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ABSTRACT

We obtain the exact statistical distribution of expected detection rates that may be obtained from the detection of ‘Oumuamua,
which currently belongs to a class of objects that is only observed once in our Solar system. The derivation of the distribution
of future detection rates starts from the assumption that the detection is a result of a Poisson process, and uses Bayes theorem
along with information theory to get the result. We derive the probability for the next such observation along with the confidence
limits of this prediction assuming that observations are done with the forthcoming Vera C. Rubin Observatory. This probability
depends on the estimates of detection rates that existed prior to the ‘Oumuamua observation. However, unless the constraints
given by these model-based estimates are within an order of magnitude of the actual detection rate, they have a negligible effect
on the probability of making a second observation. The results are generalized to the expected future case where more than one

observation exists.

Key words: methods: statistical —comets: general — minor planets, asteroids: general —protoplanetary discs.

1 INTRODUCTION

Our first interstellar interloper ‘Oumuamua was discovered in Octo-
ber 2017 (Meech et al. 2017; Williams 2017), and much effort has
since gone into explaining its formation (Bialy & Loeb 2018; Cuk
2018; Raymond et al. 2018; Flekkgy, Luu & Toussaint 2019; Luu,
Flekkgy & Toussaint 2020; Seligman & Laughlin 2020; Desch &
Jackson 2021; Jackson & Desch 2021). Since all these formation
models need to be consistent with the existing observation statistics, it
becomes important to get a quantitative handle on what this statistical
criterion implies.

The statistical problem of extracting the information implied
by a single events arose with the 2017 observation of 11/2017
Ul (‘Oumuamua) (Williams 2017), the first, and so far the only,
non-cometary interstellar interloper observed in our Solar system.
However, it is also relevant in the context of radio emission from the
Milky Way (Jansky 1933), the detection of cosmic X-rays sources
(Giacconietal. (1962)), and gamma-ray bursts (Klebesadel, Strong &
Olson 1973). In geophysics, the occurrence of large earthquakes
provides another example where small number statistics becomes
the key tool to quantify the risk of repeated events (Habermann
1987; Sornette et al. 1996). The question of small number statistics
in the context of astrophysics was addressed by Gehrels (1986),
who determined close approximations for the confidence limits of
the expectation value (n) given n observations, and also by Kipping
(2021).

The conclusions that may be drawn on the basis of a few, or
a single observation depend crucially on the type of assumptions
that it is natural to make prior to the observation. For instance, the
a priori assumption that the observed phenomenon may occur at
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equally probable rates leads to a different result than the assumption
that it may occur at equally probable intervals of time.

The main purpose of this paper is to obtain the exact distribution
P, (1) for the expected observation rate A after n > 1 observations are
made and the correct a priori assumption is identified, and to obtain
the expected recurrence time of objects similar to ‘Oumuamua by
means of the Vera C. Rubin Observatory/Large Synoptic Survey
Telescope (LSST) programme. The first observation of ‘Oumuamua
was made in 2017 by the Pan-STARRS project (Williams 2017),
which was initiated in 2008. Many ground-based observations (Ban-
nister et al. 2017; Jewitt et al. 2017; Knight et al. 2017; Meech et al.
2017) followed the first 2017 observation. No other observations that
resemble that of ‘Oumuamua, have yet been made, although another
interstellar interloper has been observed, the comet 2I/Borisov, which
was discovered in 2019 (Guzik et al. 2019). What sets ‘Oumumamua
apart in a way that makes it natural to place it in its own class of
objects, is in particular its extra-gravitational acceleration (Micheli
et al. 2018) that was observed without any detectable outgassing, as
well as its light-curve variability (Meech et al. 2017).

The probability of making one or more similar observations
some time into the future requires identifying the correct a priori
distribution. This brings the problem beyond the simple application
of Poisson statistics. Following Kipping (2021), we shall assume that
the observations are random and uncorrelated in time, in other words,
a Poisson process, and combine this with Bayes theorem. However,
in order to minimize the implied bias in the a priori assumption, we
apply information theory (Shannon 1948; Shannon & Weaver 1949;
Jaynes 1957). The assumption that ‘Oumuamua like objects originate
from an unknown number of independent production sites leads to a
flat a priori distribution where all rates are equally probable.

