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Counterfactual examples explain a prediction by highlighting changes in an instance that flip the outcome of a classifier. This paper proposes TIGTEC, an efficient and modular method for generating sparse, plausible and diverse counterfactual explanations for textual data. TIGTEC is a text editing heuristic that targets and modifies words with high contribution using local feature importance. A new attention-based local feature importance is proposed. Counterfactual candidates are generated and assessed with a cost function integrating a semantic distance, while the solution space is efficiently explored in a beam search fashion. The conducted experiments show the relevance of TIGTEC in terms of success rate, sparsity, diversity and plausibility. This method can be used in both modelspecific or model-agnostic way, which makes it very convenient for generating counterfactual explanations.

Introduction

The high level of performance in the field of natural language processing (NLP) achieved by Transformer models [START_REF] Vaswani | Attention is all you need[END_REF] comes along with complex architectures. The domain of eXplainable Artificial Intelligence (XAI) aims at understanding and interpreting the predictions made by such complex systems [START_REF] Molnar | Interpretable Machine Learning[END_REF]. Among the main categories of XAI methods to explain the prediction of a given instance, local feature importance [START_REF] Barredo Arrieta | Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI[END_REF] quantifies the impact of each feature on the considered outcome. Another family of XAI methods consists in explaining with counterfactual examples (see [START_REF] Guidotti | Counterfactual explanations and how to find them: literature review and benchmarking[END_REF] for a recent survey), defined as instances close to the instance of interest but associated with another prediction.

This paper proposes a new method to generate counterfactual explanations in the case of textual data, called Token Importance Guided TExt Counterfactuals (TIGTEC). For example, given a classifier that predicts film synopsis genre and an instance of interest predicted to be a comedy, TIGTEC outputs several slightly modified instances predicted to be horror synopses (see Figure 1).

The main contributions of TIGTEC are as follows: (i) textual counterfactual examples are generated by masking and replacing important words using local feature importance information, (ii) a new model-specific local feature importance method based on attention mechanisms [START_REF] Bahdanau | Neural Machine Translation by Jointly Learning to Align and Translate[END_REF] from Transformers is proposed, (iii) a new cost function integrating textual semantic distance to preserve the initial content is introduced, (iv) the solution space is explored with a new tree search policy based on beam search that leads to diversity in the generated explanations. In this manner, TIGTEC bridges the gap between local feature importance, mask language models, sentence embedding and counterfactual explanations. TIGTEC can be applied to any NLP classifier in a model-specific or model-agnostic fashion, depending on the local feature importance method employed.

This paper is organized as follows: we first introduce some basic principles of XAI and the related work in Section 2. The architecture of TIGTEC is presented in Section 3. Section 4 describes the performed experimental study and compare TIGTEC to a competitor. Finally Section 5 concludes this paper by discussing the results and future work.

Background and Related Work

We recall here some basic principles of XAI methods and existing counterfactual generation methods in NLP.

XAI Background

Local Feature Importance. Let f : X → Y be a NLP classifier mapping an input space X to an output space Y. Let x 0 = [t 1 , ..., t |x0| ] ∈ X be a sequence of interest with f (x 0 ) = y 0 . A local feature importance (or token importance in NLP) operator g : X → R |x0| explains the prediction through a vector [z 1 , ..., z |x0| ] where z i is the contribution of the i-th token. Two common local feature importance methods in NLP are Local Interpretable Model-agnostic Explanations (LIME) [START_REF] Ribeiro | Why should I trust you?" Explaining the predictions of any classifier[END_REF] and SHapley Additive eXplanations (SHAP) [START_REF] Lundberg | A Unified Approach to Interpreting Model Predictions[END_REF]. These methods have the advantage of being model-agnostic since they can be used without any information about the model to explain.

Counterfactual Explanation Counterfactual explanations aim to emphasize what should be different in an input instance to change the outcome of a classifier. Their interest in XAI has been established from a social science perspective [START_REF] Miller | Explanation in artificial intelligence: Insights from the social sciences[END_REF]. The counterfactual example generation can be formalized as a constrained optimization problem. For a given classifier f and an instance of interest x 0 , a counterfactual example x cf must be close to x 0 and is basically defined as:

