It is designed to dis-
tinguish 0.4 bpm breath rate difference with only 200 sam-
ples without zero padding. Based on this method, the CIR 
sequences can be grouped into different clusters by fre-
quency. Within each cluster, the CIR sequences have the 
same frequency. For each cluster, we obtain pair-wise 
phase differences using correlation coefficient, which can 
mitigate noise interference. CIR sequences in the current 
cluster are then further grouped by the proposed two-
stage clustering algorithm. Thus, we can exactly get the 
CIR sequence clusters corresponding to each subject. Fi-
nally, we recover the breath wave of each subject by merg-
ing the CIR sequences in each cluster. The above process is 
repeated to monitor subjects’ respiration in real time. 

4 OMNIDIRECTIONAL CHEST MOVEMENT 

EXTRACTION BASED ON CIR 

We estimate CIR to quantify the acoustic multipath reflec-
tion, then extract chest movement information from CIRs 
over time by measuring the periodicity of CIR sequences.  

4.1 Transmitting Signal Design and Transceiving 
Control 

To estimate CIR, the transmitted signal should be designed 
with a wide frequency band. As MultiResp focuses on mon-
itoring respiration during sleep, one of the key considera-
tions when designing the transmit signal is audible noise. 
Traditional transmiting signals such as Training Sequence 
Code, Zadoff-Chu code, FMCW signal have an advantage 
in distance resolution due to zero autocorrelation charac-
teristic or linear relationship between frequency difference 
and distance. However, even though they are modulated 
on a carrier whose frequency is higher than 20 kHz, they 
may still introduce audible noise in practice because of 
their discontinuous phase variation over time. In order to 
completely avoid the noise embedded in transmitting sig-
nal, the transmitting signal in MultiResp is designed as si-
nusoidal frequency modulated signal whose phase varia-
tion over time is smooth and continous. The frequency of 
the transmitted signal at time 𝑡 is given by: 

𝑓(𝑡) = 𝑓𝑐 +
𝐵

2
(1 + 𝑠𝑖𝑛(2𝜋𝑡 𝑇⁄ ))  , 0 ≤ 𝑡 ≤ 𝑇         (4) 

where 𝑓𝑐 , 𝐵  and 𝑇  denote carrier frequency, modulation 
bandwidth, and modulation period, respectively. To avoid 
audible noise, 𝑓𝑐 should be higher than 18KHz. The phase 
is the integral of 𝑓(𝑡) over time, 

𝑢(𝑡) = 2𝜋 ∫ 𝑓(𝑡′)𝑑𝑡′ = 2𝜋 (𝑓𝑐𝑡 +
𝐵𝑡

2
−

𝐵𝑇

4𝜋
𝑐𝑜𝑠 (

2𝜋𝑡

𝑇
)) (5)

𝑡

0

 

Then, the transmitted signal can be presented as 𝑥𝑡(𝑡) =

𝑐𝑜𝑠(𝑢(𝑡)). To meet the zero-state requirement (precondi-

tion before CIR estimation), 𝑥𝑡(𝑡) has to be modified as a 
pulse with a duty cycle. The discrete transmitted signal is 
finally represented as follows: 

𝑥𝑡(𝑛) = {
cos(𝑢(𝑛𝑇𝑠))ℎ(𝑛𝑇𝑠) ,   0 ≤ 𝑛𝑇𝑠 ≤ 𝑇

0,                                 𝑇 < 𝑛𝑇𝑠 ≤ 𝑇′
        (6) 

where ℎ(𝑡) is a Hanning window, which is applied to mit-
igate spectrum leakage caused by sudden amplitude 
changes. 𝑇𝑠 = 1 𝑓𝑠⁄  is the sampling interval. 𝑇′ is the trans-
mitting period, 𝑇′ > 𝑇 . To avoid echo overlap, 𝑇′ − 𝑇 
should be larger than multipath delay. Generally, a larger 
room has a larger multipath delay, thus requires a larger 
𝑇′ − 𝑇. Fig. 4 shows an example of a transmitted signal 
(𝑓𝑠 = 96KHz, 𝑓𝑐 = 26KHz, 𝐵 = 2KHz, 𝑇 = 0.04s, 𝑇′ = 0.1s). 

 

Fig. 4. The time-frequency spectrum of the transmitted signal 

MultiResp controls the transceiver to continuously 
transmit the designed signal and receive echo frame. Spe-
cifically, the designed signal is continuously transmitted 
by the speaker in a non-blocking manner, meanwhile, the 
microphone receives the echo frame synchronously. Note 
that the length of the echo frame has to be the same as that 
of the transmitting signal.  

With the transmitted signal and echo frame, we esti-
mate CIR using Eq. (1). CIRs over time forms a matrix 𝑺 
shown in Eq. (2) and we get all CIR sequences as the col-
umns of 𝑺.  

4.2 Periodical CIR Sequence Selection 

4.2.1 CIR Sequence Variation Analysis  

To facilitate the analysis, we consider single user sce-
nario. As shown in Fig. 5 (a), if the subject directly faces the 
transceiver. Some of the multipath signals are always di-
rectly reflected from chests and finally received by trans-
ceiver. The CIR peaks corresponding to these multipath 
signals will move back and forth along the time delay axis 
[56]. However, the above example is an ideal scenario. In 
real scenarios, subjects may not directly face the trans-
ceiver. Under these conditions, the propagation routes of 
reflected signals can be roughly categorized into three 
types: 1) speaker → static environment ↔ chest  → mic, 2) 
speaker  → chest ↔  static environment  →mic, 3) speaker 
 → static environment ↔ chest ↔ static environment → mic, 
where double sided arrow denotes the possible reciprocat-
ing reflection. Due to multiple reflection, minute chest 
movement will amplify the change of reflection angle and 
finally result in multipath signal disappearing. As shown 
in Fig. 5(b), two multipath signals are indirectly reflected 
by chest and finally are received by transceiver at the end 
of exhaling. When starting inhaling, both two multipath 
signals disappear because reflection angle changes. The 
shape change of cloth wrinkle caused by chest movement 
further aggravates this phenomenon. This process appears 
as the synchronous appearance and disappearance of the 
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two CIR peaks, which correspond to the two multipath sig-
nals. The synchronous appearance and disappearance of 
the two CIR peaks will result in some of the CIR sequences 
vary periodically with the same frequency and similar 
phases. The CIR sequences shown in Fig. 2(g) demon-
strates our analysis.  

