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Abstract. Counterfactual examples explain a prediction by highlighting changes
in an instance that flip the outcome of a classifier. This paper proposes TIGTEC,
an efficient and modular method for generating sparse, plausible and diverse
counterfactual explanations for textual data. TIGTEC is a text editing heuristic that
targets and modifies words with high contribution using local feature importance.
A new attention-based local feature importance is proposed. Counterfactual
candidates are generated and assessed with a cost function integrating a semantic
distance, while the solution space is efficiently explored in a beam search fashion.
The conducted experiments show the relevance of TIGTEC in terms of success
rate, sparsity, diversity and plausibility. This method can be used in both model-
specific or model-agnostic way, which makes it very convenient for generating
counterfactual explanations.
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1 Introduction

The high level of performance in the field of natural language processing (NLP) achieved
by Transformer models [30] comes along with complex architectures. The domain of
eXplainable Artificial Intelligence (XAI) aims at understanding and interpreting the
predictions made by such complex systems [18]. Among the main categories of XAI
methods to explain the prediction of a given instance, local feature importance [3]
quantifies the impact of each feature on the considered outcome. Another family of
XAI methods consists in explaining with counterfactual examples (see [9] for a recent
survey), defined as instances close to the instance of interest but associated with another
prediction.

This paper proposes a new method to generate counterfactual explanations in the case
of textual data, called Token Importance Guided TExt Counterfactuals (TIGTEC). For
example, given a classifier that predicts film synopsis genre and an instance of interest
predicted to be a comedy, TIGTEC outputs several slightly modified instances predicted
to be horror synopses (see Figure 1).

The main contributions of TIGTEC are as follows: (i) textual counterfactual examples
are generated by masking and replacing important words using local feature importance
information, (ii) a new model-specific local feature importance method based on attention
mechanisms [2] from Transformers is proposed, (iii) a new cost function integrating



2 Bhan, Vittaut, Chesneau and Lesot

Original x0

TIGTEC counterfactual examples

f(x0) = comedy

f(xcf) = horror

Fig. 1. Example of sparse, plausible and diverse counterfactual examples generated by TIGTEC
for a film genre classifier that discriminates between horror and comedy synopses. Here, the
counterfactual generation goes from comedy to horror.

textual semantic distance to preserve the initial content is introduced, (iv) the solution
space is explored with a new tree search policy based on beam search that leads to
diversity in the generated explanations. In this manner, TIGTEC bridges the gap between
local feature importance, mask language models, sentence embedding and counterfactual
explanations. TIGTEC can be applied to any NLP classifier in a model-specific or
model-agnostic fashion, depending on the local feature importance method employed.

This paper is organized as follows: we first introduce some basic principles of
XAI and the related work in Section 2. The architecture of TIGTEC is presented in
Section 3. Section 4 describes the performed experimental study and compare TIGTEC
to a competitor. Finally Section 5 concludes this paper by discussing the results and
future work.

2 Background and Related Work

We recall here some basic principles of XAI methods and existing counterfactual
generation methods in NLP.

2.1 XAI Background

Local Feature Importance. Let f : X → Y be a NLP classifier mapping an input
space X to an output space Y . Let x0 = [t1, ..., t|x0|] ∈ X be a sequence of interest
with f(x0) = y0. A local feature importance (or token importance in NLP) operator
g : X → R|x0| explains the prediction through a vector [z1, ..., z|x0|] where zi is the
contribution of the i−th token. Two common local feature importance methods in NLP
are Local Interpretable Model-agnostic Explanations (LIME) [26] and SHapley Additive
eXplanations (SHAP) [13]. These methods have the advantage of being model-agnostic
since they can be used without any information about the model to explain.
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Counterfactual Explanation Counterfactual explanations aim to emphasize what
should be different in an input instance to change the outcome of a classifier. Their interest
in XAI has been established from a social science perspective [17]. The counterfactual
example generation can be formalized as a constrained optimization problem. For a
given classifier f and an instance of interest x0, a counterfactual example xcf must be
close to x0 and is basically defined as:

xcf = argmin
z∈X

d(x0, z) s.t. f(z) ̸= f(x0) (1)

with d : X ×X → R a given distance operator measuring proximity. The counterfactual
explanation is then the difference between the generated counterfactual example and the
initial data point, xcf − x0.

