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Plain Language Summary

The transport of sediments in rivers, oceans, planets and deserts begins when fluid imparts enough stress on the sediment surface, i.e. a sufficient force in a unit of area.

An inspection of historical data reveals that such incipient stress depends exclusively on the 'turbulent roughness' of the surface through a simple expression. This recognition implies that turbulent roughness, a quantity derived from measurements of velocity profiles above the surface, uniquely determines how much fluid friction must be exerted on a sediment bed to mobilize it.

For cohesionless, frictionless sediment buffeted by a turbulent boundary layer, [START_REF] Shields | Application of similarity principles and turbulence research to bed-load movement[END_REF] showed that particle detachment from a plane bed arises when the shear stress τ exerted by a flow of shear velocity u * ≡ τ /ρ over the erodible surface exceeds particle weight lightened by buoyancy. For material densities of solid and fluid ρ s and ρ, gravitational acceleration g and particle diameter d, his static balance of forces then produced a universal diagram predicting the minimum shear stress τ c for entrainment relative to the granular normal stress σ = (ρ s -ρ) g d that the surface layer of particles exerts on the underlying bed. [START_REF] Bagnold | The physics of blown sand and desert dunes[END_REF] later noted that, counterintuitively, the dimensionless threshold stress is smaller in air than water, and [START_REF] Andreotti | A lower-than-expected saltation threshold at Martian pressure and below[END_REF] showed that it is even lower for gases under reduced pressures.

As the upper limit of the ratio of tangential traction τ exerted on a grain held on the surface and the perpendicular buoyant weight σ in a unit of sediment area, Shields' dimensionless threshold µ ≡ τ c /σ has the structure of a Coulomb (1773) friction coefficient, i.e. the bed remains static for τ < σ × µ, and it mobilizes as τ exceeds this threshold.

Because Shields' work involved particles on a fluid-solid boundary, he inevitably referenced the first data set for turbulent flow on bumpy surfaces, which [START_REF] Nikuradse | Strömungsgesetze in rauhen Rohren (Laws of flow in rough pipes[END_REF] had staged in impermeable circular pipes of radius R p roughened by gluing sand grains to their interior wall. In these internal flows, Nikuradse reported the Darcy (1856) fluid friction factor f ≡ 2R p ∇p /(ρū 2 /2) that makes the pressure gradient ∇p along the pipe dimensionless with the mean kinetic energy density (ρ/2)ū 2 .

In this Letter, we re-examine these historical data to show how Shields friction µ is a simple function of the turbulent roughness z 0 made dimensionless with its invariant magnitude z 0∞ in the limit where shear velocity is large. This observation implies that z 0 /z 0∞ governs the Coulomb-like fluid friction on the sediment bed. We also confirm that the function can be corrected to capture a wide range of solid-to-gas density ratios [START_REF] Pähtz | Scaling laws for planetary sediment transport from DEM-RANS numerical simulations[END_REF].

First, we recall the structure of the turbulent boundary layer above a flat plate, which consists of a viscous sublayer, a buffer, and a turbulent 'core' with time-averaged velocity u satisfying u/u * a u + (1/κ) ln (zu * /ν) .

(
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In this expression, κ 0.41 is von Kármán's constant, ν is the fluid kinematic viscosity, z is elevation above the surface, and a u is a parameter that depends on the nature of the solid wall. When basic anemometry musters insufficient spatial resolution to resolve the viscous and buffer layers, experiments focus instead on the core, writing its profile as

u/u * = (1/κ) ln (z/z 0 ) , (2) 
thereby identifying the shear velocity u * and turbulent roughness z 0 as respective scales of speed and altitude. Eliminating u/u * between Eqs. ( 1) and (2) yields the general relation ln (u * z 0 /ν) = -a u κ .

(3)

In smooth pipes, the data of [START_REF] Saph | An experimental study of the resistances to the flow of water in pipes[END_REF] indicates that a u = a u0 is constant. In that case, because a smooth wall contains no discernible asperity beside microscopic features responsible for the vanishing slip velocity on its surface, calling z 0 a 'roughness' is a misnomer. Rather than being associated with geometry, z 0 on a smooth wall arises from the interplay of coherent structures generated by the turbulent boundary layer upstream [START_REF] Wu | Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer[END_REF]).

