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Highlights

Scaling of convection in high-pressure ice layers of large icy moons and implications for
habitability

Laétitia Lebec,Stéphane Labrosse,Adrien Morison,Paul J. Tackley

e We model convective heat and mass transfer through high-pressure ice layers in icy moons.

e The solid-liquid phase change at the boundary between the ice and the ocean greatly eases convection in the ice
and increases the efficiency of heat and mass transfer.

e Applications of our scaling laws to large icy moons and ocean worlds show that salts should be readily transported
across high-pressure ice layers.
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ARTICLE INFO ABSTRACT

Keywords: The existence of a high-pressure (HP) ice layer between the silicate core and the liquid ocean
Satellites, dynamics in large icy moons and ocean worlds is usually seen as a barrier to habitability, preventing
Ices a direct contact and therefore transfer of nutrients from the core to the liquid ocean. More
Interiors recently, several studies challenged that hypothesis and showed that exchanges were possible
Ganymede under specific conditions, allowing transport of salts toward the ocean. In our study, we consider

an effect not taken into account in the previous works, which is the dynamical implications of the
phase equilibrium at the ice-ocean interface allowing a non-zero vertical velocity at the surface
of the HP ice layer. This effect, which can be modeled as a phase change boundary condition for
the ice layer, has a significant impact on the flow dynamics and enables exchanges with the ocean
by fusion and crystallization at the top interface of the HP ice layer, even without partial melting
in the bulk of the ice layer. For the same conditions as standard convective systems, it also leads
to faster mass transfer in the bulk. These exchanges are directly linked to the melting capacity
of the ice at the interface between the HP ice layer and the core, depending on the efficiency
of convection in the liquid ocean. This is controlled by a dimensionless coefficient noted ®.
Considering this boundary condition at the interface between the HP ice layer and the liquid
ocean, we propose a scaling of the bottom temperature and the top vertical velocity as function
of the Rayleigh number, in the case of a fixed heat flux from the core, a rigid or free-slip bottom
boundary and various values of ®.

1. Introduction

The internal structure of large icy moons, as Ganymede or Titan, differs from that of smaller ones as Enceladus
or Europa for which a direct contact exists between the core and the ocean under the icy surface (Hussmann et al.,
2015). Their composition has been studied from the data of Cassini-Huygens which explored Saturn’s moons from
2004 to 2017 and Galileo missions which explored Jupiter’s moons from 1995 to 2003. Currently, Juno is orbiting
Jupiter and performed one close flyby of Ganymede (Ravine et al., 2022), which will also be one of the targets of the
JUICE mission (Grasset et al., 2013) around 2030 in order to better constrain several parameters of this moon. For
large icy moons, as Ganymede, Callisto and Titan, owing to the phase diagram of water, a high-pressure (HP) ice layer
of tetragonal ice VI and ice V, depending on the assumed thickness of the ice mantle (Vance et al., 2018), may exist
between the internal liquid ocean and the rocky core (Hussmann et al., 2015), in addition to the ice Ih at the surface of
the moon. The consequences of this internal structure is that the core and the ocean are not in direct contact, which has
long been considered as an obstacle to their habitability by strongly limiting or even removing all interactions between
these two layers. Efficient exchanges of nutrients between the core and the ocean being one of the necessary conditions
for life to appear at high-pressure in a deep water ocean (Picard and Daniel, 2013), these moons were considered less
favorable to habitability than smaller moons like Europa (Noack et al., 2016).

In recent years, several studies showed that, under certain conditions depending on the thickness of the HP ice layer,
the viscosity of the ice and the heat flux from the core, periodically indirect contacts, or even direct contacts, could
still be possible by convection through the HP ice layer. Choblet et al. (2017) described a 3D spherical model of the
HP ice shell including partial melting at the bottom of the ice layer, in contact with the core, the melt being extracted
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Convection in HP ice layer for large icy moons

instantly to the ocean. Kalousové and Sotin (2018) and Kalousova et al. (2018) described a 2D cartesian two-phase
convection model including partial melting and melt transport through the HP ice layer. These studies consider the
pressure and temperature dependence of the viscosity. In addition, Kalousova and Sotin (2018) and Kalousova et al.
(2018) also include viscosity variations owing to the presence of melt. All those studies concluded that for various
values of ice viscosity, shell thickness and heat flux from the core, mass transfers is possible between the core and
the ocean through the HP ice layer by convection in a two-phase medium. A key aspect common to these models is
the possibility of melting of the HP ice at the rock interface and transfer trough the ice layer, as liquid channels or by
solid-state convection.

