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Abstract. Attention mechanisms have played a crucial role in the de-
velopment of complex architectures such as Transformers in natural
language processing. However, Transformers remain hard to interpret and
are considered as black-boxes. In this paper we assess how attention coeffi-
cients from Transformers help in providing classifier interpretability when
properly aggregated. A fast and easy-to-implement way of aggregating at-
tention is proposed to build local feature importance. A human-grounded
experiment is conducted to evaluate and compare this approach to other
usual interpretability methods. The experimental protocol relies on the
capacity of an interpretability method to provide explanation in line with
human reasoning. Experiment design includes measuring reaction times
and correct response rates by human subjects. Attention performs com-
parably to usual interpretability methods and significantly better than a
random baseline regarding average participant reaction time and accu-
racy. Moreover, data analysis highlights that high probability prediction
induces great explanation relevance. This work shows how self-attention
can be aggregated and used to explain Transformer classifiers. The low
computational cost of attention compared to other interpretability meth-
ods and its availability by design within Transformer classifiers make it
particularly beneficial. Finally, the quality of its explanation depends
strongly on the certainty of the classifier’s prediction related to it.

Keywords: Interpretability · NLP · XAI · Attention · Human-grounded ML

1 Introduction

The field of machine learning (ML) has recently witnessed great advances. ML
algorithms have achieved high levels of performance in a wide variety of tasks
due to their rapid development. Natural language processing (NLP) has also
taken advantage of recent breakthroughs in ML with the development and de-
mocratization of Transformer-type models [29]. Attention mechanism [3] is a
crucial component in Transformer architecture, enabling models to focus on
specific parts of the input text. The complexity of these new models led to an
increasing difficulty in understanding and interpreting their predictions. The field
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of eXplainable Artificial Intelligence (XAI) has emerged to overcome this lack of
transparency by developing methods of "interpretability" or "explainability" [18].
Such a gap needs to be filled in many areas ,e.g., health care [13] and finance [32].
Most commonly used interpretability methods are computationally greedy and
based on strong hypothesis such as features’ independence and linear approxima-
tion [21]. More specifically, attention interpretability from Transformers has been
debated [7] and remains questionable. The diversity of interpretability methods
raises the need for their comparison.

Human-grounded protocols have been proposed to experimentally address
the assessment and the comparison of interpretability methods [31, 24, 5, 25].
These empirical approaches consist in asking humans to interact with a machine
and to perform a specific task under the influence of interpretability methods.
An XAI method will be considered as better than another should it yield to an
improved human-making performance.

This paper aims at assessing how self-attention from Transformer classifiers
can be used to build reliable local feature importance. Self-attention is aggregated
in a specific way that we call CLaSsification-Attention (CLS-A) for convenience
in the following. The main contributions of this paper are summarized as follows:

1. CLS-A, an easy-to-implement way of aggregating self-attention in Transformer
classifiers is presented.

2. CLS-A is experimentally compared to other interpretability methods with a
human-grounded protocol.

3. The dependency between prediction certainty and explanation reliability is
highlighted.

In this paper we first introduce key notions of Transformers architecture and
local feature importance. We then present CLS-A and the experimental protocol
used to assess its interest compared to a baseline and other XAI approaches.
Finally, we analyze the data produced by the three experiments.

2 Background & related work

This section introduces some key notions about Transformers architectures and
XAI.

2.1 Background

Transformers, attention and BERT In NLP, Transformer-like models have
achieved high levels of performance in a variety of tasks, such as text summarizing,
question answering or named entity recognition. These models are particularly
complex, with a number of parameters that can exceed the billion [23]. The
Transformer architecture is based on multi-head self-attention mechanisms, aiming
at making learning more efficient [3] by encoding the relations between words.
The model attends to different parts of the input in parallel, using multiple
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self-attention heads. A self-attention head takes as input a triplet (Q, K, V ) and
outputs a representation as formalized in the following formula :

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

Where:

– Q (query) is a matrix that represents the input in which the attention
mechanism focuses on.

– K (key) is a matrix that represents the different elements in the input that
the attention mechanism can attend to.

– V (value) is a matrix that represents the output of the attention mechanism.
– dk is the dimension of matrices Q and V and allows to stabilize the model

during the training phase

Hence, each head has its own set of parameters, allowing the model to learn
different types of attention patterns. The attentions resulting from each of the
heads are then concatenated and projected on a dense layer.