In calculating the probability of observing one or more objects
similar to ‘Oumuamua based on its detection and a suitable prior
distribution, we must include the potential constraints given by
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estimates of the population densities of non-cometary interstellar
objects (ISOs) prior to the detection. Such population densities may
be converted to estimates of the future detection probabilities via
assumptions on the velocity distribution, the detection volumes of
the surveys, the ratio of objects with and without cometary activity
and their size distribution (McGlynn & Chapman 1989; Sen &
Rana 1993; Moro-Martin, Turner & Loeb 2009; Cook et al. 2016;
Engelhardt et al. 2017). However, we will argue that the constraints
on A provided by these early estimates are too far from the actual
detection rate to have an impact on the future recurrence probability,
as the change of this probability due to the a priori constraints is less
than 5 percent even when the uncertainty in these constraints are
ignored.

These considerations are developed quantitatively once we have
established the theoretical framework based on Bayes theorem and
the Shannon/Jaynes information theory. Finally, we obtain the actual
recurrence probability as a function of time and the expected waiting
time for the next observation, assuming the enhanced efficiency of
the Rubin Observatory survey relative to earlier programmes.

2 DERIVATION OF THE PROBABILITY
DISTRIBUTION

We derive the probability density for the observation rate A given the
fact that n observations have been made over a time period t. This
is not the same as the probability that n observations will be made
given a known observation rate A, although the two probabilities are
closely linked. The link is provided by the classical Bayes theorem:
The probability of having two events A and B, happen may be written

P(A and B) = P(A|B)P(B) = P(B|A)P(A), (1

the latter equality constituting the theorem. Here, P(A|B) is the con-
ditional probability of A, knowing that B occurred, and reciprocally
for P(B|A), while P(A)(P(B)) is the independent probability that A(B)
occurred.

In our context A is the rate A, and B is the occurrence of the n events.
This means that our desired probability P,(A) = P(A|B) and P(B) =
P(n) is the a priori probability of making exactly n observations
during the time 7, given the (lack of) knowledge at the beginning of
this period. On the other hand, P(B|A) = P;(n) is the probability that
n events occur given A, and P(A) = P(}) is the a priori distribution of
A. This distribution is the one taken for A prior to any observations.
This leads to the expression

Py (n)
P(n)

Py(0) = P(3) @

for the distribution we wish to obtain.

2.1 Role of pre-existing constraints on ISO populations

Engelhardt et al. (2017) estimated an upper limit on the interstellar
number density of both cometary and non-cometary bodies based
on non-detections in Pan-STARRS, the Mt. Lemmon survey, and the
Catalina Sky Survey, assuming a cumulative size distribution of such
bodies N(D) o« D~23 (Dohnanyi 1969). Using this distribution the
resulting upper limit found by Engelhardt et al. (2017) on the density
p of non-cometary bodies larger than 1 km ~10~2 au™? translates
to an upper limit p < 0.5 au™? for the density of bodies larger than
200 m. This the effective spherical diameter of ‘Oumuamua Luu
et al. (2020) which has roughly the same cross-sectional area as its
assumed oblate or prolate shape.
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Moro-Martin et al. (2009) used models for the ejection of
protoplanetary material to place an upper limit on the expected
detection rate of inactive/small albedo comets by the forthcoming
Rubin Observatory. This limit was estimated to a maximum of 1
detection during its 10 yr of planned operation, while Cook et al.
(2016) derived an upper limit on the detection of interstellar active
comets at 1 detection per year, which is similar to that found later by
Hoover, Seligman & Payne (2022).

While Moro-Martin et al. (2009) obtained the ISO density esti-
mates 5 x 107% au™3 < p <5 x 107 au~3, Sen & Rana (1993) found
p < 1.6 x 107* au™3, and the estimates of Sen & Rana (1993) and
McGlynn & Chapman (1989) yield p < 1073 au=3. Subsequently, Do,
Tucker & Tonry (2018) used the ‘Oumuamua detection to estimate
the density of non-cometary 1SOs to lie around p ~ 0.2 au —.
As a consequence of the ‘Oumuamua observation, Do et al. (2018)
suggested the ratio of dry to cometary ISO’s to be around 1000,
which is 5-7 orders of magnitude above the ratio that is believed
to describe the Oort cloud (Weissman & Levison 1997; Walsh et al.
2011), exo-Oort clouds being assumed to be the sources of ISOs.