While these previous papers consider the possibility of melting at the bottom of the HP ice layer and partial
melting in the bulk, with various levels of approximation, they do not consider the dynamical effect of the solid-liquid
phase equilibrium at the upper boundary of the HP ice layer. Indeed, several studies showed that a melting-freezing
boundary drastically changes the condition for convection in a solid layer and the resulting convection characteristics at
finite amplitude (Deguen, 2013; Labrosse et al., 2018; Agrusta et al., 2020; Morison, 2020). Applied to our study, the
interface between the liquid ocean and the HP ice layer can be set as a phase change boundary condition. Physically,
convective stresses in the solid create a topography of the interface which can be erased by melting and freezing. It
implies a non-zero radial velocity at the surface of the HP ice layer, which significantly increases the efficiency of the
mass transfer through the HP ice layer. This effect can be modeled as a boundary condition for the ice layer controlled
by the phase change coefficient @ (Deguen, 2013; Labrosse et al., 2018, and references therein). The aim of this paper
is to evaluate the implications of the liquid-solid phase change boundary condition for convection in high pressure ice
layer of large icy satellites and water planets.

To this end, we used a numerical model solving the convection in the HP ice layer subject to the phase change
boundary condition. We explored systematically the numerical solution depending on the dimensionless control
parameters (mainly the Rayleigh number and the phase change number) and obtained scaling laws relating output
parameters (bottom temperature, flow velocity) as function of these input dimensionless numbers. We show in this
paper how these scaling laws can be used to make prediction on specific planetary objects, like Titan and Ganymede.
We do not consider two-phase flow in the bulk of the ice layer, as done in some previous studies (Choblet et al., 2017,
Kalousova et al., 2018; Kalousova and Sotin, 2018) to isolate the effect of the phase change boundary condition. We
nevertheless compute, as a post-treatment, the amount of partial melting that we would expect if it was permitted,
which allows us to compare our results to these previous studies.

In section 2 we present the physical and numerical models used to solve the convection problem. The results are
described in section 3. These generic results are then applied to several bodies in subsection 3.3. In section 4 we discuss
the limitations of the results and the possible future work. A summary and conclusion are provided in section 5.

2. Model
2.1. Physical model

Phase change ®
Free slip & Fixed T
Rigid / Free slip
Fixed heat flux q

—>Ice Ih
—> Liquid ocean
HP ice VI
Mantle & Core
Figure 1: Model illustration for the interior of an ocean world with an HP ice layer in direct contact with a liquid ocean
at top and a rocky core/mantle at the bottom (type IV or V of Lammer, 2013, and type H3 of Noack et al., 2016). Our
numerical models treat convection in the HP ice layer.

2.1.1. Governing equations
We want to quantify the heat and mass transfer by convection in HP ice layers of various planetary objects, from
large icy satellites like Ganymede and Titan, to water exoplanets. The large number of control parameters with wide
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Convection in HP ice layer for large icy moons

ranges of possible values among these objects can be reduced by use of dimensionless equations and numbers and the
principle of physical similarity (Barenblatt, 1996). We use the thickness d of the layer as length scale, the diffusion time
d? /x as time scale, with « the thermal diffusivity. For an ice layer subjected to an imposed heat flux g at the bottom, the
relevant temperature scale is gd /k, k being the thermal conductivity. Because we consider an incompressible model
using the Boussinesq approximation, the actual value of the temperature T (dimensional) is irrelevant to the dynamics
and we set the surface temperature Tmp to be equal to the melting temperature. The dimensionless temperature is

