Milan Bhan

Nicolas Chesneau
email: nicolas.chesneau@ekimetrics.comjean-noel.vittaut

Jean-Noël Vittaut

Marie-Jeanne Lesot
email: marie-jeanne.lesot@lip6.fr

Enhancing textual counterfactual explanation intelligibility through Counterfactual Feature Importance

Textual counterfactual examples explain a prediction by modifying the tokens of an initial instance in order to flip the outcome of a classifier. Even under sparsity constraint, counterfactual generation can lead to numerous changes from the initial text, making the explanation hard to understand. We propose Counterfactual Feature Importance, a method to make non-sparse counterfactual explanations more intelligible. Counterfactual Feature Importance assesses token change importance between an instance to explain and its counterfactual example. We develop two ways of computing Counterfactual Feature Importance, respectively based on classifier gradient computation and counterfactual generator loss evolution during counterfactual search. Then we design a global version of Counterfactual Feature Importance, providing rich information about semantic fields globally impacting classifier predictions. Counterfactual Feature Importance enables to focus on impacting parts of counterfactual explanations, making counterfactual explanations involving numerous changes more understandable.

Introduction

The recent development of the Transformer architecture [START_REF] Vaswani | Attention is all you need[END_REF] has led to great advances in Natural Language Processing (NLP). The inherent complexity of these widespread black box models comes along with the difficulty to understand their predictions. The field of eXplainable Artificial Intelligence (XAI) aims to develop methods to interpret and explain such model behaviour [START_REF] Molnar | General Pitfalls of Model-Agnostic Interpretation Methods for Machine Learning Models[END_REF]. A first main category of XAI methods is called local feature importance. It consists in computing the impact of each input feature in the decision made by the considered machine learning system. A second family explains contrastively by identifying When counterfactual examples involve numerous modifications in the initial instance, despite considering sparsity constraints, the identification of important token changes becomes difficult. In this paper we introduce the notion of Counterfactual Feature Importance (CFI), to quantify the impact of each feature modification from an initial instance to its counterfactual example. For example, given a movie genre classifier and a specific counterfactual example provided with a given method, CFI highlights important modifications (see Figure 1) to explain the label flipping.

The main contributions of this paper are summarized as follows:

1. The concept of Counterfactual Feature Importance is presented.

2. Two instantiations of CFI are proposed, depending on the available information about the classifier and the used counterfactual generator.

3. Global counterfactual feature importance (g-CFI), summarizing the information contained in local CFI, is introduced.

This paper first recalls some basic principles of XAI in NLP with a focus on counterfactual generation in Section 2. We then formalize the CFI method at a local and global scale and propose two ways of computing CFI in Section 3. We finally illustrate the relevance of CFI experimentally on counterfactual examples previously obtained to explain two different classifiers.

XAI Background

In this section, we recall some basic principles of XAI methods and existing counterfactual generation methods in NLP.

Local feature importance

Let f : X → Y be a NLP classifier mapping an input space X of token sequences to an output space Y of classes. Let x 0 = [t 1 , ..., t d] ∈ X be a sequence of tokens of interest of maximum size d with f (x 0) = y 0 . Each token belongs to a dictionary D. A local feature importance operator g : X → R d explains the prediction through a vector [z 1 , ..., z d] where z i is the contribution of the i th token.

Two very common local feature importance methods are LIME [START_REF] Tulio Ribeiro | why should i trust you?" explaining the predictions of any classifier[END_REF] and SHAP [START_REF] Scott | A Unified Approach to Interpreting Model Predictions[END_REF]. LIME relies on a local approximation of f by an explainable linear model whereas SHAP computes feature contribution through an approximation of Shapley values. Integrated Gradients [START_REF] Sundararajan | Axiomatic attribution for deep networks[END_REF] constitute another method specific to deep learning models that approximates the gradient integral of the classifier outputs over the straight line between the instance to explain and a userselected baseline x * . The definition of the baseline is essential since it strongly impacts the resulting explanation. Integrated Gradients can only be computed on ML systems allowing gradient computation, such as deep learning models.

Counterfactual explanation

Counterfactual explanations emphasize what should be different in an input instance to change the outcome of a classifier.

Their interest in XAI has been established from a social science perspective [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF] in particular.