Bidirectional Encoder Representations from Transformers (BERT) [11] is a
stack of n encoders from the Transformer architecture. Each BERT layer contains
h attention heads with its own set of weights, which have been learned during
training. These weights determine how the model will attend to different parts of
the input when making a prediction. In this way, words are related to each other
even in the case of long-term dependency. BERT has been widely adopted and
has achieved state-of-the-art performance on a variety of benchmarks.

One of the key features of BERT is its bidirectional nature. Unlike previous
models that were only trained to look before or after a word, BERT is trained to
look before and after a word at the same time. This allows BERT to understand
the full context of a word and improve its performance on NLU tasks. Moreover,
BERT has several advantages such as its scalability, its compatibility with
parallelization and its ability to capture long-distance dependencies. The BERT
CLS (for "classification") token is a special token added at the beginning of an
input text. This token is used as a representation of the entire input sequence
by the classifier to perform prediction. The final hidden state of the CLS token,
which is a fixed-size vector, is typically used as the input to a classifier or other
downstream task. This allows BERT to take into account information from the
entire sequence when making a prediction by computing only one token.

Local feature importance. There are several ways to interpret black-box
systems such as BERT models [15]. One of the main approaches consists in
computing local feature importance [18]. When the model to explain is a classi-
fier, contributions to the probability score of the predicted class are computed
and assigned to input features. It can be done by considering ML models as
black-boxes and explaining their predictions ex post, without referring to their
inherent parameters. This kind of approach is called post-hoc model-agnostic[8].
Another way to compute local feature importance is to go through inherent
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model parameters[27, 28], which can be significantly less computationally greedy.
However, this requires access to the model parameters, which is not always the
case. This kind of approaches is referred to as post-hoc model-specific. The large
number of local feature importance methods can make it difficult to choose the
most appropriate one.

Due to their flexibility and the plurality of data types on which they can be
applied, Linear Interpretable Model-agnostic Explainer (LIME) [22] and SHapley
Additive exPlanations (SHAP) [16] are the most frequently used interpretability
methods in the industry [6]. LIME offers to explain a prediction locally using
models that are interpretable by design such as sparse regressions. The algorithm
artificially generates data points in a neighborhood around the instance to explain
and fits an interpretable model on these new examples. The SHAP method is
inspired by the Shapley values[26] from economics and game theory. It aims
to distribute fairly the rewards from a set of games to all the players. Feature
importance of a specific prediction is computed by associating the features of a
model to the players to whom the gains are distributed.

2.2 Related work

Substantial amount of linguistic and syntactic knowledge can be found in Trans-
former attention [10]. However, the interpretability of the attention coefficients is
still an open question [7]. Several methods based on self-attention coefficients have
been proposed to explain the predictions made by Transformer-type models, such
as attention flow and attention roll-out [1]. These methods are based on complex
aggregators to synthesize the information contained in the attention layers. Visu-
alization tools allowing to dive in detail into self-attention have been developed
as well [30]. Visualizing attention is the basis of saliency map approaches specific
to Computer Vision for Vision Transformers [4, 9]. If these approaches enable to
compute local feature importance, the quality of the explanation produced is not
rigorously assessed. This raises the question of the evaluation of interpretability.

One way to assess the interpretability of a given method is to compare it
quantitatively [2] to common interpretable approaches such as SHAP. A given
method would thus be considered interpretable if it strongly correlates with one
target local feature importance method. One way to measure such correlation is
to use Pearson or Kendall coefficients in order to compare feature importance
rankings resulting from these interpretability methods. This approach has its
limitations because it would imply that LIME and SHAP would be unique ground
truths to replicate.

When no ground truths are available, a given method can be evaluated with
function-grounded metrics [2]. Faithfulness measures the impact on the probability
score by perturbing the features considered as important or unimportant by a
specific method. The higher the faithfulness, the more relevant the interpretability
method. Another measure called stability (or robustness) assesses the explanation
sensitivity to changes in features or model parameters. Finally, fidelity measures
how closely an explanation reflects the model prediction. If these approaches



Evaluating self-attention interpretability... 5

bring rich information about an interpretability method, they say nothing about
the intelligibility of the resulting explanations to a human.

Human-grounded evaluation and experimental approaches can be alterna-
tives to reach a rigorous science of interpretable machine learning [12]. Since
local feature importance methods can have significant positive effect on human
performance [31, 24], these methods can also be compared by evaluating how
they make human more effective during a specific annotation task [21]. Such
experimental protocols obtain contrasted outcomes, resulting in a more positive
effect of XAI assistance on text than tabular data [24]. In the context of NLP,
this type of protocol consists in asking humans to perform text annotation under
the influence of local feature importance[25, 14]. The response time and the
average accuracy are measured and compared between the different methods.
This typology of experimental protocol has the advantage of quantifying the
quality of an explanation, as long as the explanation is intended to support
human decision.