T-T,

T=k o
qd

ey
With the dynamic viscosity #, which is considered constant with pressure and temperature through the HP ice layer in
our model, the thermal expansion coefficient a, the gravity acceleration g, the shell inner radius R~ (the upper radius
being R = R™ +d, see fig 1), the reference density p, we complete the set of input parameters except for that relevant
to the phase change boundary condition that is introduced below (§ 2.1.2). Table 2 gives numerical values of these
parameters for Ganymede and a water exoplanet. As is well known (e.g. Ricard, 2015), Rayleigh-Bénard convection in
the Boussinesq approximation (and with the previous variables considered constant) is controlled by two dimensionless
parameters (aside from the one associated with the phase change boundary), the Rayleigh number,

4
Ra, = 28409 @

a kin
and Prandtl number,

Pr=-L 3)

pK
The definition of the Rayleigh number given in eq. 2 differs from the classical one obtained for an imposed
temperature difference and is relevant to the case of an imposed heat flux (Choblet et al., 2017), as considered here.
For the solid HP ice layer, the Prandtl number is large enough (of order 1 x 10%°, see table 2) to be considered
infinite, meaning the inertia of the ice can be neglected in front of viscous forces. Then, the dimensionless conservation
equations of mass, momentum and energy for thermal convection in the spherical HP ice shell under the Boussinesq
approximation for a infinite Prandtl number are the following (e.g. Ricard, 2015):

V-u=0, )
0=-Vp+V?u+Ra,T - T)?, (5)
%+u-VT:V2T, (6)

with u = (v, w) the velocity, p the dynamic pressure, T and T the temperature and steady-state conductive temperature
(see section 2.2.1) and F the radial unit vector.

2.1.2. Solid/Liquid phase change at top boundary

The existence of a solid/liquid phase equilibrium at the top of the ice layer leads to a specific mechanical boundary
condition in place of the classical non-penetrative one usually considered in convection models. This boundary
condition and its implications for Rayleigh-Bénard convection has been the subject of a few previous papers (Deguen,
2013; Deguen et al., 2013; Labrosse et al., 2018; Agrusta et al., 2020; Bolrfo et al., 2021) where interested readers
will find all the details of the derivation of this boundary condition. Here, we only recall the basic ideas leading to this
boundary condition and its implications.

At the interface between the HP ice layer and the ocean, a phase change can occur in either direction, melting or
freezing. The secular evolution of the planetary object leads to a net motion of the interface, which we do not consider
here since it would require a full thermal evolution model that goes beyond the scope of this paper. On the other hand,
the ice flowing vertically toward the interface can cross it by melting and, conversely, liquid water can solidify and
accrete to the HP ice layer above down-welling currents. In practice, this happens because the convective stresses in
the ice layer generate a topography of the ice-water interface. Assuming thermal equilibrium at the interface makes its
temperature equal to that of melting everywhere, but at different depth. This is equivalent to creating lateral temperature
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differences at the same depth in the liquid layer. Convection in the liquid layer act against these lateral variations to
erase them which in turn tends to erase the interface topography by melting and freezing. This requires transporting
latent heat from regions of freezing that provide it to regions of melting that consume it. The behaviour of the boundary
depends therefore on the competition between two processes, topography building by convection in the ice layer and
its erasing by convective transfer in the liquid. Each process has its own timescale and their ratio decides which wins.

The timescale to build the topography at the interface is dictated by the equilibrium between the viscous stress in
the ice layer and the weight of the topography and is

__n
= Apgd’
with Ap = p, — p, the density difference across the interface, p, and p; being the density of the solid and the liquid,
respectively. Using parameter values for Ganymede given in table 2 gives a timescale of order 1 to 125 yr depending
on the value of #.
The timescale for erasing the topography is associated to convection in the liquid layer, with a typical flow velocity
u;, that transports latent heat L. A detailed analysis of this process (Labrosse et al., 2018; Deguen, 2013; Deguen et al.,
2013) gives

(N

—_— psL
Tp = — o, (3)
PiCpity IW’

with ¢, the specific heat of the liquid. This timescale is difficult to estimate but assuming a flow velocity of about