It is important to distinguish between a priori assumptions based
on model-dependent estimates and a priori knowledge, as only the
latter may be used as hard constraints in the P(X) distribution.
Key assumption that went into the Ay, and A, estimates prior
to the 2017 ‘Oumuamua observation include assumptions on the
ratio of dry to cometary ISO’s and the ability of interstellar radiation
to convert cometary objects to crusted dry ones. By implication,
these assumptions presuppose specific formation scenarios of ejected
planetesimals, which only include a few of those proposed for
‘Oumuamua. In particular, they do not include the possibility that
‘Oumuamua is an ultraporous fractal aggregate Luu et al. (2020), a
chunk of frozen N, ejected from an exo-Pluto like surface (Desch &
Jackson 2021; Jackson & Desch 2021), a piece of pure H, ice
(Seligman & Laughlin 2020), or a solid matrix releasing H, upon
sublimation (Bergner & Seligman 2023), nor the possibility that it is
a light sail developed by an alien civilization (Bialy & Loeb 2018).
However, using the estimate of the density of ISOs found by Do et al.
(2018), Levine et al. (2021) estimate the expected Rubin Observatory
detection rates for ISOs with a range of different formation pathways,
albeit with the inclusion of the information that ‘Oumuamua was
already detected.

In calculating the probability for another ‘Oumuamua observation
based on (1) the a priori information on expected detection rates
and (2) the actual detection, it would be inconsistent to include the
information of (2) in (1). While the actual detection will lead to
estimates of the interstellar density of similar bodies, the detection
may not be included in the prior information. As we will show, the
pre-existing constraints on detection rates must be within an order of
magnitude of the actual detection rate, in order to make a noticeable
difference in the probability of making another similar detection.
The pre-existing model-based constraints are either too wide, or they
have values that are not favoured by probability given the subsequent
observation, as is apparent in the adjustments to ratio of cometary to
non-cometary bodies that followed the ‘Oumuamua observation (Do
et al. 2018).

2.2 Operational efficiency

Following Trilling et al. (2017b), we shall take the effective opera-
tional period of Pan-STARRS to have started in 2012, thus accounting
for the increase in operational efficiency that had occurred before the
2017 detection of ‘Oumuamua. This yields an effective observation
time of T = 10 yr resulting in n =1 observation.
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The Rubin Observatory will survey 20 000 deg? up to a magnitude
24.5 repeatedly over 10 yr. The LSST detection limit is estimated
to be three magnitudes deeper than Pan-STARRS’ typical limiting
magnitude of ~21.5, which translates to a factor of three smaller in
the size of observable objects (Trilling et al. 2017b). Assuming the
small body size distribution N(D) oc D27 it is possible to integrate
over the smaller observable sizes as well as the increased number
of visible objects. This leads to a yearly observational capacity
of the Rubin Observatory survey that is roughly five times that
of Pan-STARRS (Trilling et al. 2017a) in terms of the expected
number of detections. We denote this performance increase by «.
The value of @ may be somewhat reduced by the fact that the
residence time of ISOs will be larger within the accessible Rubin
Observatory observation volume than within that of Pan-STARRS
(detecting the same object twice does not lead to an independent
detection). This effect is ignored in the following, and we shall
simply assume that the enhanced capacity of the Rubin Observatory
over earlier observational campaigns may effectively be represented
as an increase @ ~5 in the future observational time period 7; in
other words, that we may include it by the replacement 7, — a7,
where 1, is the future time window.

2.3 The distribution P; (n)

The long-time observation rate is A = N/T where N > n is a large
number of observations taken over a long time 73> 7. The probability
that one of these n events occurs within the time window t is t/7,
and so the probability to make exactly n observations over a time
window T may be written

N\ /7\» T\N-n (A7)
= (3) G (-5)" "= 2

n T T n!
when N > n. This result is nothing but the well-known Poisson
distribution.