Attention-based explanations in particular have been experimentally compared
to LIME on a BERT model classifying genuine and deceptive hotel reviews [14].
In this work, attention is aggregated by averaging the attention coefficients over
the whole 12 attention heads of the last BERT layer. This results in a higher
human annotation performance with LIME compared to aggregated attention.
The simplicity of this aggregation, however, does not enable one to conclude
about the interest of using attention. Furthermore, attention-based explanations
are not compared to a simple baseline, such as a random generator.

3 Methodology

We present an easy-to-implement way of aggregating attention from Transformer
models that we call CLS-A. Then we define an experimental protocol inspired
from the ones introduced in Section 2 that we apply on three different annotation
tasks of binary classification. Finally we introduce the evaluation protocol with
data description, linear and non linear modeling.

3.1 CLS-A

We introduce the way we aggregate Transformer self-attention to build a local
feature importance metric. This approach can be used in every Transformer-like
classifier such as BERT, as long as the CLS token is used to perform classification.
We use the attention coefficients related to the CLS token. We call context the
distribution of attention between an input word and the rest of the sequence.
This way, CLS-A represents the average context of the CLS token.

We focus on the last layer of the BERT architecture. Figure 1 shows the
global process of the CLS-A computation from an initial text. Since this last layer
contains h self-attention heads, the coefficients are aggregated by averaging to
build a one-dimensional local feature importance explanation. The proximity of
the attention head within a specific layer [10] justifies our choice of aggregating
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Fig. 1: Scheme of CLS-A. Average attention related to the CLS token is computed
on the last attention layer.

through the whole layer. This results in an average context of the classification
token in the last layer of BERT. A weight is assigned to each word of the input
text, representing its importance in the context that induced the prediction of
the classifier. The interest of this approach lies in the focus on the relationship
between the CLS token and its context.

Since the CLS token plays a central role in the computation of CLS-A, it is
recommended that the BERT forward pass passes by the CLS token to perform its
prediction. Therefore, the prediction has to be done by computing the embedding
from the CLS token only. In the case where the BERT forward pass does not pass
exclusively through the CLS token, a less satisfying alternative is to compute
the average of all the coefficients of the attention heads (see Section 2).

3.2 Experimental protocol

Motivated by the proven utility of experimental protocols to compare XAI
methods[25, 24, 31], we ask participants to annotate one hundred texts in a
binary classification task. Each text has some words colored with a more or less
intense shade of blue (see in the screen in Figure 2), based on an underlying
interpretability method or a random generator. The higher the coefficient of the
method, the stronger the highlighted blue shade. Accuracy and response time
are measured to evaluate each method’s ability to assist the participant in the
annotation task. The higher the accuracy and the shorter the response time, the
more relevant the method as it facilitates the human semantic processing of the
text.

Setup and instructions. All participants take part in the experiment in the
same room and can be up to three at the same time. They are isolated in order
to limit any other exogenous influence (visual, sound) and are placed in front of
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Fig. 2: Scheme of the experimental protocol. Each participant labels 100 different
texts after reading the instructions. The participant has two possible answers,
depending on the experiment he/she is participating in. The text is colored
according to the interpretability method used to explain the classifier’s prediction.
The selected texts are all classified properly by the classifier.

a computer as depicted in Figure 2. An explanation of the protocol is displayed
on the screen to put the participants in the right conditions. In order to perform
the annotation task, participants are asked to press either one of two buttons
corresponding to the two possible answers as shown in Figure 2. The buttons
correspond to keys on the keyboard of the computer used. Two colored stickers
are stuck on the keys to help locate them. When a text is annotated (response
given/key pressed), the next one is displayed on the screen.

Three classification tasks are evaluated. The first one (Experiment 1) is to
evaluate the global sentiment of a movie review. The participant must choose
between the "positive" and "negative" sentiment. The second and third (Ex-
periment 2 and 3) are film genre evaluations. In Experiment 2, the task is to
distinguish between action and drama films, in Experiment 3 between horror
and comedy. The information given in the explanation of the protocol differs
depending on the classification task. Participants annotating film genres are
asked to respond quickly. Participants are also told that displayed colors can
potentially be useful in the annotation task. Participants annotating movie review
sentiments have no information about the colors displayed and no incentive to
respond quickly.