   
(a) 

    
(b) 

Fig. 5. Directly and indirectly reflected signals 

Based on the above analysis, we can derive that:  
1) If multiple subjects breathe with different rates, the 

CIR sequences belonging to same subject will vary with the 
same frequency as the breath rate of this subject. The CIR 
sequences belonging to different subjects will vary with 
different frequencies. The preliminary experiment results 
demonstrate this conclusion, as shown in Fig. 2(c) and Fig. 
2(d). 

2) If multiple subjects breathe with the same rate but dif-
ferent phases, the CIR sequences belonging to different 
subjects will vary with the same frequency but different 
phases. The preliminary experiment results demonstrate 
this conclusion, as shown in Fig. 2(h). 

4.2.2 Periodical CIR Sequence Selection using Autocorre-
lation 

Based on the above analysis, we know that regardless of 
targets breathing rate, the CIR sequences corresponding to 
targets’ chest movement during breathing vary periodi-
cally. We obtain these periodical CIR sequences by meas-
uring their periodicities. Specifically, we firstly remove 
polynomial trend embedded in CIR sequences using least-
square regression. Then, we measure their autocorrelation. 
The autocorrelation of CIR sequence 𝑺𝒊 is given by: 

𝑅𝑥(𝑘) =
𝑐𝑘

𝑐0

                                       (7) 

where 𝑐𝑘 is the auto-covariance of 𝑺𝒊, 

𝑐𝑘 =
1
𝑁

∑ (𝑺𝒊(𝑛) − 𝑺𝒊̅)(𝑺𝒊(𝑛 + 𝑘) − 𝑺𝒊̅)
𝑁−𝑘
𝑛=1  

𝑘 = 0,1, … , 𝑁 − 1
         (8) 

Fig. 6(a) shows two detrended CIR sequences. The red 
line has obvious periodicity, while the blue line is aperi-
odic. Fig. 6(b) shows their autocorrelations. We observe 
that the autocorrelation of the periodical sequence looks 
like a sinusoid, but amplitude decreases gradually, while 

the autocorrelation of the aperiodic sequence varies irreg-
ularly. It is easy to select all the periodical CIR sequences 
corresponding to respiration using the simple rule that a 
higher peak of the autocorrelation function means stronger 
periodicity. 

Essentially, the above method is one of the global search 
methods. It extracts CIR sequences corresponding to chest 
movement. These CIR sequences selected by the method 
may be redundant for respiration monitoring in simple 
scenarios, for example, subjects face towards the trans-
ceiver, but it ensures the robustness of chest movement ex-
traction when there is no directly reflected signals. 

   
                                 (a)                                                    (b) 

Fig. 6. Autocorrelation of CIR sequence 

5 SEPARATION OF THE CIR SEQUENCES WITH 

DIFFERENT FREQUENCIES 

Based on the preliminary experiments and the analysis in 
Section 4.3.1, we know that if multiple subjects breathe 
with different rates, the CIR sequences belonging to differ-
ent subjects will vary with different frequencies. We sepa-
rate the CIR sequences by accurately measuring their fre-
quencies. 

5.1 High Resolution CIR Sequence Frequency 
Measurement 

Fast Fourier transform (FFT) is a classic tool for spectrum 
analysis. Its frequency resolution ∆𝑓  is restrict by ∆𝑓 =
𝑓𝑠

′ 𝑁⁄ . 𝑓𝑠
′ and 𝑁 denote the CIR estimation frequency and 

the length of CIR sequence, respectively. Generally, 𝑓𝑠
′ =

10 Hz is adequate for monitoring respiration signals that 
have typical frequency of 0.17 ~ 0.42 Hz, i.e., 10 bpm ~ 25 
bpm. Considering the realtime performance, 𝑁 = 200 (cor-
responding to the time window with 𝑁/𝑓𝑠

′ = 200 10 = 20⁄  
seconds) is adequate. Thus, we can get the frequency reso-
lution FFT as  ∆𝑓 = 𝑓𝑠

′ 𝑁⁄ = 10 200 = 0.05 Hz = 3 bpm⁄ . In 
other words, the maximum respiration rate estimation er-
ror of FFT without zero padding is 3 bpm. It’s well known 
that a larger 𝑁 (including zero padding to 𝑁) results higher 
frequency resolution, with a higher cost in computation. 
Specifically, if the maximum of frequency resolution is set 
as 0.4 bpm (which is the highest frequency resolution of 
MultiResp. Please refer to Sec. 7.2.2.1), we have to zero pad 
periodical CIR sequence at least to the length 𝑁 = 1500, 
thus the frequency resolution reaches 𝑓𝑠

′ 𝑁⁄ = 10 1500⁄ =
0.0067 Hz = 0.4 bpm. It’s well known that FFT runs faster 
if the length of the signal is an integer power of 2. Thus, 
setting 𝑁 as 2048 is adequate. In various application sce-
narios the number of selected periodical CIR sequence var-
ies from about 50 to 800. Without loss of generality, we as-
sume the average number of selected periodical CIR se-
quence is 425. Then FFT is performed on all periodical CIR 
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sequences, i.e., a 2048 × 425 matrix to get spectrum. This 
time comsuming process may significantly affect the 
realtime performance of MultiResp. We propose a method 
not only obtain the precise frequency of periodical CIR se-
quences but also significantly reduce the computation bur-
den. 

