
HAL Id: hal-04311849
https://hal.science/hal-04311849v1

Submitted on 28 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

Stable and unstable capillary fingering in porous media
with a gradient in grain size

Tom Vincent-Dospital, Marcel Moura, Renaud Toussaint, Knut Jørgen Måløy

To cite this version:
Tom Vincent-Dospital, Marcel Moura, Renaud Toussaint, Knut Jørgen Måløy. Stable and unstable
capillary fingering in porous media with a gradient in grain size. Communications Physics, 2022, 5
(1), pp.306. �10.1038/s42005-022-01072-1�. �hal-04311849�

https://hal.science/hal-04311849v1
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr


ARTICLE

Stable and unstable capillary fingering in porous
media with a gradient in grain size
Tom Vincent-Dospital 1✉, Marcel Moura 1✉, Renaud Toussaint 1,2✉ & Knut Jørgen Måløy 1,3✉

Multiphase flows in complex porous networks occur in many natural processes and engi-

neering applications. We present an analytical, experimental and numerical investigation of

slow drainage in porous media that exhibit a gradient in grain size. We show that the effect of

such structural gradient is similar to that of an external force field on the obtained drainage

patterns, when it either stabilises or destabilises the invasion front. For instance, gravity can

enhance or reverse the drainage pattern in graded porous media. In particular, we show that

the width of stable drainage fronts scales both with the spatial gradient of the necessary

pressure for pore invasion and with the local distribution of this (disordered) threshold. The

scaling exponent results from percolation theory and is− 0.57 for 2D systems. Overall,

introducing a dimensionless Fluctuation number, we propose a unifying theory for the up-

scaling of dual immiscible fluid flows covering most classical scenarii.
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Two-phase flow in porous media is important in a wide
range of sectors, and holds applications in activities as
diverse as food processing, management of underground

water resources, sequestration of greenhouse gases or crude oil
recovery. It is also crucial in everyday phenomena such as plant
watering or making a cup of coffee. Owing to its broad impact but
also to its complexity, it is a multidisciplinary subject that has
been long investigated by physicists, geoscientists, hydrologists,
chemists, biologists, and engineers. When one fluid displaces
another immiscible fluid, the resulting structures in their dis-
tribution present various shapes and complexity1–5, that can be
compact, ramified and fractal6,7. These structures are controlled
by the forces, which actually drive the flow. These forces can for
instance be viscous1,4,5,8–10, capillary1,9–12, gravitational13–18 or a
combination of these19, and may depend on physical parameters
such as the wetting properties of the solid-fluids system3 or
changes in the local geometry of the porous medium20–23. In this
work, we study the effect of the latter, that is, of the geometry of
the solid matrix. In particular, we consider materials with an
average gradient in their disordered porous structure. In nature,
examples of such structured but disordered systems are graded
geological bedding24, for instance formed in rivers of varying
stream intensity or by turbidite deposition, which are of interest
to hydrologists and petroleum geoscientists. After a first con-
jecture that correlated structures in the solid matrix could help
prevent flow instabilities20, recent studies have considered the
drainage of porous media presenting such gradients, first using
regular matrices only displaying a structural gradient21, and then
matrices that additionally hold some quenched disorder22. It has
there been shown that the structural gradient could either stabi-
lise or destabilise the drainage front. A generalised capillary
number, taking into consideration the matrices’ structure, has
then been introduced21 to predict the effective stability of the
flow. It has also been proposed that, if significant enough, the
structural gradient could mitigate the capillary fingering arising
from the quenched disorder22.

We here follow a different theoretical approach based on
percolation theory, and the generalisation of the recently rein-
troduced fluctuation number10 to describe the effect of the noise
on the width of the invasion front. We show that the gradient in
grain size has a similar effect on the flow of the fluids than that of
gravity (or, alternatively, any other external field). We illustrate
this equivalence with drainage experiments in 3D printed trans-
parent matrices. This technique allows both an accurate control
of the experimental models’ structure and quenched disorder and
the visualisation of the fluids’ distribution when a non-wetting
phase displaces a wetting one in the pore space. Finally, we
support the proposed theory with invasion percolation simula-
tions reproducing the experimental results and the predicted
scaling law between the width of the invasion front and the
fluctuation number.