x cf = argmin z∈X d(x 0 , z) s.t. f (z) ̸ = f (x 0 ) (1) 
with d : X × X → R a given distance operator measuring proximity. The counterfactual explanation is then the difference between the generated counterfactual example and the initial data point, x cf -x 0 . Many additional desirable properties for counterfactual explanations have been proposed [START_REF] Guidotti | Counterfactual explanations and how to find them: literature review and benchmarking[END_REF][START_REF] Mazzine | A Framework and Benchmarking Study for Counterfactual Generating Methods on Tabular Data[END_REF] to ensure their informative nature that we summarize in three categories. Sparsity measures the number of elements changed between the instance of interest and the generated counterfactual example. It is defined as the l 0 norm of x cf -x. Plausibility encompasses a set of characteristics to ensure that the counterfactual explanation is not out-of-distribution [START_REF] Laugel | The dangers of post-hoc interpretability: Unjustified counterfactual explanations[END_REF] while being feasible [START_REF] Poyiadzi | FACE: Feasible and Actionable Counterfactual Explanations[END_REF]. Since several instances of explanation can be more informative than a single one [START_REF] Russell | Efficient search for diverse coherent explanations[END_REF][START_REF] Mothilal | Explaining machine learning classifiers through diverse counterfactual explanations[END_REF], diversity measures the extent to which the counterfactual examples differ from each other.

Related Work

This section presents two categories of methods for generating textual counterfactual examples.

Text Editing Heuristics. A first family of methods aims at addressing the problem introduced in Eq. 1 by slightly modifying the input text to be explained with heuristics.

Model specific methods depend structurally on the models they seek to explain. CLOSS [START_REF] Fern | Text Counterfactuals via Latent Optimization and Shapley-Guided Search[END_REF] focuses on the embedding space of the classifier to explain. After generating counterfactual candidates through optimization in the latent space, the most valuable ones are selected according to an estimation of Shapley values. MiCE [START_REF] Ross | Explaining NLP models via minimal contrastive editing (MiCE)[END_REF] iteratively masks parts of the initial text and performs span infilling using a T5 [START_REF] Raffel | Exploring the limits of transfer learning with a unified text-to-text transformer[END_REF] fine-tuned on the corpus of interest. This method targets tokens with high predictive power using model-specific gradient attribution metrics. While the label flipping success rate of CLOSS and MiCE are high and the counterfactual texts are plausible, the notions of semantic distance and diversity are not addressed. We show in Section 3 how the TIGTEC approach that we propose tackles these constraints.

Generating counterfactual examples shares similarities with generating adversarial attacks, aiming to incorrectly flip the prediction by minimally editing the initial text. Numerous heuristics have been proposed differing in constraints, text transformation methods and search algorithms [START_REF] Morris | Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in NLP[END_REF]. Contrary to counterfactual explanations, adversarial attacks seek to fool intentionally a model without explanatory purpose. Therefore, plausibility and sparsity are not addressed. Fig. 2. Illustration of the tree search policy with beam_width = 2, mask_div = 2, strategy = evolutive, margin = 0.2. At each step, the beam_width highest important tokens are masked and replaced. The substitution token is selected considering the cost function depending on the semantic similarity method s and the balancing parameter α. Among the topk candidates, only mask_div one are considered in the tree search. A candidate is accepted if the prediction of the classifier changes and moves margin away from the prediction threshold. Here, "I love this movie" is accepted. Since only one counterfactual candidate was found out of two, the next iteration starts from the nodes with the lowest cost value, here "I watch this movie".

Text Generation with Large Language Models. A second category of methods aims at generating counterfactual examples in NLP with large pre-trained generative language models. A first approach [START_REF] Madaan | Plug and Play Counterfactual Text Generation for Model Robustness[END_REF] applies a Plug and Play language model [START_REF] Dathathri | Plug and play language models: A simple approach to controlled text generation[END_REF] methodology to generate text under the control of the classifier to explain. It consists in learning latent space perturbations from encoder-decoder models such as BART [START_REF] Lewis | BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[END_REF] in order to flip the outcome. Polyjuice [START_REF] Wu | Polyjuice: Generating counterfactuals for explaining, evaluating, and improving models[END_REF] proposes to fine-tune a GPT-2 [START_REF] Radford | Language Models are Unsupervised Multitask Learners[END_REF] model on a set of predefined tasks. It results in a generative language model capable of performing negation, quantification, insertion of tokens or sentiment flipping based on prompt engineering. Polyjuice needs to be trained in a supervised way on ground truth counterfactual examples in order to be able to generate the expected text. Therefore, the use of Polyjuice to generate counterfactual examples is not generalizable since counterfactual labels do not exist for all classification problems.