Fig. 7(a) shows two CIR sequences with frequencies 18 
bpm and 19 bpm, respectively. Fig. 7(b) shows their mag-
nitude spectrum calculated by FFT without zero padding. 
We can observe that the main frequencies estimated by 
FFT of both two CIR sequences are all 18 bpm. That is, FFT 
without zero padding can not distinguish 18 bmp and 19 
bpm CIR sequences. We tackle this problem in time do-
main. Specifically, we compare time difference of the two 
CIR sequences accumulated over multiple periods. Let’s 
consider the above instance again. The period length dif-
ference between 18 bpm CIR sequence and 19 bpm CIR se-
quence is 60 18⁄ − 60 19⁄ ≈ 0.175 s , which is slighter 
larger than sampling period 𝑇′ = 1 𝑓𝑠

′⁄ = 0.1 s. To improve 
the robustness, rather than comparing single periods, we 
compare the length difference of multiple periods. Assum-
ing the noise is additive white noise, time length difference 
of three periods is 3 × (60 18⁄ − 60 19⁄ ) ≈ 0.53 s, which is 
much larger than sampling period and make it easily to 
distinguish 18 bpm and 19 bpm.  

 
(a)                                   (b)                                   (c) 

Fig. 7. Comparing the frequency resolution of FFT and our method 

According to the definition of autocorrelation function, 
we know that the time delay of the 𝑛th peak of CIR se-
quence autocorrelation is exactly the time length of 𝑛 peri-
ods, 𝑇𝑛, of CIR sequence. Fig. 7(c) shows the autocorrela-
tions of the CIR sequences in Fig. 7(a). We get 𝑇𝑛 of CIR se-
quence by finding the peaks of its autocorrelation. The re-
lationship between breath rate 𝑅 and 𝑇𝑛 is: 

𝑇𝑛 =
60

𝑅
×

1

𝑇′
× 𝑛                                   (9) 

𝑛 periods time length difference between CIR sequences 
corresponding to breath rate 𝑅1 and 𝑅2 is: 

∆𝑇𝑛 =
60𝑛(𝑅2 − 𝑅1)

𝑅1𝑅2𝑇
′

                            (10) 

A larger 𝑛 means larger resolution. From Fig. 7(c), we 
see that as 𝑛 increases, the time difference between 𝑇𝑛 be-
comes more obvious. In practice, 𝑛 should not be larger 
than the minimum number of the breaths contained in the 
time window. In our setting, time window length 𝑁 = 200 
(corresponding to 𝑁/𝑓𝑠

′ = 200 10 = 20⁄  seconds) contains 
at least 3 breaths. Thus, 𝑛 = 3 is adequate. If breath rate is 
relatively high, 𝑇4  and 𝑇5  are better. Obviously, this 
method is built on the autocorrelation of periodical CIR se-
quences, which already have been obtained when selecting 

periodical CIR sequences (Sec. 4.3.2). It significantly re-
duces the computation burden. 

5.2 CIR Sequences Separation based on Frequency 

After obtaining 𝑇3 of all the periodical CIR sequences, sta-
tistical analysis was performed. Fig. 8(a) shows all the pe-
riodical CIR sequences corresponding to the respiration of 
three subjects whose breath rates are 15 bpm, 19 bpm and 
20 bpm, respectively. Each line denotes one CIR sequence. 
Fig. 8(b) shows the statistical histogram of 𝑇3 of these CIR 
sequences. We observe that the histogram shows three dis-
tinct peaks who exactly correspond to respiration rates of 
three subjects. Only the CIR sequences whose 𝑇3 value is 
neighboring to the peaks are reserved. In this setting, the 
CIR sequences whose 𝑇3  value is within [𝑇3

𝑝𝑖 − 0.1, 𝑇3
𝑝𝑖 +

0.1] (𝑇3
𝑝𝑖 denotes the 𝑇3 value of the 𝑖th peak in histogram) 

are reserved. Thus, the CIR sequences corresponding to 
different frequency respiration are separated. Fig. 8(c) 
shows CIR sequences corresponding to the respiration 
with 20 bpm. We observe that some of the CIR sequences 
have opposite phases, i.e., their phase difference is π. Di-
rectly adding them to form breath wave will lead to can-
celling each other out. For CIR sequences 𝑺𝒌𝟏

, 𝑺𝒌𝟐
, …, be-

longing to the same frequency respiration, if ‖𝑺𝒌𝟏
+

𝑺𝒌𝒊
‖

𝟏
< ‖𝑺𝒌𝟏

− 𝑺𝒌𝒊
‖

𝟏
 , 𝑺𝒌𝒊

 is flipped along the time axis. Fig. 
8(d) shows the synchronized CIR sequences correspond-
ing to the respiration with 20 bpm. 

  
(a)                                                 (b) 

 
(c)                                                    (d)  

Fig. 8. CIR sequences frequency measuring and classification 

 
Fig. 9. Recovered breath waves with different frequencies 

If all the subjects breathe with different frequencies, 
breath waves can be directly recovered as the average of 
the synchronized CIR sequence cluster. Fig. 9 shows the 
recovered breath waves of the three subjects who breathe 
with 15 bpm, 19 bpm and 20 bpm rates, respectively. In 
summary, the method described in this section is able to 
separate the breath waves with different frequencies with-
out knowing the number of subjects in advance. 

𝑇3𝑇3𝑇2𝑇2𝑇1𝑇1 𝑇4 𝑇5𝑇4 𝑇5

20 bpm

19 bpm

15 bpm
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6 SEPARATION OF THE CIR SEQUENCES WITH 

DIFFERENT PHASES 

6.1 Phase Difference Measurement 

As shown in Fig. 8(d), due to the influence of ambient noise 
and hardware noise, CIR sequences corresponding to res-
piration contain random fluctuations. Directly extracting 
phase from phase spectrum will introduce non-negligible 
phase error. We use correlation coefficient (CC) to measure 
the phase difference between each pair of CIR sequences 
with the same frequency. Suppose the set of CIR sequences 
with the same frequency is 𝑺′ = [𝑺𝒌𝟏

, 𝑺𝒌𝟐
, … , 𝑺𝒌𝑴

], the CC 
matrix of 𝑺′ is defined as: 

𝑹 = [

𝜌11 𝜌12 ⋯ 𝜌1𝑀

𝜌21 𝜌22 ⋯ 𝜌2𝑀

⋮ ⋮ ⋱ ⋮
𝜌𝑀1 𝜌𝑀2 ⋯ 𝜌𝑀𝑀

]                          (11) 

where 𝜌𝑖𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑀 denotes the CC between 𝑺𝒌𝒊
 and 𝑺𝒌𝒋

. 
CC can shield amplitude difference between a pair of CIR 
sequences and only reflect their phase difference. Smaller 
phase difference results in larger CC. 