The counterfactual example generation can be formalized as a constrained optimization problem. For a given classifier f and an instance of interest x 0 , a counterfactual example x cf must be close to x 0 to highlight minimal changes leading to label flipping. Formally it is defined as:

x cf = argmin z∈X c(x 0 , z) s.t. f (z) ̸ = f (x 0) (1)
with c : X × X → R a cost function integrating several constraints to ensure various desirable properties briefly discussed below. The lower the cost function, the better the counterfactual explanation. The simplest case is when c is a distance function.

Many desirable properties for counterfactual explanations have been proposed [START_REF] Guidotti | Counterfactual explanations and how to find them: literature review and benchmarking[END_REF][START_REF] Mazzine | A Framework and Benchmarking Study for Counterfactual Generating Methods on Tabular Data[END_REF] to ensure their informative nature. Sparsity measures the number of elements changed between the instance of interest and the generated counterfactual example. It is defined as the l 0 norm of x cf -x. Plausibility encompasses a set of characteristics to ensure that the counterfactual explanation is not out-ofdistribution [START_REF] Laugel | The dangers of post-hoc interpretability: Unjustified counterfactual explanations[END_REF], while being feasible [START_REF] Poyiadzi | FACE: Feasible and Actionable Counterfactual Explanations[END_REF] and actionable.

Textual counterfactual

This section focuses on the case of textual counterfactual generators, presenting two categories in turn.

Text editing heuristics.

A first family of methods addresses the problem introduced in Eq. 1 by slightly modifying the input text to be explained with heuristics.

Model specific methods depend structurally on the models they seek to explain. CLOSS [START_REF] Fern | Text counterfactuals via latent optimization and shapleyguided search[END_REF] focuses on the embedding space of the classifier to explain. After generating counterfactual candidates through optimization in the classifier latent space, the most valuable ones are selected according to an estimation of Shapley values. MiCE [START_REF] Ross | Explaining NLP models via minimal contrastive editing (MiCE)[END_REF] sequentially masks parts of the initial text and performs span infilling using a T5 [START_REF] Raffel | Exploring the limits of transfer learning with a unified text-to-text transformer[END_REF] fine-tuned on the corpus of interest. MiCE targets tokens with high predictive power using gradient attribution metrics. TIGTEC [START_REF] Bhan | Tigtec : Token importance guided text counterfactuals[END_REF] proposes a model-agnostic and -specific version by targeting important tokens with local feature importance method such as SHAP or attention coefficient from Transformer-like models. It sequentially replaces tokens by decreasing order of importance using a BERT mask language model. At each step, replacement is made to ensure proximity to the initial instance and to target label flipping.

Generating counterfactual examples shares similarities with generating adversarial attacks, aiming to incorrectly flip the prediction by minimally editing the initial text. Numerous heuristics have been proposed differing in constraints, text transformation methods and search algorithms [START_REF] Morris | Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp[END_REF]. Contrary to counterfactual explanations, adversarial attacks seek to fool intentionally a model. Therefore, the resulting text is not generated with an explanatory purpose.

Text generation with large language models

A second category of methods generates counterfactual examples in NLP with large pre-trained generative language models. A first approach [START_REF] Madaan | Plug and Play Counterfactual Text Generation for Model Robustness[END_REF] applies a Plug and Play language model [START_REF] Dathathri | Plug and play language models: A simple approach to controlled text generation[END_REF] methodology to generate text under the control of the classifier to explain. It consists in learning latent space perturbations from encoder-decoder models such as BART [START_REF] Lewis | BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[END_REF] in order to flip the outcome.

Polyjuice [START_REF] Wu | Polyjuice: Generating counterfactuals for explaining, evaluating, and improving models[END_REF] proposes to finetune a GPT-2 [START_REF] Radford | Language Models are Unsupervised Multitask Learners[END_REF] model on a set of predefined tasks. It results in a generative language model capable of performing negation, quantification, insertion of tokens or sentiment flipping based on prompt engineering. Polyjuice needs to be trained in a supervised way on ground truth counterfactual examples in order to be able to generate the expected text.