Results
Porous model and experimental set-up. The experimental set-
up and the 3D printed model for our drainage experiments are
shown in Fig. 1. We describe, in the Methods section, the details
of the set-up and the procedure we followed to print the model
and run the flow experiments. This quasi two-dimensional por-
ous matrix (of porosity ~70%) is composed of cylinders that are
distributed in a monolayer using a Random Sequential Adsorp-
tion (RSA) algorithm25. The RSA parameters are the minimum
distance between the cylinders, the cylinders’ diameter, the
cylinders’ height and the dimensions of the desired porous sys-
tem. In our case, the RSA parameters vary between the model’s
inlet and outlet. The total size of the model is 140 × 140 mm2,

with the cylinder diameter d varying linearly from 1mm to 2 mm
and the minimum cylinder separation varying from 0.4 mm to
0.8 mm, in order to preserve geometrical similarity along the
model’s length. We thus design a model with a grain (cylinder)
size gradient λ ~ 0.007 mm mm−1. The height of the cylinder was
chosen to be 2 mm. The model is then mounted in a flow cell,
and, as per Fig. 1, the whole set-up can be tilted by an angle θ for
the flow to occur in a chosen effective gravity field g0 sinðθÞ.
Drainage experiments are then performed as described in the
Methods section. A wetting water-glycerol solution, dyed with
nigrosin, is displaced by air. The drainage is slow so that viscous
forces are negligible, with a small capillary number Ca= μV/γ
that is about 10−8, where V is the typical flow velocity, μ is the
water-glycerol’s viscosity and γ is the surface tension at the fluid-
fluid interface. Note that, in the case where viscous forces would
not be negligible, the gradient designed in the model structure
could actually be seen, in a Darcy description, as a permeability
gradient. In our case, however, it is rather a gradient in capillary
threshold.

Theory—gradient in pore throats and external fields. The
requirement for invasion into one pore neck by the non-wetting
fluid is that the capillary pressure p between the two fluids
overcomes the capillary threshold value p̂t of this pore neck

pðx; yÞ> p̂tðx; yÞ; ð1Þ
where x and y are the 2D coordinates for the pore neck position.
In the case of our 3D printed model, the distribution in capillary
pressure along the model is shown in Fig. 2. It is obtained from an
approximation of Young-Laplace’s equation as p̂tðx; yÞ ¼
γ cosðϕÞð1=r þ 1=hÞ, where r is the pore-throat radius, h is half
the cylinders’ height and ϕ is the contact angle – measured within
the defending phase – for the solid matrix and the two fluids at
play.

Assume that we have an external field that changes the
capillary pressure linearly in the x direction. One such field is the
gravitational field (e.g., controlled by θ in Fig. 1). Another one, if
the flow is fast enough, is the viscous pressure drop inside the
fluid being withdrawn. In the case discussed in the present
manuscript, the flow rate is slow enough for this viscous effect to
be negligible compared to that of the other forces at stake. We
will, however, keep a general formalism so they may be included.
If we write the gradient in capillary pressure from the external
fields as G, this capillary pressure at a position (x, y) is

pðx; yÞ ¼ pðx0Þ þ G � ðx � x0Þ; ð2Þ
where p(x0) is the capillary pressure at an arbitrary position x0.
The condition for invasion can then be written as

pðx0Þ> p̂tðx; yÞ � G � ðx � x0Þ ¼ ptðx; yÞ; ð3Þ
where we have introduced the modified thresholds pt. The system
is now mapped onto a system without fields but where the
thresholds are modified with the fields as a linear term in x. The
capillary pressure p= p(x0) for this equivalent system is constant
over the model. We now consider this modified system. The
mapping between the occupation probability in percolation f and
the capillary pressure p is given26 by