6.2 Two-stage CIR Sequences Clustering based on 
Phase Difference 

In the first clustering stage, the algorithm finds and groups 
the CIR sequences corresponding to the same body part of 
one subject’s chest. In the second stage, the algorithm 
merges the clusters corresponding to different part of chest 
of the same subject. 

6.2.1 First-stage Clustering 

The first-stage clustering algorithm operates on CC matrix 
to find all CIR sequence clusters corresponding to the same 
body part of one subject’s chest. Because the variations of 
the CIR sequences corresponding to the same body part of 
one subject’s chest are very similar, our idea is to find all 
compact CIR sequence clusters. Algorithm 1 shows the de-
tailed clustering process.  

Algorithm 1: First stage CIR sequence clustering algorithm 

Input: CC matrix 𝑹 of the CIR sequences with same freuquency; CC 

threshold 𝛼. 

Output: Cluster indexes of all CIR sequences, 𝑳𝒂𝒃𝒆𝒍𝒔. 

1:  𝑳𝒂𝒃𝒆𝒍𝒔  0; ClusterID  1;  

2:  find the maximum of 𝑹, LargestCC and its coordinate (i, j); 

3:  while 𝐿𝑎𝑟𝑔𝑒𝑠𝑡𝐶𝐶 > 𝛼 do  

4:       if 𝑳𝒂𝒃𝒆𝒍𝒔(𝑖) and 𝑳𝒂𝒃𝒆𝒍𝒔(𝑗) are both 0 

5:            Assigning ClusterID to 𝑳𝒂𝒃𝒆𝒍𝒔(𝑖) and 𝑳𝒂𝒃𝒆𝒍𝒔(𝑗); 

6:            ClusterID  ClusterID+1; 

7:       if one of 𝑳𝒂𝒃𝒆𝒍𝒔(𝑖) and 𝑳𝒂𝒃𝒆𝒍𝒔(𝑗) is not 0 

8:            Assigning the the value of the nonzero one to the other one; 

9:       𝑹(𝑖, 𝑗)0; 

10:     find the maximum of 𝑹, LargestCC and its coordinate (i, j); 

11: end 

It always finds a pair of CIR sequences with the highest 
similarity by searching the maximum of CC matrix. If both 
two CIR sequences have not been grouped into clusters, 
they are labeled with the same new cluster index. If one of 

the two CIR sequences has been grouped into a cluster, the 
other one is grouped into the same cluster. If both two CIR 
sequences have been grouped into clusters, the algorithm 
does nothing. Then, the CC matrix is updated by setting 
current maximum to 0. The above process is repeat until 
the maximum of CC matrix is not large enough. 

    
   (a)                                         (b)    

Fig. 10. Compact CIR sequence clusters 

Fig. 10(a) shows all the periodical CIR sequences of 
three subjects who breathe with the same frequency about 
17 bpm but different phases (phase interval is about π ⁄ 3). 
Fig. 10(b) shows part of CIR sequence clusters obtained 
from Algorithm 1. We observe that within each cluster, 
CIR sequences are very similar. The algorithm can find all 
the compact CIR sequences clusters and the outlier CIR se-
quences will be removed automatically. Generally, the pa-
rameter 𝛼 should be set within 0.94~0.98 to ensure that the 
CIR sequences in the same cluster corresponding to the 
same part of a subject’s chest. 

6.2.2 Second-stage Clustering 

To reduce computation burden, we firstly compress each 
CIR cluster as its mean vector. The idea of the second-stage 
clustering algorithm is inspired by the fact that the mean 
vectors belonging to different subjects have obviously dif-
ferent phases, thus they hardly occur simultaneously in the 
neighborhood of one mean vector. The second-stage clus-
tering algorithm operates on CC matrix of mean vectors to 
find non-overlapping neighbourhoods of mean vector. Al-
gorithm 2 shows the detailed process.  

Algorithm 2: Second stage clustering algorithm 

Input: CC matrix 𝑹 of the mean vectors of CIR sequence clusters ob-

tained in first stage clustering; CC threshold 𝛼. 

Output: Cluster indexes of all mean vectors, 𝑳𝒂𝒃𝒆𝒍𝒔. 

1:  Nums  count the elements > 𝛼 in each row of 𝑹; 

2:  sort rows of 𝑹 based on Nums in descending order; 

3:  𝑳𝒂𝒃𝒆𝒍𝒔  0; ClusterID  1; tempSet is initialized to empty; 

4:  for  𝑖 from 1 to M do  //M is the size of 𝑹 which is a square matrix. 

5:       Indices  get column indices of elements > 𝛼 in the ith row of 𝑹; 

6:       if the intersection of Indices and tempSet is empty 

7:            𝑳𝒂𝒃𝒆𝒍𝒔(𝐼𝑛𝑑𝑖𝑐𝑒𝑠)  ClusterID; ClusterID  ClusterID+1； 

8:            add Indices into tempSet; 

9:       end 

10:end 

Firstly, the CC matrix (each row or column corresponds 
to a mean vector) is reorganized by rows in descending or-
der of the sizes of the neighbourhoods of all mean vectors. 
CC matrix reorganization facilitates prioritizing the dis-
covery of large mean vector clusters, which is helpful to 
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improve clustering accuracy in the next step [62]. Finally, 
the neighborhood of the mean vector is found sequentially 
by row. If the current neighbourhood is not overlapped 
with the reserved neighbourhoods, it will be also reserved 
and the mean vectors in the current neighborhood are la-
beled as a new cluster. 