, 3

2.4 The a priori distributions

The a priori distributions P(1) and P(n) of event rates A and expected
number of observations may result from some physical knowledge
of the process producing them. Without such prior knowledge our
task becomes avoiding to introduce it inadvertently by implication of
our choice for P(A). The idea is to avoid the introduction of arbitrary
information.

Here, we shall simply assume that the rate comes from some
unknown number Ny of uncorrelated sources so that A oc N. In the
‘Oumuamua case such an assumption is natural regardless of the
assumed formation theory. In all of these theories, it is a natural
a priori assumption that the production sites are independent and
their total number unknown. The question of identifying P(A) then
becomes equivalent to finding the distribution Q(Ns) of the source
number. In the case where no prior knowledge exists, or is justified,
the choice of Q, should thus represent the least possible input of
information.

Shannon (Shannon 1948; Shannon & Weaver 1949), and later,
Jaynes (Jaynes 1957) formulated an information theory that quanti-
fies the amount of information, or rather uncertainty, that is contained
in a certain probability distribution. The uncertainty function that
they derived, has the same formal structure as the Gibbs entropy and
may be written

H=~KY Q(N)log(Q(Ny)). @

Ng
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where K is a constant. Maximizing this uncertainty function with
respect to Q, subject to the constraint of normalizability

> oNy =1 )
Ns
leads to the variational problem with respect to Q(N)
SH —y8(Y_ Q(N)) =0, 6)
Ng

where y is a Lagrangian multiplier that may be determined by
normalization. The sum over Ny must be constrained by some lower
and upper limits. This then gives

Klog Q(Ns)+ K +y =0, @)

or, in other words, Q = constant. This means that the probability
P()) must be constant as well, and that all a priori event rates are
equally probable. This flat distribution corresponds to a minimum
input of information. In contrast, some peaked P(X) distribution
would always produce a smaller uncertainty value H, corresponding
to the information present in the knowledge of the peak location.

We may normalize the constant a priori distributions to get P(A) =
1/(Nmax — Nmin), Or more precisely,

when Apin < A < Amax
otherwise ’

AL
— Amax —Amin

PR = { 0 3)
where Nyax = Amax T and Nyin = Amin T are the upper and lower bounds
on the expected number of observations during the long time interval
T. Above, we have assumed that the total number N of observations
may take equally probable values in the range Ny, <N < Npax, and,
consequently, the increment of A, AA = 1/T.

Note that the a priori probability P(r) does not contain the informa-
tion of the existing observations. This information is introduced only
by setting n = 1 (or some larger value) in the conditional probability
P, (A). Instead, the a priori probability P(n) is obtained by combining
the prior P(1) and equation (3), which yields

A mas ) (g )le T
. L darer,
A

dAP(X)P.(n) = 9)

min )‘-mzlx - )\min

When Apt K< 1 we get P(n = 1) & (ApaxT + AminT)/2, which
is the relevant limit for most of the pre-existing constraints: Based
on estimates of the inactive comet population density Moro-Martin
et al. (2009) estimates the Rubin Observatory detection rate at
less than 1073 detection per year. Reducing that rate by a factor
5 corresponding to the smaller capacity of Pan-STARRS, gives a
value Apax = 2 x 107* yr~!. Using this a priori constraints sets the
probability of making the ‘Oumuamua observation at P(n = 1) ~ 0.1
per cent. Using instead the value of the population densities arrived
at by Sen & Rana (1993) yields P(n = 1) ~ 0.15 per cent, and that
by McGlynn & Chapman (1989) yields P(n = 1) ~ 1 per cent. These
low values strongly suggest that the corresponding constraints on A
are inadequate as hard constraints in our P(}) distribution. In the
following, we will assume that the Aax and Ay, values are in fact
closer to the actual detection rate in order to quantify their role.
Inserting the a priori distributions in equation (2) yields the desired
distribution P,(A) = p,(A)AA with the probability density