3 Proposed approach: TIGTEC This section describes the architecture of Token Importance Guided TExt Counterfactuals (TIGTEC) by detailing its four components. The main idea is to iteratively change tokens of the initial text by decreasing order of importance instance to find a compromise between proximity to the initial instance and label flipping. This way, TIGTEC belongs to the text editing heuristics category of counterfactual example generators in NLP.

TIGTEC Overview

TIGTEC is a 4-step iterative method illustrated in Figure 2. Algorithm 1 describes the generation and evaluation steps, Algorithm 2 summarizes the whole process. The code is available online on a public repository 3 . TIGTEC takes as input a classifier f and a text of interest

x 0 = [t 1 , ..., t |x0| ].
Targeting. To modify the initial text to explain, tokens with highest impact on prediction are targeted given their local importance. TIGTEC implements two methods of local token importance and a random importance generator as a baseline.

Generating. High importance tokens are masked and replaced, with a fine-tuned or pretrained mask model. Various counterfactual candidates are then generated.

Evaluating. The generated candidates are evaluated by a cost function that balances the probability score of the target class and the semantic distance to the initial instance. Candidates minimizing the cost function are considered valid if they meet acceptability criteria.

Tree search policy. The lowest cost candidates are kept in memory and a new iteration begins from the most promising one. The solution space is explored in a beam search fashion until a stopping condition is reached.

As outlined in Figure 2, the counterfactual search heuristic is a tree search algorithm, in which each node corresponds to a counterfactual candidate, and each edge is a token replacement. Therefore, the root of the tree corresponds to the instance to explain, and the deeper a node is in the tree, the more it is modified.

Targeting

The first step consists in identifying the most promising tokens to be replaced in the initial instance to modify the outcome of the classifier f . We use token importance metrics to focus on impacting tokens and efficiently guide the search for counterfactual examples. In particular, we integrate the possibility of computing both model-agnostic (e.g. SHAP [START_REF] Lundberg | A Unified Approach to Interpreting Model Predictions[END_REF]) and model-specific token importance metrics. We propose a new modelspecific token-importance method based on the attention coefficients when the classifier f is a Transformer. Token importance is computed by focusing on the attention of the last encoder layer related to the classification token representing the context of the entire sequence. The efficiency gain of this token importance method is shown in Section 4. If the information provided by SHAP is rich, its computation time is high, whereas attention coefficients are available at no cost under a model-specific paradigm.

TIGTEC is also defined by its strategy which can take two values. The static strategy consists in fixing the token importance coefficients for the whole search, whereas the evolutive strategy recomputes token importance at each iteration. Since SHAP has a high computational cost, it is not recommended to combine it with the evolutive strategy.

In order to consider several counterfactual candidates at each iteration, several tokens can be targeted in parallel. The beam_width parameter allows to control the number of tokens of highest importance to target at each step to perform a beam search during the space exploration.

Algorithm 1 Mask Language Inference (MLI)

Require: x = [t1, ..., tn] an input sequence Require: f : X → Y = {1,2,...,k} a classifier Require: i the input token to be masked Require: M a BERT-like mask language model Require: s, α, topk, mask_div Ensure: x = [x (1) , ..., x(mask_div)] 

1: ti ← [MASK] 2: xmask ← [t1, ...,

Generating

The second step of TIGTEC generates counterfactual candidates and corresponds to the first part of the mask language inference (MLI) formally described in Algorithm 1, from line 1 to 5. Once high importance tokens have been targeted in the previous step, they are masked and replaced with a BERT-type [START_REF] Devlin | BERT: pre-training of deep bidirectional transformers for language understanding[END_REF] mask language model denoted M. Mask language models enable to replace tokens considering the context while keeping grammatical correctness and semantic relevance. This step ensures the plausibility of the generated text. Such models take a masked sequence [t 1 , ..., [MASK], ..., t n ] as an input and output a probability score distribution of all the tokens contained in the BERT-type vocabulary. The mask model can be either pretrained or fine-tuned on the text corpus on which the classifier f has been trained.

Since replacing a token with another with low plausibility can lead to out-ofdistribution texts, inaccurate prediction and grammatical errors, the number of substitutes proposed by M is limited to topk. The higher topk, the more we consider tokens with low contextual plausibility.