An instructive calculation hints at the fundamental meaning of z 0 in turbulent, fullydeveloped, steady pipe flow. Neglecting small contributions of the viscous and buffer layers to the overall flow rate, an exact integration of Eq. ( 1) across a pipe of radius R p yields 8) and ( 9). For Nikuradse's fully-turbulent flows in rough pipes (ln Re * > -4), lines in (B) are simpler, albeit equally acceptable models than those found in existing literature for cohesionless, frictionless sediment. For ln Re * < -4 (dotted line), Eq. ( 11) falls outside the range of Nikuradse's experiments. There, significant deviations can arise as the concept of z0 becomes moot, or as a gas is too rarefied to behave as a continuum.

the mean velocity

ū u * = 1 κ ln u * R p ν - 3 2κ + a u . (4) 
Recalling the definition of the Fanning (1896) friction factor C f ≡ τ /(ρū 2 /2), which makes wall shear stress τ dimensionless with mean kinetic energy density, a force balance on a slice of pipe in steady, fully-developed, isothermal flow implies f = 4 C f . Substituting these relations in Eq. ( 3)-( 4) yields the general equation

ln z 0 R p = - 3 2 + κ 2 C f , (5) 
in which u * or the pipe Reynolds number no longer appear [START_REF] Nikuradse | Strömungsgesetze in rauhen Rohren (Laws of flow in rough pipes[END_REF]. As a general expression for pipes, Eq. ( 5) implies that, given the outer scale R p of the system, ln(z 0 /R p ) is uniquely related to, -and therefore is a measure of -the Fanning friction factor.

If the system possesses no such outer dimension, a compelling question is whether turbulent roughness may yet be appropriately scaled to remain uniquely related to a friction coefficient. If so, does this coefficient arise from fluid mechanics, as Fanning's C f and Darcy's f , or is it akin to solid friction, like Shields' µ?

While u * rises with mean pipe Reynolds number, [START_REF] Nikuradse | Strömungsgesetze in rauhen Rohren (Laws of flow in rough pipes[END_REF] showed that ln z 0 does not decrease indefinitely in a rough pipe, as Eq. ( 3) would suggest, but that it reaches instead an asymptotic value set by the diameter of sand grains that he glued to the pipe's inside surface. Here, Nikuradse's rough walls produced values of z 0 directly associated with geometrical features of the boundary. By least-squares fitting the nearly invariant Darcy friction factor at the highest Reynolds number of his experiments, one obtains the classical result for a rough wall in the limit of large u * ,

z 0 = z 0∞ ≡ d/ , (6) 
where = 34.6 ± 0.3 at 95% confidence. (Data in the Supporting Information).

Whereas the radius R p of Nikuradse's pipes is a conspicuous outer scale for his flows, one cannot identify a representative distance for fully-developed turbulent boundary layers of indefinite extent above a smooth plane. However, on a sediment surface, Eq. ( 6) implies that d/ has become the natural inner scale that makes elevation dimensionless. Similarly, the natural Reynolds number in an unbounded flow builds upon d/ and the only available velocity scale u * ,

Re * ≡ u * d/ ν . (7) 
Staging several combinations of pipe radius and sand grain size, [START_REF] Nikuradse | Strömungsgesetze in rauhen Rohren (Laws of flow in rough pipes[END_REF] published extensive data on f vs pipe Reynolds number Re ≡ 2R p ū/ν. Remarkably, upon using Eq. ( 5) to convert f and Re to z † 0 vs Re * , his entire set collapses onto a single curve that is independent of pipe diameter (Fig. 1A) and is closely fitted by

z † 0 ≡ z 0 z 0∞ = exp (-a u0 κ) Re * + 1 -exp (-a z Re * ) . (8) 
Because Eq. ( 8) has no outer scale, it has been universally applied to internal flows as well as external boundary layers with constant properties, unless geometrical roughness varies or the surface undulates on wavelengths d. [START_REF] Nikuradse | Strömungsgesetze in rauhen Rohren (Laws of flow in rough pipes[END_REF] hinted at the existence of this relation in his Fig. 11, while [START_REF] Jia | Hydrodynamic roughness induced by a multiscale topography[END_REF] recently derived its form after identifying d as the essential wavelength of microscopic flow over the boundary.