Experiment characteristics. All the 100 participants have a background in
data science or statistics. None of the participants labels data as a profession.
The first experiment involved 50 participants while the other two had 25 each.
The participants were predominantly male: about 76% compared to 24% for
women. They were between 22 and 40 years old and none of the subjects were
cognitively impaired to our knowledge.
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Every participant is asked to annotate 100 different texts in a binary classi-
fication task. The asked classification task remains the same during the whole
experiment. A participant cannot see the same text twice during the experiment.
Each text has its words colored in different shades of blue. This coloring is pro-
portional to the coefficients chosen at random among a random baseline, SHAP,
LIME and CLS-A built on the DistilBERT classifier attention. The random
baseline assigns randomly a coefficient to each word. This way, participants are
subjected to exogenous attentional orientation effects in order to compare the
methods one-to-one. We show in Appendix, Table 6 the balanced distribution of
the methods used to color the plotted texts. An example of the text displayed
during the experiment is plotted in Figure 2.

The classes of the various classification tasks are all equally represented among
the displayed texts. We assess the contribution of interpretability methods under
the assumption that the prediction of a model is correct. Therefore, the instances
selected for the study were all correctly predicted. We wanted to look at the effect
of the review length and the prediction probabilities in Experiments 2 and 3. The
reviews corresponding to the sentiment analysis task contain between 32 and 50
words. The text sequence lengths of the other classification tasks vary between 19
and 145 words. The probability scores of belonging to the target class are highly
polarized for the sentiment analysis and the horror/comedy classification while
probability score is more uniformly distributed for the action/drama classification
task. We assume that an interpretability method provides good explanations
to the extent that it helps an annotator to go faster and be more efficient. An
explanation will then be the object of a semantic congruence between the label to
be predicted and the words highlighted. Therefore, the response time is precisely
measured for each text and the correctness of the answers is assessed.

3.3 Implementation details

The three classifiers analyzed during the three annotation tasks were based on a
DistilBERT[23]. Each pre-trained DistilBERT was retrieved from Hugging Face4.
A dense layer was added to perform the classification and fine-tune each model.
The forward pass was defined as getting the embedding of the CLS token to
perform the classification task. The library used to compile and fine-tune the
models were Keras on the TensorFlow framework. Each model was trained with
an initial learning rate of 10−5 and a reducing learning strategy when reaching
a plateau. The number of epochs was for each model of 5 and the batch size
was 32. The models were trained with a binary crossentropy loss and the Adam
optimizer. The first model was fine-tuned for sentiment analysis on the IMDB
database[17]. The second and third one were fine-tuned to perform movie genre
classification on a Kaggle dataset5.

For each text, SHAP was computed with the shap library [16]. The Shapley
values were computed in a permutation way. Finally, LIME was computed with
4 www.huggingface.co/
5 www.kaggle.com/competitions/movie-genre-classification/overview
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the lime [22] library. The whole experiment was performed on the psychopy [20]
framework on Python.

3.4 Data analyses

In this section we define the followed methodology to analyze the data produced
by the experimental protocol presented above. Each experiment produces n× 100
answers, with n the number of participants, and 100 the number of plotted text
samples during each experiment. The indicators of interest are the labeling time,
which we call "reaction time", and whether or not the participant is wrong, which
we call "accuracy". These variables of interest are then analyzed through their
relationship with other characteristics such as features about the text (sequence
length, probability score, trial number, relative position of impacting word) and
the interpretability method used to color it.

Data description. The descriptive analysis is first performed by calculating the
average reaction time and the average accuracy. The one-tailed t-test is then used
to compare the distributions of reaction times between interpretability methods
and the random baseline in order to have statistically significant comparisons.
This test is applied here to the average difference between each interpretability
method and the random baseline, per participant, per experiment.

Linear modeling. The impact of interpretability methods on reaction time is
estimated with a linear regression by incorporating the effect of other explanatory
variables. The random baseline is used for reference. Thus, the coefficients of the
linear regression associated with the method used to color the text are expressed
with respect to this baseline. For each experiment, one linear model is built per
participant to explain its reaction time to the labeling task. The explanatory
variables of the models for an experiment are the same for all participants. The
mean value of the regression parameters and their distribution are then analyzed
with the one-tailed t-test presented above.