Counterfactual feature importance

This section introduces the notion of Counterfactual Feature Importance (CFI). We present two instantiations of CFI, based either on gradient computation from the classifier or inherent information from the counterfactual generator initially used. We propose a modelspecific approach based on Integrated Gradients called IG-CFI and a method-specific one called TIGTEC-CFI directly resulting from the TIGTEC loss evolution during counterfactual search. Finally we define the notion of global Counterfactual Feature Importance to compute pairwise token importance at a global scale.

Motivation and definition

As presented in the previous section, sparsity is an expected attribute of counterfactual examples. Sparsity ensures counterfactual explanation intelligibility by highlighting few changes leading to label flipping. However, this constraint is not equally addressed among the different existing counterfactual generators.

MiCE succeeds more than other methods to find counterfactual examples to explain a sentiment analysis classifier, while generating less sparse explanations than CLOSS and TIGTEC (see [START_REF] Bhan | Tigtec : Token importance guided text counterfactuals[END_REF]). Non-sparse counterfactual examples are difficult to understand, since the label flipping can be explained by the numerous substitutions in the initial instance. Therefore, we propose a method to quantify the importance of each change in order to better understand the explanation provided by a counterfactual example. We call such a method Counterfactual Feature Importance.

We follow here the notations introduced in Section 2. Given a classifier f : X → Y, an instance of interest x 0 ∈ X and a counterfactual example x cf generated with a counterfactual generator M, h is a counterfactual feature importance operator, h : X × X → R d . This operator explains a prediction by computing the importance of each token change between x cf and x 0 with a vector of importance. The i th component of this vector is the contribution of the i th token substitution to the label flipping. Then, CFI can be seen as a pairwise feature importance between an instance and its counterfactual explanation. Therefore, unchanged tokens between the initial instance and its counterfactual example must have a null CFI. In the following, we formalize the two different CFI instanciations by assuming that each initial token from x 0 is replaced by only one token to reach x cf . However, these two approaches could also be applied with token substitutions of various length, following the same logic.

CFI goes one step further, as compared to classical XAI methods, in the explanation of a classifier prediction by applying local feature importance attribution to counterfactual explanation.

IG-CFI

We define here a first instanciation of CFI based on Integrated Gradients computation.

As introduced in Section 2, Integrated Gradients are defined as a local feature importance explanation. Their purpose is to explain the difference between an instance of interest and a chosen baseline x * by assigning classifier output gradient integrals to instance modifications.

We propose to define Integrated Gradients Counterfactual Feature Importance (IG-CFI) as the Integrated Gradients obtained when setting as baseline x * = x 0 . Therefore, IG-CFI consists in computing the integral of gradients of the classifier's output over the straight-line between x 0 and x cf . Formally, for the counterfactual explanation x cf of x 0 , the IG-CFI related to the i th token change is defined as:

IG-CFI i (x 0 , x cf) = (e x cf i -e x 0 i) × 1 α=0 ∇ i f e x 0 i + α × (e x cf i -e x 0 i) dα (2)
where e x i is the embedding of the i th token of a sequence x obtained from the classifier f and ∇ i denotes the gradient along the i th dimension.

This way, Integrated Gradients are computed with respect to embeddings from the classifier latent space to ensure derivability. This instantiation of CFI ensures that the unchanged tokens have a null counterfactual feature importance.

IG-CFI is a model-specific approach since it needs to have access to the parameters of the classifier to compute gradients. On the other hand, IG-CFI is method-agnostic since it is applicable to counterfactual examples obtained via any counterfactual generation method. However, computing gradients over straight-line in latent space can be text unrepresentative due to the inherent discreteness of text. The CFI instanciation introduced in the next section proposes to address such text unrepresentativeness.

TIGTEC-CFI

In this section, we introduce a CFI instantiation depending on the counterfactual generator used to compute the considered counterfactual examples. Some textual counterfactual generators search for counterfactual by sequentially modifying the input text until a stop condition is reached (see Section 2). We present how the text sequence breaking down the change from x 0 to x cf from such text editing heuristics can provide CFI. We illustrate this approach by considering such a counterfactual generator, namely TIGTEC [START_REF] Bhan | Tigtec : Token importance guided text counterfactuals[END_REF]. It can be applied with any other sequential text editing heuristics, such as MiCE [START_REF] Ross | Explaining NLP models via minimal contrastive editing (MiCE)[END_REF].