Many additional desirable properties for counterfactual explanations have been
proposed [9,16] to ensure their informative nature that we summarize in three categories.
Sparsity measures the number of elements changed between the instance of interest and
the generated counterfactual example. It is defined as the l0 norm of xcf − x. Plausibility
encompasses a set of characteristics to ensure that the counterfactual explanation is not
out-of-distribution [11] while being feasible [22]. Since several instances of explanation
can be more informative than a single one [28,20], diversity measures the extent to which
the counterfactual examples differ from each other.

2.2 Related Work

This section presents two categories of methods for generating textual counterfactual
examples.

Text Editing Heuristics. A first family of methods aims at addressing the problem
introduced in Eq. 1 by slightly modifying the input text to be explained with heuristics.

Model specific methods depend structurally on the models they seek to explain.
CLOSS [8] focuses on the embedding space of the classifier to explain. After generating
counterfactual candidates through optimization in the latent space, the most valuable
ones are selected according to an estimation of Shapley values. MiCE [27] iteratively
masks parts of the initial text and performs span infilling using a T5 [24] fine-tuned
on the corpus of interest. This method targets tokens with high predictive power using
model-specific gradient attribution metrics. While the label flipping success rate of
CLOSS and MiCE are high and the counterfactual texts are plausible, the notions
of semantic distance and diversity are not addressed. We show in Section 3 how the
TIGTEC approach that we propose tackles these constraints.

Generating counterfactual examples shares similarities with generating adversarial
attacks, aiming to incorrectly flip the prediction by minimally editing the initial text.
Numerous heuristics have been proposed differing in constraints, text transformation
methods and search algorithms [19]. Contrary to counterfactual explanations, adversarial
attacks seek to fool intentionally a model without explanatory purpose. Therefore,
plausibility and sparsity are not addressed.
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1
Initial instance

Predicted sentiment:
negative

I hate this movie

0.1 0.6 0.1 0.2

I hate this movie

I hate this picture I hate this beauty

I <mask> this movie cost p(y|x) p(y|x) - margin

I love this movie -1.1 0.9 0.7

I watch this movie -0.9 0.6 0.4

… …

I watch this movieI love this movie

I watch this movie cost

0.1 0.3 0.2 0.4 -0.9

I hate this picture cost

0.1 0.6 0.2 0.1 -0.1

beam_width

mask_div

beam_width

mask_div

Iteration n

Iteration n+1 …

I hate this beauty cost

0.1 0.7 0.1 0.1 -0.7

Counterfactual example
Predicted sentiment: 
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I hate this <mask> cost p(y|x) p(y|x) - margin

I hate this picture -0.1 0.1 -0.1

I hate this beauty -0.7 0.3 0.1

… …

topktopk

Fig. 2. Illustration of the tree search policy with beam_width = 2, mask_div = 2, strategy =
evolutive, margin = 0.2. At each step, the beam_width highest important tokens are masked
and replaced. The substitution token is selected considering the cost function depending on the
semantic similarity method s and the balancing parameter α. Among the topk candidates, only
mask_div one are considered in the tree search. A candidate is accepted if the prediction of the
classifier changes and moves margin away from the prediction threshold. Here, "I love this movie"
is accepted. Since only one counterfactual candidate was found out of two, the next iteration starts
from the nodes with the lowest cost value, here "I watch this movie".

Text Generation with Large Language Models. A second category of methods
aims at generating counterfactual examples in NLP with large pre-trained generative
language models. A first approach [15] applies a Plug and Play language model [6]
methodology to generate text under the control of the classifier to explain. It consists in
learning latent space perturbations from encoder-decoder models such as BART [12] in
order to flip the outcome. Polyjuice [31] proposes to fine-tune a GPT-2 [23] model
on a set of predefined tasks. It results in a generative language model capable of
performing negation, quantification, insertion of tokens or sentiment flipping based
on prompt engineering. Polyjuice needs to be trained in a supervised way on ground
truth counterfactual examples in order to be able to generate the expected text. Therefore,
the use of Polyjuice to generate counterfactual examples is not generalizable since
counterfactual labels do not exist for all classification problems.