f ðxÞ � f c ¼
Z p

pcðxÞ
Nðpt; xÞdpt ð4Þ

In this expression, fc is the critical occupation probability, pc is the
critical percolation pressure and N is the normalised distribution
in capillary pressure threshold. This distribution is a function of x
due to the overall gradient in pore neck and to the external field.
Truly, such mapping between occupation probability and
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pressure arises from the ordinary percolation theory rather than
from invasion percolation with cluster trapping, which is typically
at stake in draining porous materials (e.g., see Fig. 1c where
trapped fluid clusters are visible). Both models have actually been
pointed out to belong to different universality classes27, while, by
contrast, invasion percolation without trapping shares the same
class as ordinary percolation27. In this work, we are interested in
the invasion front and its stability. By definition, trapped wetting

clusters are not a part of this front, so that the different trapping
rules do not affect its shape and statistical features but only the
size of the trapped clusters that are left behind it. The standard
tools of percolation theory should thus apply to describe the
front. The match between the theory we now develop and the
invasion percolation simulations with cluster trapping that we
present in the next sections will confirm this hypothesis.

Let us now consider a stable invasion. In this case, a position x1
exists were the capillary pressure is equal to the critical capillary
pressure such that

p ¼ pcðx1Þ: ð5Þ
We can also Taylor expand N(pt, x) around the critical pc(x1) in

Eq. (4) keeping only the lowest order in p− pc(x1) such that

f ðxÞ � f c ¼ Nðpcðx1Þ; xÞ½pcðx1Þ � pcðxÞ�: ð6Þ
Expanding pc(x) to first order in x− x1

pcðxÞ ¼ pcðx1Þ þ
∂pcðxÞ
∂x

����
x1

ðx � x1Þ; ð7Þ

we get

f ðxÞ � f c ¼ �Nðpcðx1Þ; xÞ
∂pcðxÞ
∂x

����
x1

ðx � x1Þ: ð8Þ

Now, ∂pc(x)/∂x will contain one term from the gradient in the
critical capillary pressure ∂p̂cðxÞ=∂x of the porous medium plus
the term G, which is due to the external linear field. This gives

f ðxÞ � f c ¼ aNðpcðx1Þ; xÞ G� ∂p̂cðxÞ
∂x

����
x1

 !
x � x1

a
: ð9Þ

Here, we have introduced a as the typical length of a pore. We
now choose x such that η= ∣x1− x∣, where η is the width of the
front. We here write η= x1− x > 0, which corresponds to an
invasion flow that progresses against the x direction if f(x) < fc.
The opposite convention for x could have, of course, also been
chosen. Furthermore, we use Sapoval’s assumption28, that η scales
in the same way as the correlation length ξ in percolation,
(ξ/a)∝ ∣f− fc∣−ν, where ν is a critical exponent typically equal to
4/3 for 2D systems26. We obtain ðη=aÞ / ðf c � f Þ�ν and then,
with Eq. (9), we find

η=a / F
�ν
1þν; ð10Þ

where the exponent β= ν/(1+ ν) is about 0.57. For a 3D system,

Fig. 1 Experimental set-up. a Schematic cross-section of the experimental set-up. Two transparent PMMA plates (3 cm thick) are screwed together to
close the 3D printed porous model with a gradient in grain and pore-throat sizes. Soft polymer layers (black layers) ensure good contacts between the
PMMA plates and the model. The model is illuminated from below and pictures are taken from above. b, c Top-view pictures. Photographs of a non-wetting
fluid (air) invading a wetting fluid (water-glycerol) in the square porous model of coordinate system (x,y). The side of the model is L= 140mm. A pump is
connected to the outlet and the inlet is open to air. The model can be tilted, leading to a capillary pressure gradient G ¼ Δρ g0 sinðθÞ in the x direction,
where g0= 9.82m s−2 and Δρ ~ 1200 kgm−3 is the difference of density between the wetting and non-wetting fluids. The full-extent width of the invasion
front highlighted in c and, to better characterise the average front width, we will denote by η the standard deviation of the front position along x.