Let

x 0 φ 1 -→ x 1 φ 2 -→ ... φ p-1 ---→ x p-1 φp -→
x cf be the text sequence breaking down the change from x 0 to x cf during the counterfactual search, φ i the index of the modified token at the i th step and c : X × X → R the cost function to minimize to generate counterfactual examples as introduced in Equation 1.

For TIGTEC, c is defined as an aggregation of the target class probability score and semantic distance to the initial instance. We propose to define TIGTEC Counterfactual Feature Importance (TIGTEC-CFI) as the cost difference induced by sequential token modifications during counterfactual search. Formally, TIGTEC-CFI is defined as:

TIGTEC-CFI i (x 0 , x cf) = ∆c(x k , x 0) if φ k = i 0 otherwise. (3) with ∆c(x k , x 0) = c(x k-1 , x 0) -c(x k , x 0
) the cost difference between x k and x k-1 . Figure 2 shows an example of TIGTEC-CFI with the following movie review predicted as negative and its token changes highlighted in box and in bold to switch the label to a positive sentiment:

"i think i will make a movie next weekend oh → no wait im workingoh im sure i can fit it → this in it looks like whoever made this film fit it in i hope the makers of this crap → world have day jobs because this film → movie sucked → deserves it looks → kind like → as someones home movie and → that i dont think more than 100 was spent making it total crap who lets this stuff be released".

In this example TIGTEC-CFI is almost null at the first step when performing the oh → no substitution because it only induces a small variation of cost, whereas the crap → world replacement decreases sharply the cost, making the counterfactual candidate acceptable. Two other token substitutions are evaluated as important: looks → kind and sucked → deserves . This way, TIGTEC-CFI emphasize three token substitutions, which is lower than the nine token changes initially suggested.

This approach is inexpensive compared to IG-CFI since it can be directly measured during the counterfactual search. TIGTEC-CFI also differs from IG-CFI as it computes CFI with texts without referring to any latent space, which avoids text nonrepresentativeness and limits the risk of considering out-of-distribution instances.

Global-CFI

IG-CFI and TIGTEC-CFI both are local explainers, as they explain the prediction for a given instance of interest, x 0 . This section turns to the generation of explanations at a global scale. We present g-CFI that provides information about a given token couple (t 1 , t 2), computing the importance of substituting t 1 with t 2 for the considered classifier.

We propose to build global Counterfactual Feature Importance (g-CFI) by summing up local CFI on the whole dataset. Following the previously introduced notations, we denote the instance of interest x 0 and its counterfactual example x cf obtained with a counterfactual generator M, and the counterfactual feature importance operator h that measures the importance of a token change noted h(x 0 , x cf) = h(x 0 , M(x 0)) in the label flipping.

Considering a specific pair of tokens (t 1 , t 2), its related g-CFI can be formalized as follows:

g-CFI(t 1 , t 2) = x∈T i≤d l(x, i, t 1 , t 2)
where T is the text corpus of interest in which g-CFI is computed, and l(x, i, t 1 , t 2) is defined as:

l(x, i, t 1 , t 2) = h i x, M(x) 1 (x i ,M(x) i)=(t 1 ,t 2)
This way, g-CFI is defined as a global pairwise token importance that evaluates which token pairs are the most important at a global scale to switch label.

Such a definition of g-CFI tends to emphasize frequent token changes. Global CFI could also be aggregated by computing the average local CFI. However, we assume that rare token changes are globally less informative about a classifier than frequent ones. Besides, we believe that g-CFI is more informative than a simple token pair frequency calculus. By weighting frequency by CFI, recurrent token pairs with low/middle average CFI appear less important at a global scale.

Experimental results

This section presents the experimental results obtained on two data sets with two binary classifiers. IG-CFI and TIGTEC-CFI are computed and compared based on two related sets of counterfactual examples generated with TIGTEC. Then we compute g-CFI in order to assess which token pairs impact globally the most these classifiers.