3 Proposed approach: TIGTEC

This section describes the architecture of Token Importance Guided TExt Counterfactuals
(TIGTEC) by detailing its four components. The main idea is to iteratively change tokens
of the initial text by decreasing order of importance instance to find a compromise
between proximity to the initial instance and label flipping. This way, TIGTEC belongs
to the text editing heuristics category of counterfactual example generators in NLP.
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3.1 TIGTEC Overview

TIGTEC is a 4-step iterative method illustrated in Figure 2. Algorithm 1 describes the
generation and evaluation steps, Algorithm 2 summarizes the whole process. The code
is available online on a public repository3. TIGTEC takes as input a classifier f and a
text of interest x0 = [t1, ..., t|x0|].

Targeting. To modify the initial text to explain, tokens with highest impact on
prediction are targeted given their local importance. TIGTEC implements two methods
of local token importance and a random importance generator as a baseline.

Generating. High importance tokens are masked and replaced, with a fine-tuned or
pretrained mask model. Various counterfactual candidates are then generated.

Evaluating. The generated candidates are evaluated by a cost function that balances
the probability score of the target class and the semantic distance to the initial instance.
Candidates minimizing the cost function are considered valid if they meet acceptability
criteria.

Tree search policy. The lowest cost candidates are kept in memory and a new
iteration begins from the most promising one. The solution space is explored in a beam
search fashion until a stopping condition is reached.

As outlined in Figure 2, the counterfactual search heuristic is a tree search algorithm,
in which each node corresponds to a counterfactual candidate, and each edge is a token
replacement. Therefore, the root of the tree corresponds to the instance to explain, and
the deeper a node is in the tree, the more it is modified.

3.2 Targeting

The first step consists in identifying the most promising tokens to be replaced in the
initial instance to modify the outcome of the classifier f . We use token importance
metrics to focus on impacting tokens and efficiently guide the search for counterfactual
examples. In particular, we integrate the possibility of computing both model-agnostic
(e.g. SHAP [13]) and model-specific token importance metrics. We propose a new model-
specific token-importance method based on the attention coefficients when the classifier
f is a Transformer. Token importance is computed by focusing on the attention of the
last encoder layer related to the classification token representing the context of the entire
sequence. The efficiency gain of this token importance method is shown in Section 4.
If the information provided by SHAP is rich, its computation time is high, whereas
attention coefficients are available at no cost under a model-specific paradigm.

TIGTEC is also defined by its strategy which can take two values. The static
strategy consists in fixing the token importance coefficients for the whole search,
whereas the evolutive strategy recomputes token importance at each iteration. Since
SHAP has a high computational cost, it is not recommended to combine it with the
evolutive strategy.

In order to consider several counterfactual candidates at each iteration, several tokens
can be targeted in parallel. The beam_width parameter allows to control the number of
tokens of highest importance to target at each step to perform a beam search during the
space exploration.

3 https://github.com/milanbhan/tigtec
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Algorithm 1 Mask Language Inference (MLI)
Require: x = [t1, ..., tn] an input sequence
Require: f : X → Y = {1,2,...,k} a classifier
Require: i the input token to be masked
Require: M a BERT-like mask language model
Require: s, α, topk, mask_div
Ensure: x̂ = [x̂(1), ..., x̂(mask_div)]
1: ti ← [MASK]
2: xmask ← [t1, ..., [MASK], ..., tn]
3: [t̂1, ..., t̂topk] =M(xmask) the topk most likely tokens
4: for j in {1,...,topk} do
5: x̂j = x[ti ← t̂j ]
6: Compute cost(x̂j) see Eq. 4
7: end for
8: Retrieve in x̂ the mask_div sequences with lowest cost
9: return x̂

3.3 Generating

The second step of TIGTEC generates counterfactual candidates and corresponds to
the first part of the mask language inference (MLI) formally described in Algorithm 1,
from line 1 to 5. Once high importance tokens have been targeted in the previous step,
they are masked and replaced with a BERT-type [7] mask language model denoted M.
Mask language models enable to replace tokens considering the context while keeping
grammatical correctness and semantic relevance. This step ensures the plausibility of the
generated text. Such models take a masked sequence [t1, ..., [MASK], ..., tn] as an input
and output a probability score distribution of all the tokens contained in the BERT-type
vocabulary. The mask model can be either pretrained or fine-tuned on the text corpus on
which the classifier f has been trained.

Since replacing a token with another with low plausibility can lead to out-of-
distribution texts, inaccurate prediction and grammatical errors, the number of substitutes
proposed by M is limited to topk. The higher topk, the more we consider tokens with
low contextual plausibility.