Fig. 2 Statistical description of the porous model. a Probability density
function ~N of p̂tðx; yÞ=p̂c in the six areas (denoted 1 to 6) defined in Fig. 1 on
the 3D printed model. This distribution is conserved in our model and,
around p̂t ¼ pc it scales approximately as ðp̂t=p̂cÞ�2, as highlighted by the
dash-dotted line. Note: the average pore connectivity in our model being 3,
we defined the percolation pressure p̂c such that26,31

R p̂c
0 Nðp̂tÞ dp̂t � 0:65.

b Evolution of the critical capillary pressure p̂c along the model (crosses),
arising from its intrinsic structure. The straight line shows a linear fit, which
is a first-order approximation of p̂c (the engineered gradient in the model
was actually in grain size and not in percolation pressure). To this gradient,
one can compute an equivalent model tilt (see Fig. 1):
θeq ¼ arcsinð� ∂p̂cðxÞ

∂x =Δρ g0Þ. Here, θeq ~ 1.35 degrees.
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β would be approximately 0.47, with ν ~ 0.8826. We call the
quantity F the fluctuation number, which is given by

FðxÞ ¼ aðxÞN pcðx1Þ; x
� �

G� ∂p̂cðxÞ
∂x

����
x1

 !
: ð11Þ

F is a dimensionless number dictating the invasion process.
It is a generalisation of the fluctuation number introduced by
Måløy et al.10, Méheust et al.17 and Auradou et al.16. The quantity
1/N(pc, x) characterises the typical width of the capillary threshold
fluctuations, and, in the scenario of interest in our experiments,
aðG� ∂p̂=∂xÞ characterises the gravitational forces at the pore
scale, corrected for the particular structure of the porous matrix. If
the material disorder is important relatively to the gradient
term, such a gradient becomes negligible at small scales (and
reciprocally).

One can compare F to other dimensionless numbers usually
used to predict flow patterns in porous materials. In our case, a
relevant one would for instance be the Bond number29

Bo � a2G=½γ cosðϕÞ�, which compares the gravitational forces to
the capillary ones. Previous works13,18 have proposed imbibition
and drainage front widths to indeed scale as Bo−ν/(1+ν). Yet, and
contrarily to F, the Bond number does not offer, a priori, any
insight on the actual material disorder (e.g., N) or on an eventual
structural trend (e.g., ∂p̂=∂x). We suggest that the Bond number
could indeed sometimes help characterise the flow patterns in
gravitational fields, because for regular enough geometries of the
porous network (in particular without structural gradient), Bo
does scale as F (see Supplementary Note 1). If one would,
however, compare matrices with different distributions of
disorder (N), such a direct scaling would fail. Furthermore, in
the case where a matrix does hold a structural gradient, and
where no external field applies (e.g., no gravity) the invasion can
both be stable or unstable depending on the relative directions of
the flow and the gradient, as we illustrate in the next sections.
There, Bo is - by contrast - always null, and an accurate stability
prediction based on this number only would then be impossible.

As shown in Fig. 2a, our model was designed so that the
dimensionless distribution ~Nðp̂t=p̂cðxÞÞ ¼ p̂cðxÞ � Nðp̂t; xÞ is con-
served along the x direction (i.e., it does not depend on x).
Additionally, the pore throats in many media is to scale the same
way as the size of the pores a. We can then write, as per the
Young-Laplace law, p̂cðxÞ / γ cosðϕÞ=aðxÞ. Note that, in case of
2D models such as ours, this last expression is only strictly valid if
the height of the system is big enough respective to the pore size
(i.e., h≫ a), which in our model is correct for the smallest pores
but is a brave assumption for the biggest ones for which h ~ a.
This assumption, however, allows to rewrite Eqs. (10) and (11) as:

η /
~Nð1Þ

γ cosðϕÞ G� ∂p̂cðxÞ
∂x

� �� ��β

´ a�2βþ1: ð12Þ

Here, the dependence in x1 of the gradient in percolation
pressure has been removed, assuming a model where this
pressure is perfectly linear in x (that is, a model where the first-
order expansion leading to Eq. (7) is exact). The exponent− 2
β+ 1 is close to 0 so that the effect of the pore size a on the width
of the front is small compared to that of the other terms.