Despite its accuracy and simplicity, fluid mechanics textbooks do not mention Eq. ( 8).

Instead, they present the equivalent, albeit more complicated [START_REF] Moody | Friction factors for pipe flow[END_REF] chart, which offers practical correlations of f vs pipe Reynolds number and roughness d/(2R p ). Fitting Eq. ( 8) to the entire [START_REF] Nikuradse | Strömungsgesetze in rauhen Rohren (Laws of flow in rough pipes[END_REF] data set yields a u0 = 5.84±0.04 and a z = 1.35±0.03 at 95% confidence. The magnitude of a u0 , which extrapolates data in rough pipes to the small Re * 'smooth' limit, is consistent with the accepted value ∼ 5 that is derived from the seminal experiments of [START_REF] Saph | An experimental study of the resistances to the flow of water in pipes[END_REF] with rigorously smooth pipes [START_REF] Blasius | Das Aehnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten[END_REF][START_REF] Steen | Saph and Schoder and the friction law of Blasius[END_REF]. Figure 1A shows that straight segments also delineate three distinct regimes of [START_REF] Nikuradse | Strömungsgesetze in rauhen Rohren (Laws of flow in rough pipes[END_REF] data in a plot of ln z † 0 vs ln Re * ,

ln z † 0        -a u0 κ -ln Re * low Re * limit, ln Re * < (au 2 -κ au 0 ) (1+au 1 )
-a u2 + a u1 × ln Re * intermediate,

(au 2 -κ au 0 ) (1+au 1 )
< ln Re * < au 2 au 1 0 rough limit,

au 2 au 1 < ln Re * , (9) 
where a u1 0.234 ± 0.015 and a u2 0.184 ± 0.010 at 95% confidence.

Meanwhile, [START_REF] Shields | Application of similarity principles and turbulence research to bed-load movement[END_REF] inferred the threshold shear stress by writing an overall force balance on the flow of water in an inclined flume. Unlike Nikuradse's measurements, the presence of side walls and erodible sediment complicated his analysis, and therefore produced greater scatter. However, as Fig. 1 illustrates, Shields' correlation for dimensionless basal shear stress µ at incipient sediment transport bears a striking resemblance to Eq. ( 8), including the transition Reynolds numbers Re * demarcating the regime transitions of Eq. ( 9).

This observation suggests the existence of a universal relation between z † 0 and µ.

To unveil it, we plot available data sets of threshold shear stress ln µ vs ln Re * as ln µ vs ln z † 0 by transforming ln Re * into ln z † 0 using universal Eq. ( 8). Carrying out this manipulation for fluids of densities spanning nearly six orders of magnitude, including water [START_REF] Guo | Empirical model for shields diagram and its applications[END_REF], air [START_REF] Pähtz | The cessation threshold of nonsuspended sediment transport across aeolian and fluvial environments[END_REF], and reduced-pressure gases with mean-free path smaller than the pore scale [START_REF] Swann | Experimentally-derived thresholds for windblown sand on Mars[END_REF][START_REF] Andreotti | A lower-than-expected saltation threshold at Martian pressure and below[END_REF], we confirm the density scaling

µ * ≡ µ × (ρ s /ρ) 1/3 (10)
that [START_REF] Pähtz | Scaling laws for planetary sediment transport from DEM-RANS numerical simulations[END_REF] identified, and we obtain the simple one-parameter correlation shown in Fig. 1C,

µ * = µ * ∞ × z 0 d/ , (11) 
in which z 0∞ = d/ serves as reference for z 0 . Equivalently, τ c = τ * c∞ ×(ρ s -ρ) g z 0 (ρ/ρ s ) 1/3 , where τ * c∞ is the density-corrected threshold shear stress in the rough limit (Re * → ∞, ln z † 0 → 0), fitted to τ * c∞ = 2.35 ± 0.19 at 95% confidence within the fully-turbulent range Re * > -4 of Nikuradse's experiments. Here, the precision of Nikuradse's data implies that scatter is mainly inherited from the more challenging measurements of [START_REF] Shields | Application of similarity principles and turbulence research to bed-load movement[END_REF] and later authors.