Evaluating

Once the topk candidates are generated, we build a cost function to evaluate them. This evaluation step corresponds to line 6 in Algorithm 1. The cost function has to integrate the need to flip the outcome of the classifier f and the distance to the original instance as formalized in Eq. 1. In order to ensure semantic relevance, we define a distance based on text embedding and cosine similarity measures. Finally, conditions for the acceptability of counterfactual candidates are introduced to ensure the reliability of the explanations.

Distance. The widely used Levenshtein distance and BLEU score [START_REF] Papineni | Bleu: a Method for Automatic Evaluation of Machine Translation[END_REF] do not integrate the notion of semantics. An alternative is to compare sentence embeddings in order to Algorithm 2 TIGTEC: Token Importance Guided Counterfactual Text Generation if p(ytarget|x) ≥ 1 k + margin then 13:

Require: f : X → Y a k-
x cf .append(x) 14: else 15:

waiting_list.push((x, cost(x))) keep in the waiting list rejected candidates with their cost 16:

end if 17:

end for 18:

end for 19: end while 20: return x cf measure the similarity of representations in a latent space. Sentence embeddings have been introduced to numerically represent textual data as real-value vectors, including Sentence Transformers [START_REF] Reimers | Sentence-bert: Sentence embeddings using siamese bert-networks[END_REF]. Such networks have been trained on large corpus of text covering various topics. This encoders are compatible with a model-agnostic approach, as they do not require any prior information about the classifier f .

Another text embedding approach can be used when the classifier f is a BERT-like model and when the prediction is made through the classification token. It consists in using the embedding of the classification token directly from f . This embedding is however strongly related to the task of the classifier f . Therefore, if the model has been trained for sentiment analysis, two texts with the same associated sentiment will be considered similar, regardless of the topics covered.

We derive the textual distance from the normalized scalar product of the two embeddings: d : X × X → [0, 1]with:

d s (x, x ′ ) = 1 2 (1 -s(x, x ′ )) (2) 
s(x, x ′ ) = ⟨e x , e ′ x ⟩ ||e x ||.||e ′ x || (3) 
where e x is the embedding representation of input sequence x.

Cost. The cost function aims to represent the counterfactual optimization problem introduced in Eq. 1. We propose to integrate the probability score of the target class to define the cost as:

cost(x cf , x 0 ) = -p(y target |x cf ) -αd s (x cf , x 0 ) (4) 
where y target is the target class and p(y target |x cf ) represents the probability score of belonging to the class y target given x cf from the classifier f. The probability score is the information that guides the heuristic towards the target class. The α coefficient enables for a balanced approach to the need to reach the target class while remaining close to the initial point. The generated topk candidates are evaluated with the cost function defined above.

Acceptability Criteria. A counterfactual candidate x cf is accepted if two conditions are met:

f (x cf ) = y target (5) p(y target |x cf ) ≥ 1 k + margin (6) 
where k is the number of classes of the output space and margin ∈ [0, k-1 k ] the regularization hyperparameter ensuring the certainty of the prediction of the model f. We assume then that all the counterfactual examples must reach the same target class. The closer margin is to its upper bound, the more polarized the classifier prediction must be in order to satisfy the acceptability criterion, and the stronger the constraint.

Tree Search Policy

TIGTEC generates a set of diverse counterfactual examples. We address the diversity constraint by considering the mask_div candidates with the lowest cost function among the generated topk from Algorithm 1 and keep them in memory in a priority queue (see line 15 in Algorithm 2). Therefore, we evaluate more possibilities and aim to foster diversity in the counterfactual examples found by TIGTEC. Once these candidates are stored in memory, the iterative exploration step (Algorithm 2 from line 6 to 11) starts again, until a stopping condition is reached. The stopping condition can either be to reach the target number of counterfactual examples or to reach the maximum number of nodes in the tree (see line 5 in Algorithm 2). The higher the maximum number of nodes, the longer TIGTEC can search for counterfactual examples.

The candidate with the lowest cost is then selected from the priority queue (see line 6 in Algorithm 2) in order to apply again the targeting, generation and evaluation sequence. We call predecessor this previous candidate. Since we evaluate several possibilities in parallel through beam search, Algorithm 1 is this time applied to the beam_width tokens with the highest token importance within the predecessor. From this perspective, the exploration approach enables to start from a candidate that seemed less advantageous at a specific stage, but leads to better results by going deeper into the tree. A tree search example is illustrated in Figure 2.

Experimental analysis

This section presents the conducted experimental study and introduces five metrics to quantitatively assess the counterfactual examples generated by two different versions of TIGTEC and three comparable state-of-the-art competitors.