3%x103 ms™! (Computed using Gastine et al. (2016); Soderlund (2019)) and using parameter values from table 2
gives a timescale of order 15 yr. Note that this theory assumes a turbulent flow in the ocean, u; being its typical RMS
value. Considering 7, to be constant in time and uniform in space amounts to two assumptions. The typical timescales
for the fluctuations in the liquid are assumed small compared to that for the dynamics in the solid. In addition, the
turbulence is assumed isotropic. This second assumption could be relaxed by considering a laterally varying value of
7,4 to take into account the effect of rotation on the dynamics of the ocean. However, a proper theory is still lacking for
this type of effect to be included.
The ratio of the two timescales,
o= ©)

Ty

is called the phase change number and controls the behaviour of the boundary. For Ganymede, from the previous
calculations, ® would be in the range [0.1; 15]. This value is a very rough estimate and this range could be larger. The
key point here is that the phase change at the top interface must be efficient. A detailed analysis combining the traction
continuity across the boundary, the energy balance associated with latent heat and thermodynamic equilibrium at the
boundary leads to a single boundary condition for the radial velocity which, in dimensionless form, is (Labrosse et al.,
2018; Deguen, 2013; Deguen et al., 2013; Bolrdo et al., 2021)

ow+22% _ p=o, (10)
or

with w the radial velocity. The vertical velocity varies along the boundary, depending on the convection pattern, as can
be seen on fig 2.c, but the mean radial velocity at the interface is null due to mass conservation. For this reason, in the
following, we use the root-mean-square (RMS) of w to evaluate the efficiency of the mass transfer at the top boundary.
Varying the value of ®@ between 0 and co makes the behaviour of the boundary evolve between end-members. In the
limit case of @ — oo, the radial velocity at the boundary, w;,, must tend to O (fig 3.b) and we recover the classical
non-penetration boundary condition used in all previous studies of convection in icy satellites. This happens if heat
transfer is inefficient in the ocean so that the weight of the topography limits its building and therefore the radial motion,
as shown on fig. 2.a. On the other hand, for ® — 0 fig. 2.b—c, the radial velocity is unconstrained and its radial gradient
is set. This happens if the topography is erased by phase change faster than it is built so that its weight is never limiting
radial flow. The boundary is then permeable, which is known to drastically change the convective regime (e.g. Ricard
et al., 2014; Monnereau and Dubuffet, 2002; Agrusta et al., 2020) compared to the other end-member that is usually
considered. With the estimates discussed above, we expect a rather low value of the phase change parameter but we
explore systematically the effects of changing its value, in the range [1072, o), since it is rather ill-constrained.
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Figure 2: Snapshots of 1/5 of the HP ice shell for a given Ra,/Ra, = 10° for ® - oo (a) and ® = 1072 (b). (c) is a
zoom of (b) with the top radial velocity displayed in green, varying from ~ —1300 to ~ 3350 along the top boundary. The
temperature scale on the right is common to all three panels.

2.1.3. Other boundary conditions

As can be seen on figure 1 and described by equation 2, our model is based on a fixed flux at the bottom boundary
between the core and the HP ice layer and a fixed temperature at the upper boundary between the HP ice layer and
the liquid ocean, which is set to 0 by rendering the temperature dimensionless. It leads to the following temperature
boundary conditions:

T =0, Y

T\ _
(5) -

the * and ~ exponents referring to, respectively, the top and bottom boundaries. As the ice VI is in direct contact with a
rocky core/mantle whose viscosity is orders of magnitudes larger than that of ice, we normally impose a non-penetrative
no-slip (rigid) condition:

u=w =0. (13)

However, since the heat flux is fixed at the bottom, the temperature 7~ varies along the bottom boundary, allowing, in
some cases, pockets or even a global film of melt to form at the interface between the core and the HP ice layer, which
could lubricate the boundary and lead to a free-slip BC, which would imply that:

0X(rw)
7 = 0. (14)

In practice, where melt is present at the bottom, the situation is likely intermediate between the free-slip and no-slip
boundary condition, depending on the thickness of the melt layer and the roughness of the interface. For the sake of
simplicity, we consider the two end-member situations of a free-slip or no-slip bottom boundary condition.