3.4 Evaluating

Once the topk candidates are generated, we build a cost function to evaluate them.
This evaluation step corresponds to line 6 in Algorithm 1. The cost function has to
integrate the need to flip the outcome of the classifier f and the distance to the original
instance as formalized in Eq. 1. In order to ensure semantic relevance, we define a
distance based on text embedding and cosine similarity measures. Finally, conditions for
the acceptability of counterfactual candidates are introduced to ensure the reliability of
the explanations.

Distance. The widely used Levenshtein distance and BLEU score [21] do not integrate
the notion of semantics. An alternative is to compare sentence embeddings in order to
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Algorithm 2 TIGTEC: Token Importance Guided Counterfactual Text Generation
Require: f : X → Y a k-class classifier
Require: x0 = [t1, ..., tn] an input sequence of n tokens to be explained
Require: ytarget : target counterfactual class
Require: p : number of counterfactual examples to generate
Require: g, s,M, α, topk, beam_width, mask_div, strategy, margin, early_stop
Ensure: xcf = [xcf

1 , ..., x
cf
p ]

1: waiting_list = [(x0, cost(x0))] the priority queue of counterfactual candidates sorted by
increasing cost (see Eq. 4)

2: i← 0 the number of evaluated texts
3: xcf ← []
4: Compute token importance [z1, ..., zn] = g(x0)
5: while len(xcf) < p and i < early_stop do
6: parent_node← waiting_list.pop() the candidate with the lowest cost (see Eq. 4)
7: [t(1), ..., t(n)] ← sort(parent_node) by decreasing importance order with respect to

strategy and g
8: for t in [t(1), ..., t(beam_width)] do
9: i← i+ 1

10: [x1, ..., xmask_div] = MLI(parent_node , f , t, M, topk, mask_div, s α) (see
Algorithm 1)

11: for x in [x1, ..., xmask_div] do
12: if p(ytarget|x) ≥ 1

k
+ margin then

13: xcf.append(x)
14: else
15: waiting_list.push((x, cost(x))) keep in the waiting list rejected candidates

with their cost
16: end if
17: end for
18: end for
19: end while
20: return xcf

measure the similarity of representations in a latent space. Sentence embeddings have
been introduced to numerically represent textual data as real-value vectors, including
Sentence Transformers [25]. Such networks have been trained on large corpus of text
covering various topics. This encoders are compatible with a model-agnostic approach,
as they do not require any prior information about the classifier f .

Another text embedding approach can be used when the classifier f is a BERT-like
model and when the prediction is made through the classification token. It consists in
using the embedding of the classification token directly from f . This embedding is
however strongly related to the task of the classifier f . Therefore, if the model has been
trained for sentiment analysis, two texts with the same associated sentiment will be
considered similar, regardless of the topics covered.

We derive the textual distance from the normalized scalar product of the two
embeddings: d : X × X → [0, 1]with:

ds(x, x
′) =

1

2
(1− s(x, x′)) (2)
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s(x, x′) =
⟨ex, e′x⟩

||ex||.||e′x||
(3)

where ex is the embedding representation of input sequence x.

Cost. The cost function aims to represent the counterfactual optimization problem
introduced in Eq. 1. We propose to integrate the probability score of the target class to
define the cost as:

cost(xcf, x0) = −
(
p(ytarget|xcf)− αds(x

cf, x0)
)

(4)

where ytarget is the target class and p(ytarget|xcf) represents the probability score of
belonging to the class ytarget given xcf from the classifier f. The probability score is the
information that guides the heuristic towards the target class. The α coefficient enables
for a balanced approach to the need to reach the target class while remaining close to the
initial point. The generated topk candidates are evaluated with the cost function defined
above.

Acceptability Criteria. A counterfactual candidate xcf is accepted if two conditions are
met:

f(xcf) = ytarget (5)

p(ytarget|xcf) ≥ 1

k
+ margin (6)

where k is the number of classes of the output space and margin ∈ [0, k−1
k ] the

regularization hyperparameter ensuring the certainty of the prediction of the model f. We
assume then that all the counterfactual examples must reach the same target class. The
closer margin is to its upper bound, the more polarized the classifier prediction must be
in order to satisfy the acceptability criterion, and the stronger the constraint.