(hryle
——=2 = when Ay, < A < A

Pa(d) = § S argeyesie " - (10)
0 otherwise

with n = 1 until the next ‘Oumuamua-like observation is made. This

is our desired result for the rate distribution. This function takes

its maximum at n/t, and gives an average (A) = (n + 1)/t, with a

MNRASL 523, L9-L14 (2023)
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Figure 1. The rate distribution function of equation (10) plotted for different
n as a function of the rate normalized by its maximum value.

standard deviation «/n + 1/7. Note that the distribution p; () takes
its maximum at A = 1/7, which is the historical detection rate, while
the expectation value (1) = 2/t. The difference between the actual
and expected occurrence rates is due to the skewness of the p(i)-
distribution. This distribution is plotted as a function of A/Ay.x in
Fig. 1, assuming that Ay, T < 1 and AT 3> 1. In the figure, p, (1)
is multiplied by A, so that the curves remain normalized when
integrated over x = A/An.x. Note that on this scale, the curves become
more peaked when n increases, reflecting a smaller uncertainty in the
more probable A-values relative to the maximum- or average value.
However, even with only a single observation n = 1, the spread in
A-values is finite.

The assumption made by Kipping (2021) is that P(X) oc 1/x.
Being a power law, this distribution is scale-free, like ours, but
produces a different end result. Also, this choice introduces a larger
amount of information as quantified by equation (4), than the flat
distribution and we therefore select the latter. This choice, which
is also known as the Bayes—Laplace uniform prior, was also made
by other authors (Cameron 2011) without the justification in terms
of information theory. In Cameron (2011), several non-informative
priors are assumed; by contrast, the Jaynes uncertainty maximization
singles out just one of these.

2.5 Expected waiting times

Now, P;(m) of equation (3) is the probability of making exactly m
observations within a time v, given a known value of A. Replacing
T by a future time interval 7, and summing over any number of
new observations m > 1 gives the probability of making another
observation or more, within the time 7; assuming a given A value,

o0
(A7y)"e 0 I
PMxnzZ1)::2:—447;r447=1-—e A (11)
m=1
where we have used the identity > - x™/m! = e*. Averaging
this probability over all A-values yields the probability that another

observation is made within the future time window t:
Py(m=>1)= /d)\Pl()\)PArl (m > 1), (12)

where p;(A) is given in equation (10) with n = 1. Doing the
integration, then gives

2
Prl(m = 1) =1~ ( ) + €min — €max» (13)

T+

MNRASL 523, L9-L14 (2023)

where the correction terms due to the assumed constraint values of
Amin and Apax are

T : —Amax T
€max = (AmaxT + D)e "
T+ T

1 T 2
min = = A2 (2 2 14
¢ 2<r+n> min (27714 77) (1

in the limit when Ayin T << 1 and A, T > 1. Note from equation (13)
that €., enters as a positive correction while €, is negative, as
an upper bound on A will reduce detection probabilities, while a
lower bound does the opposite. When AyinT < 0.1, €pin < 1073,
and when ApaT > 10, €max < 4 x 1074, assuming for simplicity
that t = 7. This means that in order to affect the predicted
detection probability noticeable the a priori constraints on A must
be within a factor 10 of the actual detection rate 1/t. Otherwise,
the actual ‘Oumuamua detection is the only piece of information
that determines P, > (), while the estimates of likely detection
probabilities based on estimates of the ISO populations by Moro-
Martin et al. (2009) only yield a ~0.1 per cent correction.

The a posteriori ISO density estimate by Do et al. (2018) of p ~ 0.2
au~? was based on the actual A ~ 1/t observation rate. On the other
hand, the upper bound of p < 0.5 au™* obtained by Engelhardt et al.
(2017) was obtained before the ‘Oumuamua observation was made.
Since the detection rate is proportional to the population density when
all other factors are equal, the factor of 2.5 between the p-values,
may be taken to yield an estimated a priori upper bound AT = 2.5
in this case. This gives €, = 7 percent if this Ay.-value is taken
as a hard constraint. However, while it is remarkable how close the
estimate of Engelhardt et al. (2017) is to the a posteriori estimate it
is hardly justified to use it has a hard upper bound, given the scatter
in the other prior p-estimates and the uncertainty in the underlying
model assumptions.