2.2. Numerical method

The first step of this study, for each choice of input parameters as listed in table 1, consists in finding the critical
Rayleigh number Ra, for the onset of convection and the associated mode. For a Rayleigh number lower than Ra,, the
heat transfer within the HP ice layer occurs only by conduction. The conditions for the onset of convection are computed
using a linear stability analysis described in subsection 2.2.1. Having determined the critical Rayleigh number, we use
a mantle convection code to compute finite amplitude solutions, as explained in §2.2.2.
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Figure 3: Figure of a) the minimum (dashed lines), maximum (dashdot lines) and horizontal average (solid lines)
temperatures and b) the radial velocity through the HP ice layer for a given Ra,/Ra, = 10° for ® = 107> (blue lines) and
® — oo (orange lines). The grey line in a) is for a null temperature.

2.2.1. Linear stability analysis

The convection equations and their boundary conditions always admit a steady motionless solution in which heat
is transferred by conduction only. In the present case, the steady conduction temperature profile is:

2
T=_0r 1y, (15)
r

where y = r~ /rt, rt (resp. r~) the dimensionless radius of the upper (resp. lower) boundary of the HP ice layer, with
T —r~ =1 by our choice of the thickness of the layer as length scale to render the equations dimensionless.

Using StabLinRB (https://github.com/amorison/stablinrb), a free computational tool for linear stability
analysis developed by Stéphane Labrosse and Adrien Morison (Labrosse et al., 2018; Morison et al., 2019; Morison,
2020), we looked for the stability of the conductive solution for each study case. Infinitesimally small perturbations are
written as spherical harmonics with coefficient whose radial dependency is written as a sum of Chebyshev polynomials.
Using differentiation matrices for this Chebyshev collocation approach, the linearized problem for each mode is
transformed into a generalized eigenvalue problem. The critical Rayleigh number is the one that makes the real part of
the eigenvalue change sign and the mode which has the minimum critical Ra is the most unstable one. You can refer
to the studies of Morison (2020); Labrosse et al. (2018); Deguen (2013) and Deguen et al. (2013) for further details on
the method used in our study for linear stability analysis and associated spherical harmonics.
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2.2.2. Finite amplitude models

The convection equations (4—6) subject to the boundary conditions described in § 2.1.2 and 2.1.3 are solved using
the mantle convection code StagY'Y (Tackley, 2008) in the spherical annulus two-dimensional geometry (Hernlund and
Tackley, 2008). The runs have been divided into four main categories, low super-criticality (Ra, < Ra, < 10Ra,) or
high super-criticality (Ra, > 10Ra,) for both free-slip and rigid mechanical boundary condition at the bottom. In each

category, values of the phase change parameter ® was varied systematically in the range 1072 to co (no phase change),
with two values of the aspect ratio, y = 0.9 and 0.95 (see table 1). The runs are pursued until a statistically steady-state
is reached, which is the case when all global diagnostics (mean temperature, heat fluxes at both boundaries, RMS
velocity) only fluctuate around a time-independent mean. The chosen grid size depends on the simulation study-case
and boundary conditions, in the form of ny,,, X nz,,, being the number of points in the HP ice shell respectively in
the horizontal and vertical directions. The resolution is deemed sufficient when the global energy balance is satisfied.
We performed calculations with increasing values of nz,,, until this criterion was satisfied, with ny,,, chosen such
that the cells are nearly square (detailed values can be found in the table captions of the supplementary material (see
appendix A)). A vertical grid refinement depending on the study case is also applied at top and bottom boundaries. The
geometry of the problem is adapted to the need of each simulation in order to capture the relevant flow structure: the
convection equations can be solved either on the entire ice shell or only a part of it (see § 3.2 for detailed explanations).