Non-linear modeling. Decision tree boosting algorithms enable to model com-
plex and non-linear phenomena. We apply this type of algorithm to model the
participant accuracy. This binary classification problem is addressed via Explain-
able Boosting Machine (EBM) [19]. EBM reaches performance levels equivalent
to other boosting approaches based on decision trees, while decomposing its
prediction into interpretable contributions of the explanatory variables. EBM is
a generalized additive model (GAM) of the form:

g(E[y]) = β0 +
∑
i

fi(xi) +
∑

i,j,i ̸=j

fi,j(xi, xj) (2)

Where:
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Metrics Experiment CLS-A
(mean ± std)

LIME
(mean ± std)

SHAP
(mean ± std)

Random
(mean ± std)

Reaction
Time (s)

Exp 1 10.3 ± 4.2 10.6 ± 4.6 10.5 ± 4.5 11.0 ± 3.9
Exp 2 9.0 ± 3.7 8.3 ± 3.5 8.4 ± 4.1 8.6 ± 3.3
Exp 3 11.02 ± 6.8 11.3 ± 6.8 11.8 ± 5.9 12.3 ± 7.5

Accuracy (%)
Exp 1 97.0 ± 5.8 96.3 ± 3.9 95.5 ± 5.3 95.0 ± 5.5
Exp 2 80.6 ± 9.9 79.4 ± 12.4 79.9 ± 9.1 79.8 ± 10.1
Exp 3 86.1 ± 9.5 85.4 ± 9.3 81.3 ± 12.8 84.1 ± 8.9

Table 1: Average reaction time and accuracy per experiment per method. The
numbers in bold correspond to the best performance.

– y is the variable indicating whether a participant has successfully completed
its labeling

– g is the link function
– β0 is the intercept
– fi is the feature function of the variable xi,
– fi,j is the pairwise interaction function of the two variables xi and xj

A response curve represents the effect of a given explanatory variable by plotting
the evolution of its contribution to the target variable. One model is fitted per
method and per experiment to compare the response curves of the methods
within a given experiment. Each model has to be trained with the same explana-
tory variables. Since the participants generally perform their annotation tasks
accurately, the data are largely imbalanced. Sub-sampling is therefore performed
to run the EBM on a balanced dataset with a balanced distribution between
right and wrong answers. Since this sub-sampling induces sampling bias, this
operation is run 50 times. Average response curves and standard deviations are
finally calculated.

4 Results

In this section we compare CLS-A to LIME, SHAP and a random baseline
following the methodology introduced in Section 3. We show that CLS-A improves
both speed and accuracy of annotation in a statistically significant way compared
to the random baseline. CLS-A, SHAP and LIME result in statistically similar
response times and accuracy. Furthermore, we highlight the relationship between
the quality of an explanation and the certainty of the classifier’s prediction.

4.1 Data description

The first experiment consisted of responses from 50 participants while the other
two had 25 each. Table 1 relates the average reaction time and the average
accuracy per experiment and per interpretability method. This shows that the
average reaction time related to CLS-A is lower for experiments 1 and 3. Accuracy
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Fig. 3: Distribution of mean reaction time difference from random baseline by
participant, by experiment. The results of the one-tailed t-test are represented
with stars above the violin plots. With p as the p-value of the t-test, *p < 5%,
**p < 1%, and ***p < 0.5%

is also on average higher for participants who were exposed to CLS-A. The random
baseline induces less accurate and slower responses overall.

We compare the distributions of the average response time of the CLS-A,
LIME and SHAP methods in comparison to the random baseline. We perform
this distribution comparison using the one-tailed t-test on the average difference
between the XAI method and the baseline, per participant as presented in
Section 3. Figure 3 plots the distribution of the average reaction time deviation
from the random baseline with the results of the t-tests, by method and by
experiment. The mean difference in reaction time between CLS-A and the
random baseline is statistically significant in the first and third experiments. This
difference is also statistically significant between LIME and the baseline in the
third experiment.

Therefore, participants went faster on average in the text annotation task
in Experiments 1 and 3 when they were exposed to CLS-A compared to the
baseline. This difference from baseline is exclusive to CLS-A for Experiment 1,
and shared with LIME for Experiment 3.

4.2 Linear modeling.

The target variable is reaction time and the explanatory variables (see Table 3
in Appendix A) are information about the assessed text on one hand and the
interpretability method used to color it on the other. The performance metrics
of the linear regressions on reaction times are presented in Table 2 Appendix A.