This last expression is only a particular case of Eqs. (10) and
(11), where the front width does not significantly evolve as the
invasion progresses. In a more general porous material, the spatial
distribution in pore size a(x) and/or in pore invasion threshold
N(pc, x) would matter.

Experimental results. From Eqs. (10) and (11), we see that a
negative gradient in the critical capillary pressure threshold will

stabilise the front while a positive gradient will make it more
unstable. In this sentence, the underlying convention is that the
direction defining the gradient is opposing the general flow
direction. This is illustrated in Fig. 3 that shows two drainage
experiments in such configurations. In Fig. 3a we have a negative
gradient in the critical capillary pressure threshold and the front
is stabilised while in 3b the gradient is positive (the inlet and
outlet having been swapped) and the front is unstable with a
growing finger. In both cases the external (gravity) field is null.
The stabilisation/destabilisation of the front is also reflected in the
breakthrough time, which was about three times smaller in the
case with the destabilising gradient (the externally imposed flow
rate was the same for both experiments). Numerically analysing
the images, we indeed measured that, in Fig. 3b, only 20% of the
wetting phase is drained, while 65% is drained in Fig. 3a.

In Fig. 3c and d, we show the same experiments in a particular

gravity field. The model is tilted with an angle �2θeq ¼
�2 arcsinð�∂p̂cðxÞ

∂x =Δρg0Þ as explained in Fig. 2, which effectively

inverses the sign of the G� ∂p̂cðxÞ
∂x

	 

term in Eq. (11).

We should here restate that Eq. (11) only applies to the cases
where the front is stable (i.e., to Fig. 3a and d) as front stability
was an underlying hypothesis (to write Eq. (5)). As expected, for
these two different experiments for which the fluctuation number
F is the same, the features of the invasion front are very similar. In
the case of unstable fronts, we suggest that, the fluctuation

Fig. 3 Drainage experiments in a 3d printed quasi two-dimensional
model. In each photograph, air has invaded the model from the top of the
pictures, replacing a water-glycerol solution coloured with nigrosin. All
sides of the models are of dimension L= 140mm. In a, ∂p̂cðxÞ=∂x<0, which
corresponds to a decrease in `permeability' as the flow progresses (the air
invades from the big pores to the small ones). The invasion is stable. In
b, ∂p̂cðxÞ=∂x>0, which corresponds to an increase in `permeability' with
the flow progression and an unstable processes. In both cases, the model is
horizontal (G= 0). c and d show the same experiments in a chosen
destabilising or stabilising gravity field (respectively) with tilt angle− 2θeq
(see Fig. 1 and 2). The stability of the flow is thus reversed.
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number could characterise the width of the invading fingers,
rather than the width of the front. Indeed, in gravitational
drainage experiments, such a finger width was indeed
proposed15,30 to scale with the Bond number, with the same
exponent β, which we have here considered. In the case of the
drainage of a matrix with a structural gradient (that is of interest
here), this hypothesis will be further verified with the help of
invasion percolation simulations.

Invasion percolation simulations
Stabilising gradient. Fully validating Eq. (12) with experimental
results remained a challenge. Indeed, because of the maximum
size (~30 cm) of the models we could print, and because of the
minimum distance between printed grains (a fraction of a milli-
metre) before they tended to unexpectedly merge, the range of
gradient in capillary pressure that could be investigated was small.
Owing to the theoretical scaling between such gradient and the
front width (i.e., Eq. (12)), the range in obtainable η was even
smaller. Therefore, to verify our theoretical framework, we ran a
series of invasion percolation simulations with cluster trapping,
known to represent well capillary invasion processes.