As shown by Agrusta et al. (2020), the phase change boundary condition drastically changes the behaviour of
the boundary layer (and therefore the convective dynamics) compared to the classical non-penetration BC. While in
the classical situation, plumes originating from the opposite boundary have to turn when reaching a non-penetration
boundary, which builds a boundary layer, they can here flow directly through the boundary by melting. This process
still requires to adjust the temperature to that of the boundary but this happens on a distance much smaller than the
thickness of a classical boundary layer. The thickness of a classical boundary layer is set by its stability, and typically
scales as Ra~'/3 for a fixed temperature free-slip situation. On the other hand, the thickness of a phase-change boundary
layer is simply set by the rate of flow toward it 6 ~ 1/wy,, and we will show below that it therefore scales as Ra;I/ 2,
This boundary layer is not driving any dynamics but needs to be resolved to balance heat correctly, which rapidly
becomes prohibitive (in terms of grid spacing and therefore time-step) at high Ra,,.

For this reason, while the fixed temperature boundary condition (eq. 11) is applied at the top boundary for runs
close to the critical value of the Rayleigh number, we adopted another thermal boundary condition for cases with
a high Rayleigh number and small value of @, as initially introduced by Agrusta et al. (2020). The basic idea is to
remove the very thin boundary layer from the calculation and apply a boundary condition relevant to what happens
physically on the edge of that boundary layer. Mathematically, it is described as an intermediate condition between
Dirichlet and Neumann boundary conditions, which respectively corresponds to a fixed temperature or flux condition.
The intermediate Robin boundary condition is defined by the following equation (Agrusta et al., 2020):

ro+a1-n2 -, (16)
or

where 6 is the lateral deviation of temperature compared to the mean and I is an approximation of the Heaviside
function:

@y,
r:% 1 +tanh|z2—% (17)

0

2

2
with wy a threshold velocity. In our study, we used w, = 5.10‘2Ra3, in order to be about half the typical scaling of
the RMS velocity in convection (Agrusta et al., 2020). This function allows the boundary condition to switch smoothly
between the Neumann and Dirichlet options, depending on the flow velocity. For rapidly up-welling flows, w,, > wy,

I' ~ 0 and we apply % = 0, which is expected for a hot plume rapidly melting in contact with the liquid. For
downwelling or slowly upwelling ones, w,,, < wy, the normal fixed temperature condition can be imposed, § = 0.
The validity of this approach has been checked by comparing the results to high resolution calculations using the
Dirichlet BC (eq. 11).
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3. Results

3.1. Onset of convection

Let us first discuss the results of the linear stability analysis that give the conditions for the onset of convection.
The figure 4 shows the convective solution at onset (linear) in the HP ice layer for various values of @ and different
bottom boundary conditions. The linear problem depends on the degree of spherical harmonics but is degenerate in
terms of order. For ease of representation and for comparison with the spherical annulus geometry used for the finite
amplitude calculations, we represent the sectoral harmonics (i.e. with order equal to degree) in the equatorial plane.
For a free-slip BC the critical Rayleigh number Ra, and the number of convective rolls (spherical harmonics degree at
onset) [, of the first unstable mode are always lower than for a rigid BC. Also, both Ra, and I, increase with ® (fig 5).
It is particularly interesting to note that the most unstable mode for a free-slip BC and small values of ® (® < 4)isa
degree 1 mode. A similar result was obtained in previous studies with an imposed temperature at the bottom (Deguen,
2013; Morison et al., 2019) and the present calculations extend that finding to the situation of an imposed bottom heat
flux.

The impact of the boundary conditions can also be observed directly on the shape of flow lines. For small values
of @, the phase change at the top is efficient and the flow lines are open at the top interface, while they are closed when
® — 0. Also, for a rigid BC at the bottom and a free-slip one at the top, the convective circulation is concentrated
near the top interface since horizontal motion is not limited by that type of boundary.