    
(a)                                                (b) 

Fig. 11. Clusters of the mean vectors of the CIR clusters 

Fig. 11(a) shows all mean vectors of the CIR sequence 
clusters generated in the first stage. Fig. 11(b) shows the 
mean vector clusters obtained from Algorithm 2. We ob-
serve that Algorithm 2 successfully separates the mean 
vectors belonging to three subjects. Generally, the param-
eter CCThrd should be set to a range between 0.9 to 0.94 to 
ensure that the CIR sequence mean vectors corresponding 
to different parts of the same chest will be merged while 
preventing the mean vectors for different subjects being 
merged. 

6.3 Breath Wave Recovering and Subject Counting 

With the method presented in Section 5, CIR sequences can 
be grouped by frequency. Then, by applying two-stage 
CIR sequences clustering algorithm on each group, we can 
get mean vector clusters corresponding to each subject. 
The breath wave of each subject can be recovered as the 
mean vector of each cluster. Besides, the number of sub-
jects can be estimated as the total number of CIR groups. 

7 EVALUATION 

In this section, we conduct comprehensive experiments to 
evaluate MultiResp. We compare MultiResp with the base-
line in both single- and multi-user scenarios. We then eval-
uate MultiResp in a range of challenging scenarios: 1) sub-
jects breathe with the same rate and similar rates, 2) sub-
jects face away from the transceiver and are blocked by fur-
niture or other targets, and 3) the number of subjects 
change dynamically. Additionally, we test the effective 
sensing distance and impact of apnea, ambient noise, body 
movement and different clothes. We also extend our exper-
iments to animals. Finally, we discuss the limitations of the 
system. We have made a demo video which contains the 
video clips of all the experiments. It is available at 
https://tinyurl.com/2p9c93v3 and 
https://youtu.be/naB3rFrNSfE. 

7.1 Experimental Settings 

7.1.1 Prototype Implementation and Parameter Settings 

We implement a prototype system on an ultrasonic trans-
ceiver and a laptop computer (Thinkpad T450 with Intel 
Core i5-5200 CPU, 8G RAM). The hardware setting is 
shown in Fig. 12. The transceiver consists of a USB sound 

card embedded with two broadband omnidirectional mi-
crophones and four speakers spaced 𝜋 2⁄  apart. The soft-
ware system is implemented in MATLAB to run the respi-
ration monitoring algorithm, and control speakers and mi-
crophones through the sound card. Transmitted signal has 
the following parameter settings: 𝑓𝑐 = 26𝐾𝐻𝑧, 𝐵 =
2𝐾𝐻𝑧, 𝑇 = 0.04𝑠, 𝑇′ = 0.1𝑠 (the duration of MultiResp exe-
cuting for one time is equal to 𝑇′). The sampling rate of 
transceiver 𝑓𝑠 = 96KHz. The power and sensitivity of the 
speaker are 50 watt and 94dB, respectively. The beam-
width of the speaker 𝑓𝑐 = 26𝐾𝐻𝑧 is ±14°. The sensitivity, 
signal-to-noise ratio and the total harmonic distortion of 
the mic are -26 dBFs, 64.3 dB and 0.2%, respectively. 

 
Fig. 12. Transceiver 

7.1.2 Baseline and Ground Truth 

We compare MultiResp with RespTracker [56], which is the 
state-of-the-art acoustic multi-user respiration monitoring 
approach. For a fair comparison, the baseline is imple-
mented using the same devices and the same parameter 
settings as specified in [56].   

Each subject is asked to wear a commercial motion sen-
sor WitMotion WT901WIFI on the abdomen, which inte-
grates a 3-axis acceleration sensor, a gyroscope, a 3-axis an-
gle sensor, and a magnetometer. It accurately captures 
chest movement during breathing for the ground truth in 
each experiment. In addition, all the experiments are rec-
orded by a camera (Mi 360° Home Security Camera 2K 
Pro). 

7.2 Performance 

7.2.1 Comparison with The Baseline 

7.2.1.1 Single-user scenario 

We recruit 3 participants to evaluate the performance of 
MultiResp in single-user scenario. In each setup, a subject 
is randomly located in a room (5.2m x 3m x 3.5m). Fig. 13(a) 
shows the room layout and the location and orientation of 
three subjects. Each experiment runs for 10 minutes, we 
record the breath rates estimated by MultiResp and the 
baseline system, respectively.   

   
(a)                                                    (b) 

Fig. 13. Settings and results of single user scenario. 

Fig. 13(b) shows the cumulative distribution function 
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(CDF) of respiration monitoring error of both MultiResp 
and the baseline. We observe that the maximum respira-
tion error of MultiResp is smaller than 0.4 bpm for all sub-
jects. The baseline works well for subjects 1 and 2 and fails 
for subject 3 who faces away from the transceiver. 

7.2.1.2 Multiple users breathing with different breath rates 

To test the performance when multiple subjects breathe 
with different rates, we conduct 3 groups of experiments 
where the breath rate differences are set as 1 bpm, 2 bpm, 
and larger than 2 bpm, respectively. Each group contains 
at least 4 different experimental settings. In each setting, 
subjects breathe with different breath rates as shown in Ta-
ble 1. (x, y)i denotes that there are two subjects in setting i 
and they breathe with rate x bpm and y bpm, respectively. 
(x, y, z)i denotes that there are three subjects in setting i and 
they breathe with rate x bpm, y bpm and z bpm, respec-
tively. Fig. 14(a)-(c) show the room layout, subject location 
and orientation in each group, respectively. Because the 
baseline has to know number of subjects in advance, in 
each setting, we manually feed this value into the baseline. 