12 Bhan et al.

Fig. 4: Distribution of linear modeling on reaction times coefficients of each
interpretability method variable with respect to the baseline. The results of the
one-tailed t-test are represented with stars above the box plots. With p as the
p-value of the one-tailed t-test, *p < 5%, **p < 1%, and ***p < 0.5%

Method effect. Figure 4 shows the distributions of coefficients of linear regres-
sions on reaction times associated with the interpretability method used to color
the text. All coefficients are computed with respect to the random baseline.

The average linear regression coefficients on reaction times of CLS-A and
LIME are significantly negative for Experiment 1 and 3. Average reaction time
coefficient is negative for SHAP in Experiment 1. The results for the CLS-A
method are broadly consistent with the previous exploratory analysis. Participants
took less time on average to complete their annotation task on Experiment 1 and
3 when important words in the text were colored via the CLS-A method compared
to the random baseline. However, the results differ for SHAP and LIME, and
Experiment 2 does not show a statistically significant difference between these 3
methods compared to the random baseline.

Probability score and review length effects. We similarly assess the distri-
butions of two more features in the linear regression model on reaction times,
namely the probability of belonging to the target class, and the length of the re-
view. The Figure 5 represents the distribution of these coefficients, by experiment.
The significance of the means of the distributions is assessed with a one-tailed
paired t-test.
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Fig. 5: Distribution of probability score and review length coefficients in linear
modeling. The results of the one-tailed t-test are represented with stars above
the box plots. Noting p as the p-value of the statistical test, the notations are as
follows. *p < 5%, **p < 1%, and ***p < 0.5%

The sign of each of the two coefficients is consistent across all three experiments.
The effect of the probability score variable on response time is negative on average,
whereas the effect of the sequence length is positive. These impacts are statistically
significant across all three experiments. Thus, all things being equal, the higher
the probability score of belonging to the target class, the lower the reaction time.
This highlights the relationship between the quality of an explanation and the
certainty of a prediction from a time reaction perspective. In the same way, all
things being equal, the annotation time increases with the length of the textual
sequence processed.

To summarize, linear modeling highlights that CLS-A fosters quicker responses
on average compared to the random baseline. Besides, the higher the prediction
certainty, the lower the human reaction time.

4.3 Non-linear modeling

This section compares CLS-A and the random baseline through the prism of the
participant’s accuracy, which is modelled using non-linear Explainable Boosting
Machines (EBM) introduced in Section 3. The explanatory variables used to
explain participant’s response to the experiment are presented in Appendix A,
Table 3.
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In this section we focus on the impact of the probability score and the
reaction time on the annotation accuracy. Figure 6, 7 and 8 represent the EBM
response curves of the probability score and the reaction time, by method, by
experiment. These curves represent the contributions to the probability scores
that the participant performs the correctly the annotation. The interval around
the mean curve represented the standard deviation measured on 50 sampling
iterations for a given model. For each of the analyzed variables, we focus on the
comparison between CLS-A and the random baseline.

Sentiment analysis. The first experiment emphasizes a higher target class
probability score contribution for CLS-A compared to the random baseline in
Figure 6. The response curves tend to merge for the polarized probability scores
and CLS-A falls below the baseline for the probability score distribution tail. Fast
reactions induce higher accuracy contribution for CLS-A. Accuracy contribution
tend to be the same for very long response times. Therefore, the interest of CLS-A
compared to the random generator lies in the relatively low probabilities in the
first experiment. Note however that the probability score distribution is very high
in the first experiment, and covers very few non-polarized predictions. Moreover,
the contribution of CLS-A is significant for fast predictions, and tends to vanish
gradually.

Movie genre classification, action vs. drama. The second experiment
has a more dispersed distribution of target class probability scores than the
first experiment. The CLS-A response curve associated with the target class
probability score variable is higher for polarized predictions as shown in Figure 7.
Then, the contribution of CLS-A compared to the baseline seems to be related to
the certainty of the classifier prediction. The area in which the CLS-A response
curve is higher corresponds to the majority of the probability score distribution
of the target variable. Finally, the accuracy contributions of the reaction time
variables are higher for CLS-A for short and very long responses. Finally and
similarly to the first experiment, CLS-A has a strong impact to form rapid
responses when labeling a high target class probability score text.

Movie genre classification, horror vs. comedy. The distribution of the
target class probability score variable is less dispersed in the last experiment
than in the second one. Figure 8 depicts a higher CLS-A response curve for high
probability scores and falls below it at the distribution tail. Finally, the effect of
CLS-A on the response time variable with respect to the baseline in experiment
3 is relatively similar to Experiment 2. Short and very long answers are more
accurate with CLS-A compared to the random baseline.