Although one has not yet fully explained the exponent of (ρ/ρ s ) in Eq. ( 10), its value of 0.328 ± 0.016 fitted to Nikuradse's range is nearly indistinguishable from the (1/3) that [START_REF] Pähtz | Scaling laws for planetary sediment transport from DEM-RANS numerical simulations[END_REF] observed. Whereas Shields' static force balance only implied a sensitivity of τ c to the density difference (ρ s -ρ), the dependence of µ on the ratio (ρ/ρ s ) suggests that dynamical rates of momentum change in the fluid and solid phases are involved at the threshold [START_REF] Hjelmfelt | Motion of discrete particles in a turbulent fluid[END_REF], in addition to the mere weight and buoyancy that underpinned Shields' analysis.

Although some of Shields' original data involved ripples and bars, his correlation did not explicitly account for topography, in spite of the role altitude variations play in shaping the evolution of shear stress, static pressure and effective turbulent roughness along hills and bedforms [START_REF] Jackson | Turbulent wind flow over a low hill[END_REF][START_REF] Fourrière | Bedforms in a turbulent stream: formation of ripples by primary linear instability and of dunes by nonlinear pattern coarsening[END_REF][START_REF] Claudin | Basal pressure variations induced by a turbulent flow over a wavy surface[END_REF][START_REF] Jia | Hydrodynamic roughness induced by a multiscale topography[END_REF]. Neither did he consider that sediment porosity can produce a slip velocity at the surface [START_REF] Beavers | Boundary conditions at a naturally permeable wall[END_REF], thereby modifying the apparent turbulent roughness of a permeable bed or facilitate its mobilization through internal pressure gradients acting as a body force [START_REF] Musa | Pore pressure in a wind-swept rippled bed below the suspension threshold[END_REF]. In short, other characteristic distances, such as undulation wavelength or the square root of the bed permeability, can emerge. In their absence, d/ is the only available scale that makes z dimensionless in a fully-developed turbulent boundary layer on a uniform planar sediment surface prior to transport.

Meanwhile, Nikuradse's experiments with rough circular pipes may seem tenuously related to fully-developed turbulent boundary layers of indefinite thickness on flat ground, until one notices the independence of Eq. ( 8) on the outer scale of the flow. However, slip velocity and internal pressure gradients are features that Nikuradse's rough impenetrable pipes did not possess.

In summary, because Eq. ( 11) applies equally to the low Re * , intermediate and rough turbulent regimes of Eq. ( 9) without involving an outer scale, the uncanny resemblance of Eq. ( 9) to transport threshold regimes suggests that z 0 /(d/ ) governs Shields' Coulomblike friction µ exerted by the fluid on a uniform plane of sediment. However, in practical situations where the surface has long-range non-uniformity in topography or bumpiness, turbulent roughness may not be straightforward to predict. In this case, one must rise to the challenge of measuring it in the field to evaluate the stress threshold for particle entrainment.

Open Research Section

Historical data of [START_REF] Nikuradse | Strömungsgesetze in rauhen Rohren (Laws of flow in rough pipes[END_REF] and [START_REF] Shields | Application of similarity principles and turbulence research to bed-load movement[END_REF] 

Figure 1 .

 1 Figure 1. (A) The historical data of Nikuradse (1933) for ln z † 0 vs ln Re * (bottom). Dashed and straight lines are Eqs. (8) and (9), respectively. (B) The compilation of Guo (2020) (triangles), Pähtz and Duràn (2018) (circles; simulations are darker), Swann et al. (2020) (diamonds) and Andreotti et al. (2021) (squares) for ln µ * vs ln Re * . (C) ln Re * has been converted to ln z † 0

  are available as tables and graphs in their original manuscripts. The workbook Nikuradse&ShieldsData.xlsx submitted as Supporting Information lists them all, together with other incipient stress data recently compiled by Pähtz and Duràn (2018), Guo (2020), Swann et al. (2020) and Andreotti et al. (2021).
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