TABLE 1 TARGETS BREATH RATE IN THREE GROUP  

∆𝐵𝑟 (bpm) 𝐵𝑟 of 2 targets (bpm) 𝐵𝑟 of 3 targets (bpm) 

1  (13, 14)1, (17, 18)2, (19, 20)3 (13, 14, 15)4, (17, 18, 19)5 

2  (12, 14)6, (15, 17)7 (13, 15, 17)8, (16, 18, 20)9 

>2  (14, 17)10, (15, 19)11 (12, 15, 19)12, (13, 17, 20)13 

 Br = breath rate;  

Fig. 14(d), (f) and (h) show the CDF of respiration mon-
itoring error of MultiResp of three groups (𝑖𝑗 denotes the i-
th subject in setting j.). Fig. 14(e), (g) and (i) show the CDF 
of respiration monitoring error of baseline of three groups. 
We observe that the maximum errors and median errors of 
MultiResp in all three group are smaller than 1 bpm and 0.3 
bpm, respectively. The baseline works well partially, and 
its maximum error is larger than 2.5 for subjects 11, 12, 21, 
22, 13, 24, 25, 16, 26, 17, 29, 210, 211, 312, 213. Especially for 
subject 17 who faces away from the transceiver, the base-
line completely fails. This is because the baseline relies on 
the distance from subjects’ chest to the transceiver. How-
ever, when subjects are not facing towards to the trans-
ceiver, the multipath signals reflected from the same sub-
ject chest propagate along different paths, and the time de-
lays of these signals are not able to form clear and stable 

distance information. Differently, MultiResp selects re-
flected signals by a globle search method based on CIR se-
quence periodicity, then groups these multipath signals by 
frequency and phase, finally forms breath waves by merg-
ing the variation of multipath signals in each group. 

7.2.2 Experiments in Various Challenging Scenarios 

7.2.2.1 Subjects breathing with very similar rates 

MultiResp is able to distinguish very similar breath rates 
using the high-resolution CIR frequency measuring algo-
rithm. We conduct an experiment to test the smallest 
breath rate difference that MultiResp can distinguish. In 
each experiment, two subjects are required to keep a spe-
cific breath rate difference. We repeat the experiment for 7 
times and the breath rate difference is set in a descending 
order from 0.8 bpm to 0.2 bpm. To facilitate, two subjects 
follow a smartphone application metronome which gives 
an instruction for breathing. Experimental results show 
that MultiResp is able to distinguish breath rate difference 
larger than 0.4 bpm. 

Fig. 15(a) shows the result when two subjects breathe 
with 18.4 bpm and 19 bpm. Fig. 15(b) shows the result 
when two subjects breathe with 12 bpm and 12.4 bpm. We 
observe that MultiResp robustly distinguishes these similar 
breath rates. 

    
(a)                                                  (b) 

Fig. 15. Recorded breath rates of two subjects breathing with similar 
rates 

7.2.2.2 Subjects breathing with the same rate 

To test the performance when multiple subjects breathe 
with same rate, we conduct experiments in three settings. 
Table 2 shows breath rate, number of subjects, and breath 
phase difference between subjects in each setting. To facil-
itate, subjects follow a smartphone metronome App which 
gives an instruction to breathe in the same rate. Fig. 16(a) 
shows the room layout, subject location and orientation in 

           
                                                   (a)                                                       (b)                                                      (c)    

 
(d)                                    (e)                                      (f)                                      (g)                                    (h)                                      (i)    

Fig. 14. Settings and results of multiple user scenarios. 
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each setting. Fig. 16 (b) show the scenario of setting 2. From 
Fig. 16(b), we observe that the user interface of MultiResp 
shows both the detected respiration rates and the number 
of subjects breathing with each rate.  

TABLE 2 BREATH RATE OF DIFFERENCE 

Setting num. 𝐵𝑟 (bpm) Targets amount Breath phase difference 

1 15  2 𝜋 3⁄  

2 13  3 𝜋 4⁄  

3 16  3 𝜋 4⁄  

     
(a)                                              (b) 

 
(c)                                              (d) 

Fig. 16. Settings and results when subjects breathing with same rate. 

Fig. 16(c) shows the tracked breath rates over time and 
the ground truth in three settings. Fig. 16(d) shows the 
CDF of respiration monitoring error derived from Fig. 
16(c). We observe that maximum errors and median errors 
of MultiResp in all three settings are smaller than 0.5 bpm 
and 0.2 bpm, respectively. 

7.2.2.3 Subjects facing away from transceiver 

In this experiment, we evaluate the performance of 
MultiResp when subjects face away from the transceiver 
with 3 different settings: 1) two subjects face away from the 
transceiver and breathe naturally, 2) three subjects face 
away from transceiver and breathe naturally, 3) two 
subjects face away from transceiver and breathe with the 
same rate.  

   
(a)                                              (b) 

     
(c)                                                    (d) 

Fig. 17. Settings and the CDF of respiration monitoring error of Mul-
tiResp when subjects face away from transceiver. 

Fig. 17(a)~(c) show the scenarios of three settings 
respectively.  Fig. 17(d) shows the CDF of respiration 
monitoring error of all subjects in three settings. We 
observe that the maximum errors and median errors of 
MultiResp in all settings are all smaller than 0.9 bpm and 
0.3 bpm, respectively. 

7.2.2.4 Subjects blocked by furniture or other subjects 

In this experiment, we evaluate MultiResp when subjects 
are blocked by furniture or other subjects. Specifically, we 
test MultiResp with 9 different settings. Fig. 18(a)~(d) show 
the scenarios that single subject is blocked by furniture. Fig. 
18(e) and 18(g) show the scenarios that multiple subjects 
are blocked by furniture. Fig. 16(h) and 18(i) show the sce-
narios that subjects are blocked by other targets. Fig. 18(f) 
shows a scenario that the subjects are not only blocked by 
furniture but also blocked by other subjects. Additionally, 
the two subjects in setting 7 (i.e., Fig. 18(g)) breathe with 
the same rate.  

