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Abstract

Frame based decomposition of fields provides a rigorous,
flexible and effective tool to represent planar source field
distributions as summations of Gaussian windows. The
field radiated by each window can be approximated as a
Gaussian beam in its paraxial region. In this context, beam
shooting and bouncing techniques have been proposed as
an alternative to corresponding ray methods for describ-
ing wave propagation in complex environments. Complex-
Source beams, which are closely related to Gaussian beams,
provide rigorous solutions for several canonical problems.
The objective of this paper is to investigate relations be-
tween Gaussian beams radiated by frame windows and
Complex-Source beams. Such an approach would open the
door to extending the applicability of frame decomposition
methods, enhancing Gaussian beam shooting by means of
solutions provided by Complex-Source beams.

1 Introduction

Gaussian beams (GBs) have initially been used to describe
the propagation of fields localized around an axis in free
space, as in beam waveguides and more generally quasi-
optical systems. Propagating fields are then expressed as
summations of Gaussian Laguerre modes. Gaussian beam
modes, and especially the fundamental one, exhibit a num-
ber of interesting properties: spatial and spectral (i.e. in
terms of directions of propagation) localization, no caustics,
ray-like formulas for propagation, reflection and refraction
modelization.

To take advantage of these properties in more general con-
figurations involving non paraxial propagation, a number
of works aimed at describing fields radiated by large aper-
tures as superpositions of tilted and translated GB fields
have been presented. Such superpositions were derived by
discretizing windowed Fourier transforms of aperture field
distributions. Frame theory provided a rigorous mathemat-
ical framework to such decompositions [1].

Gaussian beam shooting algorithms could then be devel-
oped in various contexts (UWB and time domain applica-
tions, inverse scattering, RCS computations, etc.), taking
advantage of the flexibility offered by varying the frame
oversampling factor [2].

GB shooting and bouncing in complex environments can
be performed very efficiently, based on the localization of
fields close to the beam axes. Local paraxial reflexion and
refraction operators make beam tracking as simple as ray
tracking in multipath environments. Diffraction effects are
however not fully captured by such algorithms.

On the contrary, Complex Source Beams (CSBs) are often
used as incident field propagators to solve canonical diffrac-
tion problems. As they are exact solutions of Maxwell’s
equations and easily achieved by just defining a real-valued
source coordinate to a complex one [3], any analytical solu-
tion for a line- or point source in front of a canonical object
such as a wedge or a cone can be easily extended the ex-
act solution of the boundary-value problem to the case of
an incident CSB [4]. Moreover, it is well known that in a
paraxial approximation a CSB represents a Gaussian Beam
[3].

The aim of this work is to pave the way for algorithms
combining both techniques (frame based GB shooting and
bouncing, and CSB diffraction results). To this end, we
have to establish the degree of accuracy which can be ob-
tained by substituting CSBs to the astigmatic GBs radiated
by frame windows. We shall address this problem for single
beam propagation, especially for highly tilted beams. Af-
ter a brief review of frame based GB shooting and of CSB
formulas, we present the basic relation between their prop-
agated fields, and first numerical results comparing their re-
spective source fields and radiated fields.

2 Mathematical descriptions

2.1 Frame based Gaussian beam shooting

We simplify the presentation by considering the so called
2D problem. The source field is assumed to be distributed
in the xOy plane, with no variation along y. The source field
has only one y-component. Hence the source field will only
be described along the Ox axis and the radiated field in the
xOz plane.

GB shooting from aperture field distributions is initialized
with the representation of the source field distribution as
a summation of weighted Gaussian windows translated in
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the phase space, that is both the space and the spectrum
(directions of the wave-vectors, which identify directions
of propagation). In the following we shall denote w the
"mother" Gaussian window, centered at origin in space and
spectrum:

w(x) =
√√

2/L e−π
x2

L2 . (1)

The frame is then defined as {wmn , (m,n) ∈ Z2}, where:

wmn(x) = w(x−mx̄)e− jnk̄xx. (2)

The integer frame index m and the frame parameter x̄ (or
n and k̄x) are the spatial (or spectral, respectively) transla-
tion index and translation step. This set is a frame if and
only if it is redundant, i.e. k̄xx̄ = 2πν with ν < 1 being the
oversampling factor.