To summarize, the analysis of the response curves highlights the non-linear
relationships between the explanatory variables and the target variable. The
interest of CLS-A is strong for high certainty prediction and less important or
even non-existent for texts whose probability scores are low. This highlights a
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strong relationship between the quality of an explanation and the certainty of a
prediction. Additional analysis in Appendix A Figure 9 , 10 & 11 and Table 5
generalize this link to SHAP and LIME.

5 Discussion and Conclusion

We applied an experimental protocol to compare a local feature importance
method called CLS-A based on Transformer self-attention to SHAP, LIME and a
random baseline. We found that CLS-A helps in the same proportions as SHAP
and LIME to annotate text on three different tasks and is significantly better
than a random baseline. This work adds to the literature aiming to evaluate the
interpretability of attention coefficients in recent deep learning models. Attention
is appropriate to explain attention-based classifiers in NLP when aggregated in the
proper way. Like other XAI methods, however, the relevance of the explanations
provided by CLS-A depends heavily on the certainty of their related prediction.
The higher the probability score, the more relevant the explanation. As far as
we know, this is the first time that the relationship between the quality of an
explanation and the certainty of its associated prediction has come to light.

We believe that additional experimental studies analyzing texts with more
distributed probability score would be enlightening. The link between prediction
certainty and explanation relevance would be more precisely outlined. The results
of our study must be evaluated considering that all the participants had a data
science or statistics background. This may induce a bias in our results, insofar as
the participants have an occupation requiring advanced analytical skills. Finally,
other usual model-specific XAI methods comparison could be added in such an
experiment.

Ethic statement

Each participant signed an informed consent form containing the project purpose
and details and the intended use of the data they would generate. The data was
anonymized and processed only by our team. The data produced is stored in a
file in respect with the General Data Protection Regulation (GDPR) regulations
in force. Participation in the study was fully voluntary. It was possible to stop
performing the labeling tasks at any time. Consent form used is presented
anonymized in Appendix A , Figure 12 & 13. The authors of this paper do not
represent any organization or institution whose activity is data labeling. This
study was conducted for research purposes only.
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Fig. 6: Explainable boosting machine response curves of probability score and
time reaction in the first experiment. The contribution of the probability score
variable becomes positive at a lower probability threshold for CLS-A compared
to the random generator. The contributions of the reaction time variables are
positive for the fast reactions for the CLS-A method unlike the random generator.

Fig. 7: Explainable boosting machine response curves of probability score and
time reaction in the second experiment. The contribution of the probability score
increases at a faster rate than the random generator. CLS-A favors more fast
reactions.

Fig. 8: Explainable boosting machine response curves of probability score and
time reaction in the third experiment. The contribution of the probability score
variable increases at a faster rate than the random generator and decreases
for very high prediction probability score unlike the random generator. The
contributions are slightly higher for fast response times for CLS-A.
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A Appendix

Metrics Experiment R2

Reaction Time (s)
Exp 1 4.23e-1
Exp 2 6.01e-1
Exp 3 6.59e-1

Table 2: R-square of linear regression explaining participant reaction time

Task Target
variable Model Explanatory

variables

Regression
Reaction

time

Linear

model

expected answer, probability score,
review length, trial number,

interpretability method,
relative positions of 1st,

2nd and 3rd most impacting words

Classification Accurate
Explainable
Boosting
Machine

reaction time, probability score,
review length, trial number,

interpretability method,
relative position of 1st most impacting word

Table 3: Linear regression and explainable boosting machine explanatory variables.
The variables of the relative positions of the second and third most important
words were used only for reaction time modeling in the first .
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Experiment Method Accuracy Precision F1-score Recall

Exp 1

CLS-A 0.952 0.945 0.953 0.961
LIME 0.992 0.991 0.992 0.993
SHAP 0.961 0.955 0.961 0.976

Random 0.982 0.988 0.982 0.976

Exp 2

CLS-A 0.889 0.894 0.888 0.884
LIME 0.897 0.888 0.898 0.909
SHAP 0.913 0.917 0.913 0.909

Random 0.878 0.867 0.880 0.894

Exp 3

CLS-A 0.957 0.950 0.957 0.965
LIME 0.946 0.943 0.946 0.949
SHAP 0.920 0.916 0.920 0.925

Random 0.920 0.921 0.920 0.919

Table 4: Average EBM performance per experiment, per method.