3.5 Tree Search Policy

TIGTEC generates a set of diverse counterfactual examples. We address the diversity
constraint by considering the mask_div candidates with the lowest cost function among
the generated topk from Algorithm 1 and keep them in memory in a priority queue
(see line 15 in Algorithm 2). Therefore, we evaluate more possibilities and aim to foster
diversity in the counterfactual examples found by TIGTEC. Once these candidates are
stored in memory, the iterative exploration step (Algorithm 2 from line 6 to 11) starts
again, until a stopping condition is reached. The stopping condition can either be to
reach the target number of counterfactual examples or to reach the maximum number of
nodes in the tree (see line 5 in Algorithm 2). The higher the maximum number of nodes,
the longer TIGTEC can search for counterfactual examples.

The candidate with the lowest cost is then selected from the priority queue (see line 6
in Algorithm 2) in order to apply again the targeting, generation and evaluation sequence.
We call predecessor this previous candidate. Since we evaluate several possibilities in
parallel through beam search, Algorithm 1 is this time applied to the beam_width tokens
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with the highest token importance within the predecessor. From this perspective, the
exploration approach enables to start from a candidate that seemed less advantageous at
a specific stage, but leads to better results by going deeper into the tree. A tree search
example is illustrated in Figure 2.

4 Experimental analysis

This section presents the conducted experimental study and introduces five metrics to
quantitatively assess the counterfactual examples generated by two different versions of
TIGTEC and three comparable state-of-the-art competitors.

4.1 Evaluation Criteria

Considering the various objectives to be achieved, we propose a 5-metric evaluation.
Given an instance associated with p counterfactual examples, the evaluation metrics
are aggregated on average over the generated examples, except for diversity. The same
operation is performed on all the instances to be explained, and the average metrics are
finally computed.

Success Rate. Since TIGTEC does not guarantee to find counterfactual examples in
all cases, the success rate (%S) is calculated.

Sparsity. For some methods we compare to, the lengths of the generated counterfactual
examples may differ from the initial instance. Therefore, sparsity (%T) is measured
assessed with word-based Levenshtein distance normalized by the length of the sequence.

Proximity. We evaluate ex-post the semantic proximity between x0 and xcf with
cosine similarity (s) between Sentence Transformer embedding. This choice is justified by
the wish to remain in a general framework that does not depend on the classifier f and the
task for which it has been trained. The library used to import the Sentence Transformer
is sentence_transformers and the model backbone is paraphrase-MiniLM-L6-v2.

Plausibility. One approach to evaluate text plausibility is the perplexity score [10].
This score can be computed based on the exponential average loss of a foundation model
like GPT-2. We calculate the ratio (∆PPL) between the perplexity of the initial text and
its counterfactual examples to compare the quality of the generated text with the original
one. The library used to import the pretrained GPT2 is transformers and the backbone
is GPT2LMHeadModel.

Diversity. Based on the distance measure d, we define diversity (div) as in [20]
where divd = det(K) with Ki,j = 1

λ+d(xcf
i ,x

cf
j )

and λ ∈ R a regularization weight set
to 1.

4.2 TIGTEC Agnostic and Specific Variants

Two different versions of TIGTEC are assessed. The first one is model-specific with
access to the corpus of interest. Attention coefficients guide the counterfactual example
search and a fine-tuned mask language model is used to mask and replace important
tokens. We call this version TIGTEC-specific.
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The second version is model-agnostic without access to the corpus of interest. SHAP
is used to compute token importance and the mask language model is only pre-trained.
We call this second version TIGTEC-agnostic. Since SHAP computational cost is high
compared to attention, we use the static strategy for the agnostic version of TIGTEC,
whereas the evolutive strategy is used for the specific one.

4.3 Datasets and Competitors

We apply TIGTEC-agnostic and -specific on two DistilBERT [29] binary classifiers. We
limit our analysis to DistilBERT, since it achieves almost the same level of performance
as BERT, while being significantly lighter. TIGTEC could, however, be applied to larger
models, the methodology remaining the same. The first classifier performs sentiment
analysis on the IMDB dataset [14] containing movie reviews. The second classifier is
trained on movie genre classification on a dataset of horror and comedy synopses from
Kaggle4. More information about the datasets and the performance of the classifiers are
provided online5.