The field radiated by a field distribution proportional to the
wmn window can be derived from the plane wave spectrum
(PWS) integral

Bmn(x,z) = A f
1

2π

∫
∞

−∞

w̃mn(kx)e− j(kxx+kzz)dkx, (3)

where w̃mn is the Fourier transform of wmn, A f is a complex
field amplitude factor, and the omitted time factor is e+ jωt .

If the width parameter of the mother window, L, is larger
than a few wavelengths, a paraxial approximation of this
integral can be performed, leading to the expression of
a paraxial GB with its axis tilted according to the spec-
tral translation of the window, or equivalently to the linear
phase variation of the spatial window. The direction of the
beam axis is given by the angle θn, defined by k sinθn = nk̄x.
A coordinate system (O, x̂◦mn, ẑ◦mn) related to the beam is
then introduced, with ẑ◦mn the unit vector in the beam axis
direction. In this coordinate system, the paraxial approxi-
mation of the GB field, which will be denoted by GBmn, can
be expressed as

GBmn(x◦,z◦)=A f

(√
2

L

)1/2
√

jbn

z◦mn + jbn
e− jk(z◦mn+

x◦2
mn

2(z◦mn+ jbn)
)

(4)
with bn = L2 cos2 θn/λ .

2.2 Uniform Complex-Source Beams

In the context of wave propagation, a Complex-Source
Beam (CSB) is obtained by a simple analytical continuation
of a real valued point-source coordinate to a complex one.
We start from the solution Φ(R) with R = xx̂+ zẑ of the
two-dimensional Helmholtz equation (time factor e+ jωt )
for a line source of amplitude Ac located at R′ = x′x̂+ z′ẑ
in the free space:

Φ1(R) = Ac
− j
4

H(2)
0 (k|R−R′|)≈ Ac

e− jk|R−R′|− jπ/4√
8πk|R−R′|

. (5)

Here, H(2)
0 denotes the zero-order Hankel function of the

second kind, while the accuracy of the approximate ex-
pression increases for increasing values of |R−R′|, where

the wave number k is related to the wavelength by λ by
k = 2π/λ . By setting R′ = Rw − jbc the line-source field
turns into a CSB [3]. Moreover, by using a sufficiently large
bc the approximation in (5) is fine even for R = 0. As an
example, but without loosing generality we set R′ =− jbcẑ
and obtain in a paraxial (i.e., nearby the z-axis) approxima-
tion for z ≥ 0 a beam which on the z-axis is propagating in
the positive z-direction:

Φ1(x,z) = Ac
ekbc− jπ/4√

8πk(z+ jbc)
e

− jkz− j kx2

2

(
z+ b2c

z

)− x2

2 bc
k

(
1+ z2

b2c

)
.

(6)
Note that for z < 0, the causal solution is propagating in
the negative z direction, but exponential damped according
to e−kbc . Moreover, Φ is regular only outside of the waist,
which is centered at z = 0 with the length given by:

wc =
bc

k
. (7)

Thus, the representation (5) delivers just one half of a full
beam which moreover is non-regular in the waist. However,
as has been shown [5] by simply adding to Φ1

Φ2(R) = Ac
− j
4

H(1)
0 (k|R−R′|), (8)

with same R′ = Rw− jb, we obtain a full beam with an am-
plitude ∼ ekb, propagating in the direction b which more-
over is regular everywhere. This can be easily seen since
H(1)

0 (z)+H(2)
0 (z) = 2J0(z) yields the Bessel function of the

first kind of order 0 which exhibits no singularities. We
therefore call

Φ(R) = 2Ac
− j
4

J0
(
|R−R′|

)
(9)

(with a complex source coordinate) a uniform CSB. Note
that Φ also includes a full CSB propagating in the direction
−b, which however is of amplitude e−kb and thus practi-
cally negligible if b is chosen large enough.

2.3 Basic Relation between GB and CSB in
the Paraxial Region

To compare the CSB to the Gaussian beam, we first write
(4) in a different form:

GBmn(x◦,z◦) =A f e jπ/4
(√

2
L

)1/2
√

bn

z◦mn + jbn

e

− jkz◦mn− j kx◦2
mn

2

(
z◦mn+

b2n
z◦mn

)− x◦2
mn

2 bn
k

(
1+ z◦2mn

b2n

)
. (10)

Obviously, there is a close relation between a Gaussian
Beam as represented by (10) in a coordinate system x◦,z◦

and a Complex Source Beam as represented by (6). To this
end, we just have to express the latter in the coordinate sys-
tem x◦,z◦ , set bc = bn, x = xmn, z = zmn, and:

Ac = A f je−kbn

(√
2

L

)1/2√
8πkbn. (11)
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Figure 1. Basic geometry.