In the following, we well neglect the €., and €y, terms and
replace 7, — ot to account for the increased efficiency of the
Rubin Observatory (VRO) survey. Also, the generalization to the case
where several observations n exist beforehand, is straightforward.
Above, we assumed that only n = 1 observation exists. Given n
> 1 observations all that is needed is to replace p;(%) by p,(}) in
equation (12), so that

PYRO(m = 1) = / dApu(1) Pagar, (m = 1), (15)
This integral is easily performed and gives
T n+l
PYOm =1 =1~ ( ) : (16)
n at, + 1

which is the probability of making one or more observations by the
Rubin Observatory during a time window t,,, provided n observations
were already made during the previous time 7, given that Pan-
STARRS and other programmes made a single observation during
the time 7 ~ 10 yr.

The hypothetical n > 1 case would apply if yet another ‘Oumua-
mua like observation were made by means of Pan-STARRS. If the
question is ‘what is the probability of making a third observation with
the Rubin Observatory, given that one observation was made by Pan-
STARRS and another by Rubin Observatory’, then the observation
time T would have to be scaled by a factor § > 1 to account for
period over which the observation efficiency was increased.

Setting n = 1 again for the actual case, we obtain

T 2
> ; a7

at + 1

ﬂmmzn=1—(
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Figure2. Expected minimum waiting time rlmi“, to make another observation
by means of the Rubin Observatory telescope as a function of the confidence
limit CL. This result, which is given in equation (19), is based on the
information that the n = 1 observation was already made during the prior
time 7 = 10 yr.

for the probability of making another ‘Oumuamua like detection by
the Rubin Observatory during a future time window 7.

It is interesting to use the above result to evaluate the probability
that Pan-STARRS should have made another observation during the
2017-2022 period after the first detection during the 2012-2017
period (in whichcasen=1,7 =5yr, 71y =4 yrand o = 1). This gives
a probability P, (m > 1) =69 per cent. By contrast, the assumption
made in Kipping (2021) leads to the prediction P,, > () = 1 — ©/(7;
+ 7) = 44 per cent. In either scenario, the lack of a second detection
is quite reasonable.

The confidence level CL is the lower bound on P (m > 1),
since this is a cumulative distribution over the time up to 7, after
n = 1 detection has been made. Equating CL and PY*%(n > 1) in
equation (16) gives the corresponding minimum waiting time

min T 1 %H 1 18
Ty (I—CL) ) (18)

which decreases sharply with increasing n, as expected. In the n = 1
case the minimum waiting time is

. 1
R — 19
g ( I-CL ) (19

This behaviour is illustrated in Fig. 2 where n = 1, the current number
of detections. The Rubin Observatory observations should lead to
a second ‘Oumuamua-like detection within 5 yr with 90 percent
probability, and one within 1.5 yr with a 66 per cent probability.

3 CONCLUSIONS

We have derived the probability distribution for the rate of future
‘Oumuamua-like detections, starting from the knowledge that such
an event has indeed occurred. Looking forward to the possibility
that more detections are made, we have generalized this result to
that case where n > 1 observations exist. The theoretical basis for
the rate distribution is a combination of Bayes theorem, Shannons
information theory, and the assumption that the events result from a
Poisson process. With this distribution in hand, we have also derived
the corresponding probabilities for future events to take place as well
as the confidence limits of these probabilities. Our main result is
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the expected recurrence time using the Rubin Observatory program,
which is given in terms of the confidence limit in equation (18).
Another observation similar to that of ‘Oumuamua is expected within
5 yr at a confidence limit of 90 per cent.

We have applied information theory to minimize the information
content implied by the prior distribution, a process that yields a flat
a priori distribution over A values. If, for some reason, knowledge
of time correlations is produced, the a priori distribution would need
to be changed accordingly. We have quantified the effect of the
current prior information relating to the nature of population densities
of small interstellar bodies and found that this information must
constrain the detection rate A to within an order of magnitude of
the actual detection rate (1 in 10 yr for ‘Oumuamua) to have a
noticeable effect on the predicted recurrence probability. Otherwise
this prior information will be trumped by the information of the
actual detection.
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