The two versions of TIGTEC are compared to Polyjuice [31], MiCE [27] and
CLOSS [8]. The objective of each version of TIGTEC is to generate three counterfactual
examples associated with an initial instance. We apply Polyjuice by generating three
counterfactual examples for each instance to explain. As Polyjuice was trained to flip
sentiment on IMDB with negation prompt, Polyjuice’s counterfactual examples are
generated in the same way. MiCE and CLOSS do not address diversity, they only
generate one counterfactual example per initial text. We assess TIGTEC and Polyjuice
performance by selecting the instance that is semantically closest to the initial point
among the 3 generated to compare them to MiCE and CLOSS. We distinguish the results
obtained with one and three counterfactual examples by the notation TIGTEC1d and
TIGTEC3d and respectively Polyjuice1d and Polyjuice3d .

Each method is evaluated on the same 1000 texts from IMDB. The hyperparameters
of TIGTEC are fixed at their optimal level as described in the next section. TIGTEC-
specific is also applied on the movie synopsis dataset from Kaggle on 474 texts. Since
movie genre classification is a more complex task, we relax the hyperparameters by
lowering the margin to 0.05 and alpha to 0.15.

4.4 Hyperparameter Setting

We optimize the nine hyperparameters presented in Section 3 with respect to success
rate, similarity, diversity and sparsity. The optimization is performed on IMDB with the
Optuna [1] library. The solution space is as follows:

– g ∈ {random, attention}, the input token importance method.
– M ∈ {Mft,Mpt} where Mft is a mask language model fine-tuned on the corpus

in which the classifier f has been trained. Mpt is a pretrained mask language model
without fine tuning phase.

4 https://www.kaggle.com/competitions/movie-genre-classification/overview
5 See the documentation on the publicly available repository : https://github.com/milanbhan/tigtec
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Dataset Method Success rate
↑%S

Similarity
↑%s

Sparsity
↓%T

Plausibility
↓ ∆PPL

Diversity
↑div

IMDB

Polyjuice1d 60.8 55.6 72.2 1.09 -
Polyjuice3d 29.6 53.5 74.4 2.16 0.088

MiCE 99.6 81.1 18.0 1.35 -
CLOSS 97.3 95.4 2.3 1.47 -

TIGTEC-specific1d 98.2 96.8 4.2 1.25 -
TIGTEC-specific3d 98.2 95.8 4.4 1.34 0.019
TIGTEC-agnostic1d 92.7 96.1 4.5 1.24 -
TIGTEC-agnostic3d 92.7 94.6 4.7 1.34 0.075

Movie genre
TIGTEC-specific1d 88.4 91.7 8.8 1.42 -
TIGTEC-specific3d 88.4 89.8 9.0 1.38 0.120

Table 1. TIGTEC evaluation on 2 datasets and comparison with competitors on IMDB.

– α ∈ [0, 1] the parameter balancing target probability and distance with the initial
point in the cost function

– topk ∈ {10, 11, ..., 100} the number of candidates considered during mask inference
– beam_width ∈ {2, 3, ..., 6} the number of paths explored in parallel at each iteration
– mask_div ∈ {1, 2, 3, ..., 4} the number of candidates kept in memory during a tree

search iteration
– strategy ∈ {static, evolutive} where static is the strategy consisting in computing

token importance only at the beginning of the counterfactual search. The evolutive
strategy consists in computing token importance at each iteration.

– margin ∈ {0.05, 0.3} the probability score spread defining the acceptability threshold
of a counterfactual candidate

– s ∈ {sentence_transformer,CLS_embedding} the method used to compute the
semantic distance.

We perform the optimization over 100 iterations, with the objective to generate 3
counterfactual examples on 20 initial texts. An ablation study thoroughly analyzes
the sensibility to TIGTEC to its hyperparameters. For the other hyperparameters,
beam_width = 4, mask_div = 4, topk = 50, margin = 0.15 and α = 0.3 and Sentence
Transformer embedding are reasonable. The maximum number of nodes is set to 1000,
which can lead to long searches for counterfactual examples before TIGTEC stops.