3 First Results

The following results provide comparisons in cases of prac-
tical interest for frame based GB shooting and bouncing
algorithms used to analyze fields in large environments or
multi-reflector systems. The frame parameters chosen for
these comparisons are: L = 10λ and ν = 0.25. With this
choice, and considering that Gaussian windows (in space or
spectrum) can be truncated at the relative threshold level of
10−3, the spectrum of wmn is in the visible domain [−k0 , k0]
if and only if n≤ nmax with nmax = 17. We shall thus present
results both for non tilted GBs (n = 0) and for n = nmax, so
that the plane wave spectrum integral involves only propa-
gating waves.

3.1 Source field comparison between frame
window sources and uniform CSBs

Figures 2 and 3 compare magnitudes and phases of a single
frame window and of a uniform CSB, centered at origin, in
the source plane z = 0.

Figure 2. Gaussian window and uniform CSB magnitudes
along z = 0. Half width W0 = L/

√
π .

The case when n = 0 (no spectral translation of the frame
window) is not presented as there is no visible difference
with the CSB with R′ = − jbcẑ. We present the case when

Figure 3. Gaussian window and uniform CSB phases along
z = 0. Half width W0 = L/

√
π .

the frame window spectral translation index is n = nmax,
and we compare it with the uniform CSB field defined by :
R′ = − jbnẑ◦mn, using notations introduced in parts 2.1 and
2.2. The frame window source distribution and the uniform
CSB compare very well, with a slight discrepancy visible
for x > 0.5L, which could be observed for any L value.

3.2 Comparisons between CSBs and Frame-
Window Radiation

In this part we compare results obtained for frame-window
radiated fields through PWS integral (3) and the paraxial
approximation (4) with the CSB radiated field given by (5)
(exact expression).

The comparison is performed on a line transverse to the
considered beam axis (constant zo), and on a width which
is expressed as a function of the usual paraxial Gaussian
beam width parameter, defined in the beam related coordi-
nate system and corresponding to the distance to the beam
axis at which the field is divided by e relative to its norm

on the axis : W (z◦) =
√

2((z◦)2+b2
n

kbn
, down to values of the

order of 10−4 relative to on axis norm. The chosen n value
is nmax.

In Figures 4 and 5 the distance z◦ is taken equal to the colli-
mation distance bn. In Figures 6 and 7 this distance is taken
equal to 30bn. All field magnitudes are normalized to the
maximum of the reference field magnitude, computed by
the PWS integral.

As expected, at distance bn the GB paraxial approximation
and the CSB fields look identical (magnitude and phase),
and perfectly symmetric with respect to the beam axis,
while the reference solution is visibly not symmetric. This
discrepancy is noticeable at distances from the axis larger
than W (z◦). At distance z◦ = 30bn along the beam axis, the
maximum of the reference solution magnitude is not ex-
actly localized on the beam axis (GB or CSB), but the CSB
phase appears to fit very well with the reference solution,
contrary to the GB phase at some distance from the beam
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axis. This confirms that CSBs provide accurate expressions
for beam fields in regions where the paraxial approxima-
tion is not valid. Yet, if radiated by a linearly varying phase
source window, a beam cannot be substituted with a single
CSB without altering the radiated field magnitude.

Figure 4. Normalized radiated field along zo = bn.

Figure 5. Gaussian window and uniform CSB phases along
zo = bn.

4 Conclusion

In order to combine the interesting features of frame-based
GB shooting and of CSBs, the problem of representing the
fields radiated by frame window source distributions as a
function of one or several CSBs has to be addressed. The
first results presented in this paper suggest two different di-
rections for future work:

• substitute the field radiated by each frame window dis-
tribution with a single CSB and explore the accuracy
of such an algorithm in scenarios involving obstacles;

• find combinations of several CSBs which would more
accurately represent the radiation of each single frame
window distribution.

Figure 6. Normalized radiated field along zo = 30bn.

Figure 7. Gaussian window and uniform CSB phases along
zo = 30bn (zoom).
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