Evaluation Criteria

Considering the various objectives to be achieved, we propose a 5-metric evaluation. Given an instance associated with p counterfactual examples, the evaluation metrics are aggregated on average over the generated examples, except for diversity. The same operation is performed on all the instances to be explained, and the average metrics are finally computed.

Success Rate. Since TIGTEC does not guarantee to find counterfactual examples in all cases, the success rate (%S) is calculated.

Sparsity. For some methods we compare to, the lengths of the generated counterfactual examples may differ from the initial instance. Therefore, sparsity (%T) is measured assessed with word-based Levenshtein distance normalized by the length of the sequence.

Proximity. We evaluate ex-post the semantic proximity between x 0 and x cf with cosine similarity (s) between Sentence Transformer embedding. This choice is justified by the wish to remain in a general framework that does not depend on the classifier f and the task for which it has been trained. The library used to import the Sentence Transformer is sentence_transformers and the model backbone is paraphrase-MiniLM-L6-v2.

Plausibility. One approach to evaluate text plausibility is the perplexity score [START_REF] Jelinek | Perplexity-a measure of the difficulty of speech recognition tasks[END_REF]. This score can be computed based on the exponential average loss of a foundation model like GPT-2. We calculate the ratio (∆PPL) between the perplexity of the initial text and its counterfactual examples to compare the quality of the generated text with the original one. The library used to import the pretrained GPT2 is transformers and the backbone is GPT2LMHeadModel.

Diversity. Based on the distance measure d, we define diversity (div) as in [START_REF] Mothilal | Explaining machine learning classifiers through diverse counterfactual explanations[END_REF] where

div d = det(K) with K i,j = 1 λ+d(x cf i ,x cf j )
and λ ∈ R a regularization weight set to 1.

TIGTEC Agnostic and Specific Variants

Two different versions of TIGTEC are assessed. The first one is model-specific with access to the corpus of interest. Attention coefficients guide the counterfactual example search and a fine-tuned mask language model is used to mask and replace important tokens. We call this version TIGTEC-specific.

The second version is model-agnostic without access to the corpus of interest. SHAP is used to compute token importance and the mask language model is only pre-trained. We call this second version TIGTEC-agnostic. Since SHAP computational cost is high compared to attention, we use the static strategy for the agnostic version of TIGTEC, whereas the evolutive strategy is used for the specific one.

Datasets and Competitors

We apply TIGTEC-agnostic and -specific on two DistilBERT [START_REF] Sanh | DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter[END_REF] binary classifiers. We limit our analysis to DistilBERT, since it achieves almost the same level of performance as BERT, while being significantly lighter. TIGTEC could, however, be applied to larger models, the methodology remaining the same. The first classifier performs sentiment analysis on the IMDB dataset [START_REF] Maas | Learning Word Vectors for Sentiment Analysis[END_REF] containing movie reviews. The second classifier is trained on movie genre classification on a dataset of horror and comedy synopses from Kaggle 4 . More information about the datasets and the performance of the classifiers are provided online 5 .

The two versions of TIGTEC are compared to Polyjuice [START_REF] Wu | Polyjuice: Generating counterfactuals for explaining, evaluating, and improving models[END_REF], MiCE [START_REF] Ross | Explaining NLP models via minimal contrastive editing (MiCE)[END_REF] and CLOSS [START_REF] Fern | Text Counterfactuals via Latent Optimization and Shapley-Guided Search[END_REF]. The objective of each version of TIGTEC is to generate three counterfactual examples associated with an initial instance. We apply Polyjuice by generating three counterfactual examples for each instance to explain. As Polyjuice was trained to flip sentiment on IMDB with negation prompt, Polyjuice's counterfactual examples are generated in the same way. MiCE and CLOSS do not address diversity, they only generate one counterfactual example per initial text. We assess TIGTEC and Polyjuice performance by selecting the instance that is semantically closest to the initial point among the 3 generated to compare them to MiCE and CLOSS. We distinguish the results obtained with one and three counterfactual examples by the notation TIGTEC 1d and TIGTEC 3d and respectively Polyjuice 1d and Polyjuice 3d .

Each method is evaluated on the same 1000 texts from IMDB. The hyperparameters of TIGTEC are fixed at their optimal level as described in the next section. TIGTECspecific is also applied on the movie synopsis dataset from Kaggle on 474 texts. Since movie genre classification is a more complex task, we relax the hyperparameters by lowering the margin to 0.05 and alpha to 0.15.