These simulations are performed on square lattices (indexed
along x and y directions), which abide by the same conditions
that underlie Eq. (12). At a given x, the distribution N in invasion
threshold p̂t for a pixel is random and uniformly distributed.
Similarly to Fig. 2 the mean values of these distributions follow an
arbitrary gradient along x but the width of the distributions is
such that ~Nðpt=p̂cÞ is conserved along this same direction.
Additionally, the size a(x) of a pixel scales as 1=p̂cðxÞ. Here,
because our matrices’ connectivity is 4, the percolation pressure

p̂c is such that26,31
R p̂c
0 Nðp̂tÞ dp̂t ¼ 0:5. More details on the

simulations can be found in the Methods section and the
numerical code is available on a public repository32.

We ran ten simulations in the stable invasion domain and
without external field (∂p̂c=∂x < 0 and G= 0), varying the
gradient in percolation pressure, but also the average size of the
pixel a in the model and the local width of the distribution in
invasion threshold 1=~Nð1Þ. We thus covered four decades of
~Nð1Þ ´ ∂p̂c=∂x < 0 and two decades of a. Additionally, we ran six
simulations where a linear external field (G) modifies the local
fluid pressure, in a way that the invasion remains stable (i.e.,
G� ∂p̂c=∂x > 0, although the respective sign of both terms may
vary from one simulation to the other). For each simulation, we
extracted the simulated front width η, once it reached a plateau
after enough time steps. We defined this width as the standard
deviation of the x coordinate of the front between the invading
phase and the main cluster of the defending phase (see Fig. 4).

Finally, with a least squares method, we fitted Eq. (12) to the
obtained data in order to invert for the β exponent. This
procedure provided a good fit of the simulated data with a
coefficient of determination R2 ~ 0.998, and we found
β ~ 0.56 ± 0.02, where the accuracy of the fit is computed by
letting R2 vary by 5%. This value for β is satisfyingly close to our
theoretical prediction for percolation theory (β= 0.57).

Destabilising gradient. We also ran similar simulations, but in the
unstable case, that is, with G� ∂p̂c=∂x < 0. We varied the same
parameters (i.e., ∂p̂c=∂x, ~N , a and G). In this unstable config-
uration, rather than characterising the width of a stable front, we
characterised the average width W of the growing invasion finger.
We defined such a width asW= A/l, where A is the area occupied
by the finger (i.e., the area surrounded by the plain red lines in
Fig. 5, in which the results are shown) and l is the length of the
finger along the x direction. Comparing Figs. 4 and 5, one can

notice how similar is the scaling of W and η. Although Eq. (12)
was only formally derived for stable fronts, we then analogously
write for the width of the fingers in the unstable scenario:

W /
~Nð1Þ

γ cosðϕÞ �Gþ ∂p̂cðxÞ
∂x

� �� ��β0

´ a�2β0þ1; ð13Þ

when the same assumptions for the matrix structure than those
underlying Eq. (12) are respected. Fitting this expression to our
simulation results, we obtained a good match (R2 ~ 0.992) for
β0 � 0:52 ± 0:05. This value is close to the value of β. As pre-
viously mentioned, a similar scaling of W with respect to the
Bond number (rather than to F) was reported in experimental
observations of unstable drainage fingers growing in a gravita-
tional field15,30,33. Our simulations suggest that, when possible,
one should consider our defined fluctuation number instead.

Fig. 4 Invasion percolation simulations—stabilising gradient. a to c:
invasion percolation maps for the three simulations denoted in d, that have
different stabilising gradient in invasion threshold. The invading non-
wetting phase occupies the white pixels. The plain (red) line is the drainage
front on which the width η is computed. Length are in an arbitrary unit,
denoted a.u. d: Width of the front as a function of the pore size a, of the
gradient ∂p̂c=∂x, of the external field G and of the local distribution in
capillary pressure ~N (logarithmic scales). Each data point was computed on
an independent simulation. Crosses represent simulations with only a
structural gradient in pore threshold (G= 0), whereas circles mark
simulations also including an external field (G varying from−10−4 to+100