4.5 Results

Global Results. Overall, TIGTEC-specific gives very good results on IMDB, succeeding
in more than 98% of the time in generating counterfactual examples (Table 1). The
counterfactual examples are sparse, plausible and highly similar to their original instance.
TIGTEC-agnostic succeeds less than the specific version, with a success rate at circa 93%.
Similarity, sparsity and plausibility are at the same level as the specific version, while the
counterfactual examples are more diverse. The significant gap in success rates between
the agnostic and the specific versions of TIGTEC can be explained by the cumulative
effect of the evolutive strategy and the fine-tuned mask model compared to the static
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Hyperparameter Success rate%
mean ± std

Similarity%
mean ± std

Sparsity%
mean ± std

Token
importance

random (ref.) 92.0 ± 14.0 91.4 ± 3.5 9.4 ± 3.0
attention 96.2* ± 7.0 95.0*** ± 1.7 4.2*** ± 1.1
SHAP 95.6* ± 7.2 95.0*** ± 1.5 4.4*** ± 1.4

Exploration
strategy

static (ref.) 93.6 ± 11.4 94.2 ± 2.9 5.9 ± 2.9
evolutive 95.4 ± 8.5 93.7 ± 2.9 5.8 ± 3.1

Mask
model

pretrained (ref.) 94.6 ±10.5 93.3 ± 3.5 6.0 ± 3.5
fine-tuned 94.8 ± 9.2 94.4** ± 2.1 5.6 ± 2.6

Table 2. Ablation study of token importance, exploration strategy and mask model. With p
as the p-value of the one-tailed t-test, *p < 10%, **p < 5%, ***p < 1%. Ref stands for the
reference modality.

strategy and the pretrained mask model. We detail these effects separately in the
following ablation study. While the movie genre classification task is more complex (see
online6 for classifier accuracy), TIGTEC manages to generate plausible counterfactual
examples close to the initial instance, with more diversity compared to the sentiment
analysis task.

Comparative Results. TIGTEC-specific succeeds more often than CLOSS and Polyjuice,
while remaining on average closer to the initial instance and being more plausible. The
success rate of Polyjuice is low, and the counterfactual examples differ from the original
instances in terms of proximity and sparsity. This result is due to the absence of label
switching constraint and the independence of the text generation process to the classifier.

MiCE succeeds more often to flip labels than any other counterfactual generator.
While the text generated by MiCE is plausible, the counterfactual examples differ
strongly from the original instances in terms of semantic proximity and sparsity. TIGTEC-
specific succeeds in the same proportion as MiCE and produces much more sparse,
similar and plausible counterfactual examples. The low similarity of the counterfactual
examples generated by MiCE can be explained by the underlying T5 model used to
generate text. Such encoder-decoder models perform mask span infilling by generating
text whose meaning and length can sharply change from the masked text.

TIGTEC-agnostic generates more similar, sparse and plausible counterfactual texts
than MiCE and Polyjuice. However, if the success rate of TIGTEC-agnostic is high, it
is lower than MiCE and CLOSS. Whether in its agnostic or specific version, and with
or without the diversity constraint, TIGTEC performs well on all evaluation metrics.
Finally, TIGTEC appears to be the best trade-off in terms of success rate, proximity,
sparsity, plausibility and diversity.

Ablation Study. This analysis comes from the data resulting from the hyperparameter
optimization. We assess the sensitivity of TIGTEC to its hyperparameters through
success rate, similarity and sparsity. Each comparison is made with a one-tailed t-test to

6 https://github.com/milanbhan/tigtec
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Hyperparameter Success rate %
mean ± std

Similarity %
mean ± std

Sparsity %
mean ± std

beam_width

2 (ref.) 94.4 ±11.3 92.9 ± 3.6 6.6 ± 3.4
3 96.6 ± 7.4 93.8 ± 2.7 5.8 ± 3.3
4 96.0 ±7.8 94.5**± 1.9 4.5* ± 1.4
5 90.2 ± 12.5 95.1** ± 1.7 5.6** ± 2.7
6 95.7 ± 6.5 95** ± 1.6 5.1** ± 2.6

mask_div

1 (ref.) 97.0 ± 7.6 93.2 ± 3.1 6.7 ± 3.3
2 94.7 ± 10.7 94.3* ± 2.0 4.9* ± 2.0
3 90.6 ± 12.2 94.6* ± 1.9 5.5** ± 3.0
4 93.3 ± 9.0 94.4* ± 3.9 5.3* ± 3.3

Table 3. Ablation study of beam_width and mask_div. With p as the p-value of the one-tailed
t-test, *p < 10%, **p < 5%, ***p < 1%. Ref stands for the reference modality.