Hyperparameter Setting

We optimize the nine hyperparameters presented in Section 3 with respect to success rate, similarity, diversity and sparsity. The optimization is performed on IMDB with the Optuna [START_REF] Akiba | Optuna: A Next-generation Hyperparameter Optimization Framework[END_REF] library. The solution space is as follows:

g ∈ {random, attention}, the input token importance method.

-M ∈ {M f t , M pt } where M f t is a mask language model fine-tuned on the corpus in which the classifier f has been trained. M pt is a pretrained mask language model without fine tuning phase. α ∈ [0, 1] the parameter balancing target probability and distance with the initial point in the cost function topk ∈ {10, 11, ..., 100} the number of candidates considered during mask inference -beam_width ∈ {2, 3, ..., 6} the number of paths explored in parallel at each iteration -mask_div ∈ {1, 2, 3, ..., 4} the number of candidates kept in memory during a tree search iteration strategy ∈ {static, evolutive} where static is the strategy consisting in computing token importance only at the beginning of the counterfactual search. The evolutive strategy consists in computing token importance at each iteration. margin ∈ {0.05, 0.3} the probability score spread defining the acceptability threshold of a counterfactual candidate s ∈ {sentence_transformer, CLS_embedding} the method used to compute the semantic distance.

We perform the optimization over 100 iterations, with the objective to generate 3 counterfactual examples on 20 initial texts. An ablation study thoroughly analyzes the sensibility to TIGTEC to its hyperparameters. For the other hyperparameters, beam_width = 4, mask_div = 4, topk = 50, margin = 0.15 and α = 0.3 and Sentence Transformer embedding are reasonable. The maximum number of nodes is set to 1000, which can lead to long searches for counterfactual examples before TIGTEC stops.

Results

Global Results. Overall, TIGTEC-specific gives very good results on IMDB, succeeding in more than 98% of the time in generating counterfactual examples (Table 1). The counterfactual examples are sparse, plausible and highly similar to their original instance. TIGTEC-agnostic succeeds less than the specific version, with a success rate at circa 93%. Similarity, sparsity and plausibility are at the same level as the specific version, while the counterfactual examples are more diverse. The significant gap in success rates between the agnostic and the specific versions of TIGTEC can be explained by the cumulative effect of the evolutive strategy and the fine-tuned mask model compared to the static strategy and the pretrained mask model. We detail these effects separately in the following ablation study. While the movie genre classification task is more complex (see online 6 for classifier accuracy), TIGTEC manages to generate plausible counterfactual examples close to the initial instance, with more diversity compared to the sentiment analysis task.

Comparative Results. TIGTEC-specific succeeds more often than CLOSS and Polyjuice, while remaining on average closer to the initial instance and being more plausible TIGTEC-agnostic generates more similar, sparse and plausible counterfactual texts than MiCE and Polyjuice. However, if the success rate of TIGTEC-agnostic is high, it is lower than MiCE and CLOSS. Whether in its agnostic or specific version, and with or without the diversity constraint, TIGTEC performs well on all evaluation metrics. Finally, TIGTEC appears to be the best trade-off in terms of success rate, proximity, sparsity, plausibility and diversity.

Ablation Study. This analysis comes from the data resulting from the hyperparameter optimization. We assess the sensitivity of TIGTEC to its hyperparameters through success rate, similarity and sparsity. Each comparison is made with a one-tailed t-test to determine whether the mean of a first sample is lower than the mean of a second one. We first evaluate the impact of hyperparameters specific to the targeting and generating steps of TIGTEC in Table 2. We compare the attention-based token importance and SHAP to a random baseline. The evolutive exploration strategy is compared to the static one and the contribution of the fine-tuned mask model is assessed with respect to the pretrained one. Attention-based token importance and SHAP give better results both in terms of success rate, similarity and sparsity with statistical significance. The fine-tuned mask model induces higher similarity with statistical significance. While the evolutive strategy yields higher success rates on average, the results are not statistically significant.

Besides, we focus on the hyperparameters specific to the exploration and tree search step. The results for the beam_width and mask_div hyperparameters are presented in Table 3. Each beam width is compared to the reference case where beam_width= 2. Mask diversity is also analyzed with respect to the reference case where mask_div= 1. The higher beam_width and mask_div, the higher the similarity and sparsity. This results are statistically significant.