a.u. depending on the simulation). The grey plane is a fit of Eq. (12). The
slopes of this plane along the two axes are given by−β and by 1−2β,
respectively, and both indicate β= 0.56 ± 0.02.
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Note that, either for the stable or the unstable drainage case,
the most general formalism that has been introduced in this
article, for the scaling law of the flow patterns, is given by Eq. (10)
rather than by Eq. (12) or Eq. (13). Figure 6 then displays the
dependence of either η/a orW/a with the fluctuation number F in
our numerical simulations, showing good agreement with the
theory.

Conclusion
In this paper, we have discussed the importance of capillary
fluctuations in porous media, as well as the characteristic length
scales in two-phase flow patterns set by the competition between
capillary fluctuations, external fields (e.g., gravitational or viscous
ones) and a gradient in the matrix percolation pressure.

In the case of fluid fronts that are stabilised by these fields and
porous media geometry, the fluctuation number F, which
describes the scaling of the front width η, was introduced. There,
the derived scaling exponents directly result from percolation
theory. When considering a viscous and gravitational field, the
theory describes well the scaling of the width of the fluid front
and the final saturation of the fluid left behind the invasion front
observed in laboratory experiments10. As shown here, it can also
predict the stabilisation and destabilisation of the front width in
such experiments depending on the sign of the spatial gradient in
the critical capillary pressure. Truly, more experiments are nee-
ded to conduct a quantitative experimental investigation of the
dependence of the scaling of the front width η when a structural
gradient is present, the challenge being to obtain a permeability
gradient varying over several decades in the laboratory. Standard
invasion percolation simulations have, however, here underlined
how reasonable the predicted scaling law is. In the case of a
destabilised flow, these simulations also enabled us to infer a
similar scaling law for the width of growing drainage fingers.

On a length scale smaller than η, the structure within the front
is generally fractal, while on a length scale larger than η, it is
homogeneous. The characteristic length scale η should thus be of
primary importance in defining a relevant representative ele-
mentary volume (REV) for an average Darcy description of the
two-phase flow problem34. We suggest that characterising the
fluctuation number F, for instance from drilled core samples in
geological contexts, would help in this prediction of the front
width. Estimating the actual distribution in pore throats, needed
to derive N, can indeed be achieved with various experimental
techniques35,36. One could also characterise the relationship
between the fluids’ pressures and saturations for systems with
structural gradients, by extending the approach of Moura et al.31

and Ayaz et al.34. A good knowledge of this relationship is indeed
relevant for reservoir geophysicists and hydrologists.

In these geological applications, one should also consider the
usual repeating sequences of sediment layers with a gradient in
permeability in a given direction. This is for instance often
observed in fluvial or turbidite deposition24. There, if the gradient
inside a single unit is stabilising, a change in layer would yet
correspond to a local but brutal destabilising effect (and reci-
procally). Predicting the flow behaviour over large distances
would thus likely require to take into consideration the typical
wave lengths of such layer repetitions, and compare them to the
typical length scale η of the invading pattern. Such a study would
be a natural continuation of the present work.

Fig. 5 Invasion percolation simulations—destabilising gradient. a and b:
Invasion percolation maps for the two simulations denoted in c, that have
different destabilising gradient in invasion threshold. The invading non-
wetting phase occupies the white pixels. The plain (red) line is the drainage
front on which the width W is computed. Length are in arbitrary unit,
denoted a.u.. c Width of the finger as a function of the pore size a, of the
gradient ∂p̂c=∂x, of the external field G, and of the local distribution in
capillary pressure ~N (logarithmic scales). Each data point was computed on
an independent simulation. Crosses represent simulations with only a
structural gradient in pore threshold (G= 0), whereas circles mark
simulations also including an external field, (G varying from−10−3

to−10−1 a.u. depending on the simulation). The grey plane is a fit of
Eq. (13). The slopes of this plane along the two axes are given by �β0 and
by 1� 2β0, respectively, and both indicate β0 ¼ 0:52±0:05.