determine whether the mean of a first sample is lower than the mean of a second one.
We first evaluate the impact of hyperparameters specific to the targeting and generating
steps of TIGTEC in Table 2. We compare the attention-based token importance and
SHAP to a random baseline. The evolutive exploration strategy is compared to the
static one and the contribution of the fine-tuned mask model is assessed with respect
to the pretrained one. Attention-based token importance and SHAP give better results
both in terms of success rate, similarity and sparsity with statistical significance. The
fine-tuned mask model induces higher similarity with statistical significance. While the
evolutive strategy yields higher success rates on average, the results are not statistically
significant.

Besides, we focus on the hyperparameters specific to the exploration and tree search
step. The results for the beam_width and mask_div hyperparameters are presented in
Table 3. Each beam width is compared to the reference case where beam_width= 2.
Mask diversity is also analyzed with respect to the reference case where mask_div= 1.
The higher beam_width and mask_div, the higher the similarity and sparsity. This results
are statistically significant.

5 Discussion

We have introduced TIGTEC, an efficient textual counterfactual explainer, generating
sparse, plausible, content-preserving and diverse counterfactual examples in an agnostic
or specific fashion. Other NLP counterfactual generators strongly depend on the classifier
to explain or the text corpus on which it has been trained. As matter of fact, CLOSS [8]
generates counterfactual candidates by optimizing in the latent space from the classifier.
MiCE [27] uses gradient-based information from the classifier to target important tokens,
while modifying the initial instance with a language model fine-tuned on the corpus of
interest. Polyjuice [31] needs to learn to generate counterfactual examples in a supervised
way, which requires ground-truth counterfactual data. The adaptability of TIGTEC to any
type of NLP classifier and the fact that it works in an agnostic way make it particularly
flexible.



14 Bhan, Vittaut, Chesneau and Lesot

The proposed framework is versatile and can work with any token importance
method. Since the high computational cost of SHAP can be limiting for large-scale
applications, other methods such as gradient-based attributions can be used. Besides,
the token importance sensitivity analysis highlighted that attention drives TIGTEC as
well as SHAP in the search process in terms of success rate, similarity and sparsity. This
study therefore favors the interpretabiltiy of self-attention as other recent work [5] [4]. If
the experimental study has been performed on binary classifiers only, TIGTEC can also
be extended to multi-class classifiers by specifiny the target class.

Finally, the use of TIGTEC is not limited to BERT-like classifiers. Our proposed
framework can be adapted to any type of classifier as long as a token importance method
is given as input. For other NLP classifiers such as recurrent neural networks, SHAP
or gradient-based methods could be used to target impactful tokens. TIGTEC can also
help in explaining machine learning models such as boosted trees with LIME as token
importance method.

6 Conclusion and Future Work

This paper presents TIGTEC, a method for generating sparse, plausible and diverse
counterfactual explanations. The architecture of TIGTEC is modular and can be adapted
to any type of NLP model and to classification tasks of various difficulties. TIGTEC can
cover both model-agnostic and model-specific cases, depending on the token importance
method used to guide the search for counterfactual examples.

A way of improvement of TIGTEC could be to cover more types of classifiers as
mentioned in the previous section. Other gradient-based token importance methods could
also be integrated to TIGTEC. Furthermore, diversity is only implicitly addressed through
the exploration strategy. We believe that diversity could be improved by transcribing it
into the cost function during the evaluation step or sharpening the exploration strategy.

Finally, automatic evaluation of the counterfactual examples quality has its limits.
The metrics introduced above provide good indications of the performance of TIGTEC,
but they do not ensure human understanding. From this perspective, human-grounded
experiments would be more appropriate to assess the relevance of the generated text and
its explanatory quality.

Ethics Statement

Since the training data for mask language models, Sentence Transformers and classifiers
can be biased, there is a risk of generating harmful counterfactual examples. One using
TIGTEC to explain the predictions of one’s classifier must be aware of these biases in
order to stand back and analyze the produced results. On the other hand, by generating
unexpected counterfactual examples, we believe that TIGTEC can be useful in detecting
bias in the classifier it seeks to explain. Finally, as any method based on deep learning,
this method consumes energy, potentially emitting greenhouse gases. It must be used
with caution.
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