Experimental Setup

We apply TIGTEC on two DistilBERT [START_REF] Sanh | DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter[END_REF] binary classifiers. The first classifier performs sentiment analysis on the IMDB database [START_REF] Maas | Learning Word Vectors for Sentiment Analysis[END_REF] containing movie reviews. The second is trained on movie genre classification on a dataset of horror and comedy synopses from

IG-CFI vs. TIGTEC-CFI

IG-CFI and TIGTEC-CFI can lead to different explanations. Figure 3 gives an example of an instance classified as comedy and its related counterfactual example classified as an horror synopsis. In this case, TIGTEC-CFI and IG-CFI attribute different token change importance by emphasizing in blue different tokens. The zombie → super substitution is assessed as more important by IG-CFI than TIGTEC-CFI to explain label flipping. However, TIGEC-CFI considers zombie → superman as more important than IG-CFI.

We compare important tokens based on IG-CFI and TIGTEC-CFI approaches. We apply each method on the two sets of counterfactual texts previously introduced and compare them. IG-CFI and TIGTEC-CFI are compared through their resulting token ranking by order of CFI. Nonmodified tokens are filtered out to focus only on token subject to CFI computation. Counterfactual examples obtained with only one token substitution are not considered either since their resulting CFI rankings necessarily perfectly match. Following the example presented Figure 3, Table 1 illustrates the two resulting rankings obtained with IG-CFI and TIGTEC-CFI.

Ranking comparison is done with Spearman and Kendall rank correlations (see Table 2). Movie genre IG-CFI and TIGTEC-CFI rankings are globally more similar than the ones obtained from IMDB. Finally, IG-CFI and TIGTEC-CFI seem complementary although moderately correlated.

Global-CFI results

The results obtained with IG-CFI and TIGTEC-CFI are aggregated at a global scale. Each token CFI is aggregated with respect to its related label. For example, the → this is considered differently if the predicted label of the initial instance is positive or negative. However, token CFI is aggregated in a symmetric way, which makes love → hate equivalent to hate → love . From this perspective, g-CFI enables to build label-specific semantic fields and their interactions. In the following, considering two different tokens t 1 and t 2 , we denote (t 1 ,t 2) equivalently to (t 2 ,t 1).

Figure 4 shows the 35 most important token pairs relatively to the global TIGTEC-CFI on sentiment analysis. Global TIGTEC-CFI is provided for movie genre classification in Appendix A. The most important token pairs on sentiment analysis are (best, worst), (good, bad) or (liked, hated). In this 35 token pairs, mainly two types of token modification stand out: a sentiment-oriented token is replaced by its antonym, and an indefinite article is replaced by a negation adverb. Considering more token pairs could bring up unexpected tokens and target biases or classifier errors. Token pairs could also be aggregated at a highest level of abstraction by lemmatizing tokens, merging for example "loved" and "love" CFI.

Discussion

In this paper we have introduced the concept of counterfactual feature importance in textual framework. The purpose of CFI is to assess the impact of every feature modification, from an initial instance to its counterfactual example.

When counterfactual examples are not sparse, CFI highlights important modifications, making the explanation more competitive. CFI can be aggregated at a global scale, giving valuable insights about the most important token pairs to switch label.

While CFI-based explanations may appear intuitive, it is important to verify this through a human-in-the-loop evaluation before making any definitive conclusions. CFI can be built in different ways: two approaches have been developed, respectively based on Integrated Gradients and the TIGTEC counterfactual generator. We believe that CFI can also be computed in other ways. Other local feature importance methods such as LIME and SHAP can be used to compute CFI by computing decomposition difference of x cf from that of x 0 . Loss break down from other sequential counterfactual generators such as MiCE can be used as well.

Besides, g-CFI can help in comparing textual counterfactual generators. Since these generators differ how they target important tokens and generate new text, g-CFI could bring to light differences in the resulting semantic fields. Such analyses could lead to a better understanding of textual counterfactual methods and foster their enhancement.

Finally, the diversity of CFI approaches raises the need of their comparison beyond the similarity analysis performed above.

Moreover, the qualitative assessment of the explanations provided by CFI requires human intervention. Humangrounded experiments would enable to compare the quality of CFI explanations to classical counterfactual examples.

Conclusion

Textual counterfactual generators sometimes fail to provide sparse explanations. The high number of changed tokens between the initial instance and its counterfactual example make the explanation difficult to understand.

We have proposed Counterfactual Feature Importance (CFI) to assess which token changes are the most impactful. CFI enables to focus on important tokens, which is especially useful in the case of non-sparse explanations. Such explanations can be aggregated at a global scale in order to assess the most important token pairs leading to label flipping. In this papier We have only focused on counterfactual explanations. However, CFI can also be applied to adversarial attacks in order to evaluate the token changes that have the most impact on label flipping to fool a model.