Fig. 6 Scaling of the flow patterns with the fluctuation number.
Illustration of expression (10), which is here the most general formalism for
the scaling of the size of the flow pattern with the fluctuation number, as
defined by (11). The numerical results of Figs. 4 and 5 are shown (crosses
and circles) and fitted with power laws (dotted line) for, respectively, the
stable (a) and the unstable (b) drainage cases. Crosses represent
simulations with only a structural gradient in pore threshold (G= 0),
whereas circles mark simulations also including an external field.
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Methods
Experimental method. To generate our porous model, we have used a Formlabs
Form 3L printer37, which employs a stereolithography 3D printing technology to
produce objects in a transparent plastic material (Formlabs Clear Resin), composed
of methacrylic acid esters and photoinitiators. This technique is based on the laser
polymerisation of the resin. It allows to control the geometry of the porous network
and in particular to fine-tune its grain and pore-throat distributions, for example
by introducing a gradient in the pore sizes. In practice, cylinders are distributed in a
monolayer using a Random Sequential Adsorption (RSA) algorithm25. The
cylinders are printed within a frame (which is part of the total print) closing the
sides and bottom of the porous medium so that only the top of the cylinders are
not sealed. Pipe connectors are also included (i.e., printed) at the inlet and outlet of
this frame to facilitate the connection of the model in the experimental set-up. The
spatial resolution of the printed models is about 0.1 mm. All the RSA parameters
are specified in the manuscript.

The model is mounted in a flow cell, which was constructed around the print, in
a way that optimises the visualisation of the pores. The 3D printed model is
inserted between two layers of a soft polymer (polyvinyl chloride, PVC-2mm thick)
whose main role is to efficiently seal the top of each cylinder. Around these soft
layers two 3-cm thick PMMA plates are screwed together to confine the flow. On
the side, the model is closed by 3D printed walls. The tubular inlet and the outlet of
the model feed large channels along the whole model width so that the boundary
conditions are the same along this direction. Each layer is transparent and the flow
cell lies on a white light box to allow a good quality imaging with a reflex camera.

The invading fluid is air and the defending one is a mixture of 20% water and
80% glycerol, where the percentages relate to the total mass. In this mixture a
nigrosin dye has been added (4 g per litre of water) to create an imaging contrast
between the air and the liquid. The coloured mixture is the wetting phase, with a
contact angle to the solid resin of 60 ± 10∘ in presence of air (measured optically on
several droplets). The wettability of the soft PVC plate sealing the top of the printed
cylinders was inferred to be similar. With a syringe pump, the wetting liquid
mixture is withdrawn at a constant flow rate from one of the two model’s ends
while the air, connected to the atmospheric pressure of the laboratory, invades the
model. We used a 0.3 ml/h flow rate.

Numerical method. The invasion percolation simulations are performed on square
lattices (indexed along x and y directions), which abide by the same conditions that
underlie Eq. (12). At the initial simulation stage, solely the first line of the matrix
(the inlet) is invaded, so that the initial invasion front is a straight line. The pixels’
connectivity is four, so that a pixel is connected to its top, bottom, right and left
neighbours. On the side of the matrix, pixels have only three neighbours, and, in
the corners, only two. At each time step, one new pixel is invaded. This pixel is the
neighbour of the invading phase that has the lowest invasion threshold and which
is still connected to the matrix outlet (i.e., it is not trapped). The invasion front is
recomputed after the invasion of each pixel and the simulation stops when the
front reaches the last line of the matrix.

Data availability
High-quality experimental photographs are available to the reader at the following
location32. DOI: 10.5281/zenodo.7076135. Further requests should be addressed to Knut
Jørgen Måløy (maloy@fys.uio.no).

Code availability
The numerical code for the invasion percolation simulations is available to the reader at
the following location32. DOI: 10.5281/zenodo.7076135. Further requests should be
addressed to Knut Jørgen Måløy (maloy@fys.uio.no).
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