 
(a)                                   (b)                                  (c) 

 
(d)                                  (e)                                  (f) 

 
(g)                                  (h)                                  (i) 

Fig. 18. Settings when subjects are blocked by furniture or other sub-
jects. 

Fig. 19 shows the CDF of respiration monitoring error 
of MultiResp in all settings. We observe that except for the 
second subject in setting 9 (i.e., the subject labeled with 29 
shown in Fig. 18(i)), the maximum error and median error 
of MultiResp in all other settings are smaller than 0.85 bpm 
and 0.3 bpm, respectively. 

 
Fig. 19. CDF of respiration monitoring error when subjects are 
blocked by furniture or other subjects 

7.2.2.5 Number of subjects changes dynamically 
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In this experiment, we evaluate MultiResp when the num-
ber of subjects changes dynamically with two settings: 1) 
one subject breathes naturally in the room, then other two 
subjects enter the room and breathe naturally, finally one 
of them leaves the room. 2) Three subjects breathe with the 
same rate, then two of subjects leave the room. 

  
(a)                                                   (b)   

Fig. 20. The recorded breath rate when subjects number changes dy-
namically. 

Fig. 20 (a) shows the tracked respiration rate over time 
in setting 1. In time period 1, subject 1 breathes naturally 
in the test room. MultiResp accurately tracks the respiration 
of subject 1. Then, subjects 2 and 3 enter the room in time 
period 2. Because of the movement interference, MultiResp 
fails to monitor subjects’ respiration. All three subjects 
breathe naturally in time period 3. MultiResp accurately 
tracks the respiration of both three subjects, however, there 
is a time delay. It is due to the fact that MultiResp needs a 
time window to estimate the breathing rate. In time period 
4 subject 2 leaves the room, while subjects 1 and 3 still 
breathe naturally. After subject 2 leaves the room, Multi-
Resp successfully tracks the breath rates of subject 1 and 3 
again.  

Fig. 20 (b) shows the tracked respiration rate over time 
in setting 2 (note that in Fig. 20 (b), the solid lines of differ-
ent colors represent different number of the subjects). In 
time period 1, three subjects breathe with the same rate. 
MultiResp accurately counts the number of the subjects and 
tracks their respiration. In time period 2, subjects 1 and 3 
leave the room. Then, MultiResp accurately tracks the res-
piration of subject 2.  

From the above results, we can see that MultiResp can 
adapt to dynamical change of target number. 

7.2.2.6 Subjects’ breathing rate changing dynamically 

We conduct experiments with two different settings to 
evaluate MultiResp when subjects breathing rate changes 
dynamically. 1) Firstly, three subjects breathe with the 
same rate, one of the subjects then changes his breath rate 
suddenly. 2) one subject breathes naturally, and another 
subject increases his breath rate gradually. 

Fig. 21(a) shows the breath rate recorded by MultiResp 
in setting 1 (note that in Fig. 21(a), the solid lines of differ-
ent colors denote different number of the subjects). We can 
see that during time period 1, MultiResp not only correctly 
counts the number of subjects but also accurately tracks 
their respiration rates. At the end of time period 1, the 
breath rate of subject 3 changes suddenly. The sudden 
change leads to both the ground truth and MultiResp fail to 
track the breath rate of subject 3 for about 20 seconds.  Af-
ter that, MultiResp successfully tracks the breath rates of all 

three subjects again. Fig. 21(b) shows the breath rate rec-
orded in setting 2. We see that MultiResp is able to accu-
rately track the respiration when subject’s breath rate 
changes gradually. 

   
   (a)                                                   (b) 

Fig. 21. The recorded breath rate when subjects’ breath rate changes 
dynamically. 

7.2.3 Long Term Evaluation 

To test the stability of MultiResp, we conduct an experi-
ment for about 2 hours in a room (8.4 m5.8 m3.4m). Fig. 
22 (a) shows the real scenario. Two participants sleep in the 
room. Fig. 22(b) shows the CDF of respiration monitoring 
error. We can see that the median and maximum error are 
smaller than 0.2 bpm and 0.5 bpm, respectively. 

  
   (a)                                                   (b) 

Fig. 22. The recorded breath rate when subjects’ breath rate changes 
dynamically. 

7.3 Robustness testing 

7.3.1 Impact of Apnea 

Detecting Apnea is an important objective of monitoring 
respiration during sleep. We conduct experiments with 
two different settings to evaluate whether MultiResp can 
detect Apnea. 1) Three subjects breathe naturally, then one 
of them holds breath for a while to simulate Apnea, and 
finally, resumes to breathe naturally. 2) There are totally 
three subjects. Subjects 1 and 2 breathe with the same rate 
and subject 3 breathe with a different rate. Then, subject 2 
holds breath for a while to simulate Apnea and resumes to 
breathe.  

   
(a)                                                   (b) 

Fig. 23. The recorded breath rate when Apnea happens. 
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Fig. 23(a) shows the breath rate in setting 1.  We can see 
that MultiResp detects the Apnea of subject 3 and accu-
rately tracks the respiration of other two subjects. However, 
time delay occurs at both the start and end of Apnea. Fig. 
23(b) shows the respiration rate in setting 2 (the solid lines 
of different colors denote different number of the subjects). 
We can see that MultiResp detects the Apnea of subject 2 
even subjects 1 and 2 breathe with the same rate, and accu-
rately tracks the respiration of other two subjects. However, 
time delay still occurs. 

When subject number changes, i.e., subjects enter or 
leave the room during respiration monitoring, MultiResp 
fails for all subjects due to body movement (refer to Sec. 
7.2.2.5). This is because body movement heavily changes 
the multipath signals and finally results in CIR irregular 
fluctuation. Differently, when Apnea happens, MultiResp 
can still accurately tracks the respiration of the subjects 
without Apnea. 