CFI is one step further in the understanding of NLP classifiers. We believe that the concept of CFI is also applicable to image and tabular data, as long as counterfactual explanations are previously generated. Therefore, CFI can benefit to any classifier by making counterfactual explanations easier to understand. The generalizability of CFI makes this concept particularly promising.

Figure 1 :

 1 Figure 1: Example of an initial instance classified as comedy and its counterfactual example classified as horror synopsis. The raw x cf is the counterfactual example whose modified tokens are highlighted. Counterfactual feature importance enables to highlight important changes when counterfactual examples are not sparse. Here, CFI highlights a → dark and femme → vampire whereas others changes are not outlined anymore.

Figure 2 :

 2 Figure 2: Example of TIGTEC-CFI with nine consecutive changes from negative sentiment x 0 to a positive sentiment x cf . CFI is defined as the cost difference induced by each token substitution during TIGTEC counterfactual search. The crap → world change has the highest TIGTEC-CFI considering the resulting impact on the cost function.

Figure 3 :

 3 Figure3: TIGTEC-CFI and IG-CFI example on a counterfactual example classified as an horror synopsis. Tokens highlighted in blue in the raw counterfactual example are those that have replaced initial ones. Below, the more pronounced the shade of blue, the higher the CFI.

Figure 4 :

 4 Figure 4: Top 35 important token pairs relatively to TIGTEC-CFI and sentiment analysis. The left side corresponds to tokens associated with positive IMDB reviews, while the right column is related to negative sentiments. The stronger the link between two tokens, the higher the importance of the pair.

Table 1 :

 1 IG-CFI and TIGTEC-CFI ranking comparison on an example involving nine changes. The two CFI methods only agree on four token modifications (highlighted in bold).

	Token change	IG-CFI ranking	TIGTEC-CFI ranking
	a → with		8	3
	zombie → super		1	4
	apocalypse → smashvillpower	2	2
	begins → was		7	7
	zombies → thugs		5	5
	zombies → villains		4	6
	the → for		6	8
	zombie → superman		3	1
	senses → self		9	9
	Correlation IMDB Genre
	Spearman	0.26*	0.42*
	Kendall	0.21*	0.53*
	Table 2: IG-CFI and TIGTEC-CFI ranking correlations
	on counterfactual examples from sentiment analysis
	(IMDB column) and movie genre classification (Genre
	column). Values with * are statistically significantly
	different from 0 at a risk level of 1%.
	Kaggle 1 . More information about the datasets, the
	performance of the classifiers and the TIGTEC
	hyperparameters used are provided in Appendix A.
	Respectively 982 and 419 counterfactual examples
	are generated from IMDB and the genre synopses
	datasets from TIGTEC in which we compute IG-
	CFI and TIGTEC-CFI.		

https://www.kaggle.com/competitions/movie-genreclassification/overview

Ethics Statement

Like any XAI methods, CFI explanations must be taken with caution. Such methods only provide insights about what is important according to a specific classifier. These explanations do not necessarily reflect what one would consider as important. We plan to share our code to make it accessible to everyone. We will do this once the anonymity period is finished. Each DistilBERT is initialized as a DistilBERT base uncased from Hugging Face on PyTorch. The text preparation and tokenization step is performed via Hugging Face's DistilBERT tokenizer. The forward path is defined as getting the embedding of the classification token to perform the classification task. A dense layer is added to perform the classification and fine-tune the models. Each classifier has therefore 66 million parameters and is trained with 3 epochs, with a batch size of 12. The loss for the training is a CrossEntropyLoss, and the optimization is done using Adam with initial learning rate of 5e -5 and a default epsilon value to 1e -8. The performances of the classifiers are presented in Table 3.

A.2 TIGTEC hyperparameters

We follow here the notations from the original paper.

• g = attention

• M = M f t where M f t is a BERT mask language model fine-tuned on the corpus in which the classifier f has been trained.

• α = 0.3

• topk = 50

• beam_width = 4

• mask_div = 4

• strategy = evolutive

• margin = 0.15

• s = sentence_transformer The stronger the link between two tokens, the higher the importance of the pair.