Discussion

We have introduced TIGTEC, an efficient textual counterfactual explainer, generating sparse, plausible, content-preserving and diverse counterfactual examples in an agnostic or specific fashion. Other NLP counterfactual generators strongly depend on the classifier to explain or the text corpus on which it has been trained. As matter of fact, CLOSS [START_REF] Fern | Text Counterfactuals via Latent Optimization and Shapley-Guided Search[END_REF] generates counterfactual candidates by optimizing in the latent space from the classifier. MiCE [START_REF] Ross | Explaining NLP models via minimal contrastive editing (MiCE)[END_REF] uses gradient-based information from the classifier to target important tokens, while modifying the initial instance with a language model fine-tuned on the corpus of interest. Polyjuice [START_REF] Wu | Polyjuice: Generating counterfactuals for explaining, evaluating, and improving models[END_REF] needs to learn to generate counterfactual examples in a supervised way, which requires ground-truth counterfactual data. The adaptability of TIGTEC to any type of NLP classifier and the fact that it works in an agnostic way make it particularly flexible.

The proposed framework is versatile and can work with any token importance method. Since the high computational cost of SHAP can be limiting for large-scale applications, other methods such as gradient-based attributions can be used. Besides, the token importance sensitivity analysis highlighted that attention drives TIGTEC as well as SHAP in the search process in terms of success rate, similarity and sparsity. This study therefore favors the interpretabiltiy of self-attention as other recent work [5] [4]. If the experimental study has been performed on binary classifiers only, TIGTEC can also be extended to multi-class classifiers by specifiny the target class.

Finally, the use of TIGTEC is not limited to BERT-like classifiers. Our proposed framework can be adapted to any type of classifier as long as a token importance method is given as input. For other NLP classifiers such as recurrent neural networks, SHAP or gradient-based methods could be used to target impactful tokens. TIGTEC can also help in explaining machine learning models such as boosted trees with LIME as token importance method.

Conclusion and Future Work

This paper presents TIGTEC, a method for generating sparse, plausible and diverse counterfactual explanations. The architecture of TIGTEC is modular and can be adapted to any type of NLP model and to classification tasks of various difficulties. TIGTEC can cover both model-agnostic and model-specific cases, depending on the token importance method used to guide the search for counterfactual examples.

A way of improvement of TIGTEC could be to cover more types of classifiers as mentioned in the previous section. Other gradient-based token importance methods could also be integrated to TIGTEC. Furthermore, diversity is only implicitly addressed through the exploration strategy. We believe that diversity could be improved by transcribing it into the cost function during the evaluation step or sharpening the exploration strategy.

Finally, automatic evaluation of the counterfactual examples quality has its limits. The metrics introduced above provide good indications of the performance of TIGTEC, but they do not ensure human understanding. From this perspective, human-grounded experiments would be more appropriate to assess the relevance of the generated text and its explanatory quality.

Ethics Statement

Since the training data for mask language models, Sentence Transformers and classifiers can be biased, there is a risk of generating harmful counterfactual examples. One using TIGTEC to explain the predictions of one's classifier must be aware of these biases in order to stand back and analyze the produced results. On the other hand, by generating unexpected counterfactual examples, we believe that TIGTEC can be useful in detecting bias in the classifier it seeks to explain. Finally, as any method based on deep learning, this method consumes energy, potentially emitting greenhouse gases. It must be used with caution.

Fig. 1 .

 1 Fig. 1. Example of sparse, plausible and diverse counterfactual examples generated by TIGTEC for a film genre classifier that discriminates between horror and comedy synopses. Here, the counterfactual generation goes from comedy to horror.

  . The success rate of Polyjuice is low, and the counterfactual examples differ from the original instances in terms of proximity and sparsity. This result is due to the absence of label switching constraint and the independence of the text generation process to the classifier. MiCE succeeds more often to flip labels than any other counterfactual generator. While the text generated by MiCE is plausible, the counterfactual examples differ strongly from the original instances in terms of semantic proximity and sparsity. TIGTECspecific succeeds in the same proportion as MiCE and produces much more sparse, similar and plausible counterfactual examples. The low similarity of the counterfactual examples generated by MiCE can be explained by the underlying T5 model used to generate text. Such encoder-decoder models perform mask span infilling by generating text whose meaning and length can sharply change from the masked text.
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  class classifier Require: x0 = [t1, ..., tn] an input sequence of n tokens to be explained Require: ytarget : target counterfactual class Require: p : number of counterfactual examples to generate Require: g, s, M, α, topk, beam_width, mask_div, strategy, margin, early_stop Ensure: x cf = [x cf 1 , ..., x cf p ] 1: waiting_list = [(x0, cost(x0))] the priority queue of counterfactual candidates sorted by increasing cost (see Eq. 4) 2: i ← 0 the number of evaluated texts 3: x cf ← [] 4: Compute token importance [z1, ..., zn] = g(x0) 5: while len(x cf ) < p and i < early_stop do 6:parent_node ← waiting_list.pop() the candidate with the lowest cost (see Eq. 4)