Fig. 9: Discretized EBM contributions of probability score in Experiment 1. High
certainty prediction with probability higher than 95% have higher contributions.

Fig. 10: Discretized EBM contributions of probability score in Experiment 2. High
certainty prediction with probability higher than 95% have higher contributions.
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Fig. 11: Discretized EBM contributions of probability score in Experiment 3. High
certainty prediction with probability higher than 95% have higher contributions.

Probability score
interval Method Average EBM contribution to probability score

Experiment 1 Experiment 2 Experiment 3

50-80%

CLS-A -0.34 -0.46 -0.59
LIME -0.17 -0.61 -0.30
SHAP -0.34 -0.60 -0.35

RANDOM -0.48 -0.53 -0.21

80-95%

CLS-A -0.32 -0.16 -0.30
LIME -0.41 -0.30 -0.29
SHAP -0.38 -0.29 -0.05

RANDOM -0.40 -0.08 -0.15

95-100%

CLS-A 0.19 0.22 0.10
LIME 0.18 0.38 0.05
SHAP 0.17 0.31 0.02

RANDOM 0.14 0.16 0.03

Table 5: Average EBM contribution to probability score. High certainty predictions
lead to higher contribution. Highest average contributions per probability interval
are highlighted in bold.

Experiments CLS-A
(mean ± std)

LIME
(mean ± std)

SHAP
(mean ± std)

RANDOM
(mean ± std)

Exp 1 25.5 ± 3.8 25.5 ± 3.6 24.5 ± 3.9 24.5 ± 4.2
Exp 2 25.6 ± 4.2 25.0 ± 4.1 24.0 ± 4.8 25.4 ± 4.1
Exp 3 23.0 ± 4.9 24.3 ± 5.6 27.4 ± 5.4 25.3 ± 5.9

Table 6: Method distribution per participant per experiment.
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INFORMED CONSENT FORM 

Project Title : Evaluating self-attention interpretability through human-grounded experimental protocol 

Research team : Omitted for anonymity 

Research location : Omitted for anonymity 

Project Presentation 

Machine learning models for classification tasks on text are often black boxes. Today there are different methods 

to evaluate the factors (words) that were important for the decision of the algorithm. However the validity of 

these methods and their link with human semantics are not studied. The objective of this project is to establish 

the congruence between the results of different interpretability methods and human semantic analysis. 

If you agree to participate in this study, we will ask you to read movie reviews and rate the category of the movie 

by pressing a key on the keyboard. The approximate duration of the experience is about fifteen minutes. 

Your privacy rights  

All the information collected during this experiment for the pursuit of the purposes set out in the previous 

paragraph will be processed by Omitted for anonymity, anonymously and will remain confidential. The legal basis 

for processing is your consent. 

These will be kept in a computer file that complies with the applicable regulations in force (General Data 

Protection Regulations and Data Protection Act). 

The data collected will be communicated only to the following recipients from the research team: 

• Omitted for anonymity  

The results obtained from the processing of this questionnaire may be the subject of scientific publications, but 

the identity of the participants will not be revealed, and no information that could reveal your identity will be 

disclosed. 

The data is kept until the publication of an article or a maximum of 3 years. 

Your rights to withdraw from this research at any time 

Participation in this study is completely voluntary. Please note that even if you decide to complete this 

questionnaire, it is possible to stop completing it at any time, and as long as the final registration has not been 

made, none of your data will be processed. 

You can access the data concerning you, rectify it, request its deletion or exercise your right to limit the 

processing of your data. You can withdraw your consent to the processing of your data at any time; you can also 

object to the processing of your data. Visit the cnil.fr website for more information on your rights. 

To exercise these rights, you can contact Omitted for anonymity 

If you believe, after contacting us, that your "Data Protection" rights are not respected, you can file a complaint 

with the CNIL. 

 

Fig. 12: Consent form (1/2)
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Diffusion  

The results of this research may be published in scientific journals or be the subject of communications at 

scientific conferences. 

You can ask questions about the research at any time by contacting Omitted for anonymity  

Consent to participate 

By checking the box below and signing this consent form, you certify that you have read and understood the 

above information and that you have been informed of your right to withdraw your consent or withdraw from 

this research at any time, without prejudice.  

 I have read and understood the above information and I voluntarily agree to participate in this research. 

 

Done at :  ___________________________  

On the :  ___________________________ 

 

Name, First Name : ______________________________________________________ 

 

Signature : 

 

Fig. 13: Consent form (2/2)
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