7.3.2 Impact of Noise and Body Movement 

Ambient noise and body movement are two main interfer-
ence sources. In this experiment, we evaluate their impact 
in two settings: 1) two subjects breathe naturally and the 
loudspeaker on the laptop plays music with different dec-
ibels. 2) Three subjects breathe naturally. Then, one of the 
subjects shakes his hands for a while.  

  
(a)                                                         (b) 

Fig. 24. The recorded breath rate when this is movement or noise in-
terference. 

Fig. 24(a) shows the median value of respiration moni-
toring error under different noise levels.  We can see that 
even when the noise level reaches 70 dB, the median error 
is lower than 0.4 bpm. Fig. 24(b) shows the breath rate of 
three subjects in setting 2. We can see that when subject 1 
shakes his hand, MultiResp fails for all subjects. However, 
after hands shaking, MultiResp is able to recover respira-
tion monitoring after a while. 

7.3.3 Imapat of Different Clothes 

We conduct experiments with two different settings to 
evaluate the impact of different clothes including down 
coat, knitwear, shirt and t-shirt. In each setting, two sub-
jects are recruited to wear different clothes. In setting 1, 
two subjects wear down coat and shirt, respectively. In set-
ting 2 two subjects wear knitwear and t-shirt, respectively.  

Fig. 25(a) and Fig. 25(b) show the scenarios of two set-
tings. Fig. 25(c) shows the CDF of respiration monitoring 
error when subjects wearing different clothes.  We can see 
that the median and maximum error are smaller than 0.2 
bpm and 0.7 bpm, respectively. 

   
(a)                                          (b) 

  
(c) 

Fig. 25. Settings and the CDF of respiration monitoring error when 
subjects wear different clothes. 

7.3.4 Imapat of Transmitting Power 

We also conduct experiments to evaluate the impact of 

transmitting power. Two subjects are recuited to evaluate the 

performance under different transmitting power. To ensure 

the sound pressure is the same for two subjects, the distances 

from two subjects to the transceiver remains the same. We 

adjust the transmitted power to make sound pressure 

measured at the location of subjects are 45 dB, 50 dB, 55 dB, 

60 dB, 65 dB, 70 dB and 75 dB in each setting, respectively. 

MultiResp fails when the sound pressure is 45 dB and 50 dB. 

Fig. 26 shows the CDF of respiration monitoring error under 

other sound pressures. We can see that the median error is 

lower than 0.3 bmp. So it is suggested to keep the sound 

pressure lager than 50 dB.  

 
Fig. 26. The CDF of respiration monitoring error under different trans-
mitting power. 

7.4 Evaluation with animals 

In this experiment, we evaluate MultiResp on animals (i.e., 
goat). Compared to human skin, goat wool absorbs most 
of the acoustic signal, resulting in very weak reflections. 

   
(a)                                                        (b) 

Fig. 27. Two real scenarios to evaluate MultiResp with goats. 

Fig. 27(a) and 27(b) show two examples of real scenarios. 
To prevent the devices from being damaged by goats, we 
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separate the devices and goats using a table. Fig. 27(a) 
shows that the two goats are located closely and are 
blocked by the table. Additionally, it is difficult to place the 
belt on goats for capturing the ground truth because the 
goats always bite it off. Instead, we obtain the ground truth 
by replaying video. To facilitate breath counting, we mark 
the goats with black tape on their abdomen. Thus, when 
goats breathe, we can easily count the breath by observing 
the shape change of black tape.  

Table 3 shows the results. The time that goat completely 
falls asleep is very short. Even its eyes are closed, its ears 
and tail wag now and then. So, it is difficult to find a long 
time that all the goats completely fall asleep. We totally 
capture four time slices that all goats completely fall asleep. 
During these four time slices, the maximum error of respi-
ration monitoring is one breath. 

TABLE 3 EVALUATION RESULT WITH GOATS 

Goat ID 
Monitoring 

time (mm:ss)  

Ground truth 

(Breaths) 

MultiResp 

(Breaths) 

Error 

(Breaths) 

845  
01:29 

23 24 1 

100 27 27 0 

44 
01:34 

25 25 0 

144 30 31 1 

849 

01:09 

17 16 -1 

23 21 21 0 

32 23 23 0 

963 

00:56 

19 20 1 

871 15 15 0 

943 17 18 1 

7.5 Effective sensing distance estimation 

In this experiment, we evaluate MultiResp with respect to 
sensing distance varies from 3 to 10m. We have two settings: 
subject faces the transceiver, and subject faces away from the 
transceiver. The detailed parameters of the transceiver are 
presented in Sec. 7.1.1. Fig. 28(a) shows the real scenarios. Fig. 
28(b) shows median value of respiration monitoring error at 
different distances. We can see that when subject faces to the 
transceiver, the median error is smaller than 1 bpm within 8 
meters. When subject faces away from the transceiver, the me-
dian error is smaller than 1 bpm within 6 meters. 

   
(a)                                     (b) 

Fig. 28. Effective sensing distance estimation. 

7.6 Limitations 

1) Not suitable for too large rooms. MultiResp may fail to 
monitor respiration if the room is too large. We know that 
too large room might result in weaker multipath reflection, 
which leads to low SNR and finally cause respiration mon-
itoring failing.  

2) Time delay. Even though MultiResp can 1) adapt to dy-
namical subject number change, 2) detect Apnea, 3) auto-
matically recover to monitor respiration after body move-
ment, it introduces a time delay about 10 seconds because 
MultiResp requires a time window to estimate the breath 
rate.  

8 CONCLUSION 

This paper presents MultiResp, an acoustic based multi-
user respiration monitoring system. By leveraging abun-
dant multipath signals reflected indirectly from subjects’ 
chests, MultiResp is able to accurately monitor the respira-
tion of subjects even they face away from the transceiver 
or are blocked. By extracting the fine-grained breathing 
rates and phase difference between subjects, MultiResp can 
separate the breath waves with the same or similar rates 
and adapt to dynamical change of subject number during 
monitoring. Extensive experiments show that MultiResp is 
highly accurate with a median error of 0.3 bpm in various 
scenarios. 
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