7: [t (1) , ..., t (n) ] ← sort(parent_node) by decreasing importance order with respect to strategy and g 8: for t in [t (1) , ..., t(beam_width)] do 9: i ← i + 1 10: [x1, ..., xmask_div] = MLI(parent_node , f , t, M, topk, mask_div, s α) (see Algorithm 1) 11: for x in [x1, ..., xmask_div] do 12:

Table 1 .

 1 TIGTEC evaluation on 2 datasets and comparison with competitors on IMDB.

	Dataset	Method	Success rate ↑%S	Similarity ↑%s	Sparsity ↓%T	Plausibility ↓ ∆PPL	Diversity ↑div
		Polyjuice 1d	60.8	55.6	72.2	1.09	-
		Polyjuice 3d	29.6	53.5	74.4	2.16	0.088
		MiCE	99.6	81.1	18.0	1.35	-
	IMDB	CLOSS TIGTEC-specific 1d	97.3 98.2	95.4 96.8	2.3 4.2	1.47 1.25	--
		TIGTEC-specific 3d	98.2	95.8	4.4	1.34	0.019
		TIGTEC-agnostic 1d	92.7	96.1	4.5	1.24	-
		TIGTEC-agnostic 3d	92.7	94.6	4.7	1.34	0.075
	Movie genre	TIGTEC-specific 1d TIGTEC-specific 3d	88.4 88.4	91.7 89.8	8.8 9.0	1.42 1.38	-0.120

Table 2 .

 2 Ablation study of token importance, exploration strategy and mask model. With p as the p-value of the one-tailed t-test, *p < 10%, **p < 5%, ***p < 1%. Ref stands for the reference modality.

	Hyperparameter	Success rate% mean ± std	Similarity% mean ± std	Sparsity% mean ± std
	Token importance	random (ref.) attention SHAP	92.0 ± 14.0 96.2* ± 7.0 95.0*** ± 1.7 4.2*** ± 1.1 91.4 ± 3.5 9.4 ± 3.0 95.6* ± 7.2 95.0*** ± 1.5 4.4*** ± 1.4
	Exploration	static (ref.)	93.6 ± 11.4	94.2 ± 2.9	5.9 ± 2.9
	strategy	evolutive	95.4 ± 8.5	93.7 ± 2.9	5.8 ± 3.1
	Mask	pretrained (ref.) 94.6 ±10.5	93.3 ± 3.5	6.0 ± 3.5
	model	fine-tuned	94.8 ± 9.2	94.4** ± 2.1 5.6 ± 2.6

Table 3 .

 3 Ablation study of beam_width and mask_div. With p as the p-value of the one-tailed t-test, *p < 10%, **p < 5%, ***p < 1%. Ref stands for the reference modality.

	Hyperparameter	Success rate % mean ± std	Similarity % mean ± std	Sparsity % mean ± std
		2 (ref.) 94.4 ±11.3	92.9 ± 3.6 6.6 ± 3.4
		3	96.6 ± 7.4	93.8 ± 2.7 5.8 ± 3.3
	beam_width	4	96.0 ±7.8	94.5**± 1.9 4.5* ± 1.4
		5	90.2 ± 12.5 95.1** ± 1.7 5.6** ± 2.7
		6	95.7 ± 6.5	95** ± 1.6 5.1** ± 2.6
		1 (ref.) 97.0 ± 7.6	93.2 ± 3.1 6.7 ± 3.3
	mask_div	2 3	94.7 ± 10.7 94.3* ± 2.0 4.9* ± 2.0 90.6 ± 12.2 94.6* ± 1.9 5.5** ± 3.0
		4	93.3 ± 9.0	94.4* ± 3.9 5.3* ± 3.3

https://github.com/milanbhan/tigtec

https://www.kaggle.com/competitions/movie-genre-classification/overview

See the documentation on the publicly available repository : https://github.com/milanbhan/tigtec

https://github.com/milanbhan/tigtec