Then, left and middle panels of figure 5 show respectively the evolution of the critical Rayleigh number Ra, and
critical wave-number /, with the phase change number at the top boundary, @, depending on the bottom BC and the
aspect ratio y for the HP ice shell. In all cases the critical Rayleigh number for the onset of convection increases
with @, with important variations in the range ® = 1-100. For a free-slip BC the convection starts for lower values
of Ra, compared to a rigid BC, meaning that the convection is easier to start in that configuration. While the effect
of the aspect ratio y on Ra, is limited, it is important for the wave-number, which is increasing with y, except for a
free-slip BC with @ < 4. The effect of the aspect ratio on the wave-number for classical non-penetrating BC is well
documented (Chandrasekhar, 1961) and is related to the linear stability in the case of planar layers. The large values
of y considered here makes the shell close to being planar but changing y modifies the number of convective rolls of a
given aspect ratio (the one obtained for plane layers) that can fit in. The degree 1 mode obtained for low values of ® and
a free-slip bottom boundary condition can be understood when considering the flow presented on figure 4. In this case,
down-welling occurs on the hemisphere where freezing happens, while up-welling occurs on the other hemisphere,
where melting occurs. The return flow entirely happens in the liquid state, which is not treated explicitly. Such a flow in
the solid minimizes the amount of deformation and, therefore, viscous resistance. For this reason, its critical Rayleigh
number is much smaller than the one obtained at large values of ®. This mode requires free-slip around the core and
is suppressed when using rigid boundary conditions.

Applying the linear stability analysis to a specific ocean world as Ganymede, the critical thickness d, of the HP ice
layer for the onset of convection can be computed. The right panel of figure 5 shows the evolution of this parameter
with @, depending on the bottom BC and the aspect ratio y, using values listed in table 2, when considering reference
values for the heat flux from the core g = 10 mW m~2 and for the viscosity of the ice # = 10! Pa s. Then, to start the
convection on Ganymede considering these reference values, the minimum thickness has to be in 1.5-2.1 km range
for a rigid BC and in 1-1.7 km range for a free-slip BC. For the reference HP ice thickness of 100 km, the Rayleigh
is close to Ra, = 5 x 10® (see eq. 28), which is far above the critical value to onset the convection. However, in the
context of planetary evolution, the thickness of the HP ice layer is expected to evolve and it is interesting to consider
a full range, from the critical value to the large nominal value just mentioned. This is done using the finite amplitude
convection code StagY'Y (§2.2.2).

3.2. Finite amplitude calculations and scaling laws

We ran calculations systematically exploring a wide range of values of the main dimensionless input parameters, the
Rayleigh number and the phase change number, with two values of the shell aspect ratio and two mechanical boundary
conditions at the bottom. The longitudinal aperture of the HP ice layer on which the convection equations are solved is
chosen carefully for each simulation in order to get at least one horizontal period. As can be seen on fig 5, in the case
of a free-slip BC and a low value of @, the most unstable mode is of degree 1. Then, for low super-criticality cases, the
runs have been done on the entire ice shell to capture the relevant flow structure. The figure 6 shows the perturbation
temperature along the HP ice layer for two low super-criticality study-cases. When Ra, = 1.1Ra, (left), a large scale
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Figure 4: First unstable convective modes for Ra, = Ra, as function the bottom boundary condition (Free-slip or rigid)
and the value of the phase change parameter ®. The color gives the temperature anomaly with respect to the steady
conduction profile (arbitrary units, amplitude not constrained by the linear stability analysis) and the contours give the
stream function. The input parameters and output critical Ra and wavenumber [, are provided inside each shell.

flow is dominant and the simulation has to be solved on the entire ice shell. The fact that the dominant degree is not
1 but rather a combination of 2 and 3, contrary to the prediction of the linear stability analysis, can be explained by
the initial conditions chosen for this calculations, a random white noise added to the steady conduction solution. Even
though the degree 1 mode has a larger linear growth rate, if other modes with only slightly lower growth rates have a
larger initial amplitude, they can take over and dominate in the non-linear calculation. When Ra, = 2Ra, (right), the
solution is already dominated by higher degree perturbations. In that case, as in the ones for ® > 10 or a rigid BC
for which the critical harmonics /, is at least around 10 (see fig 5), the simulations can be performed on a part of the
shell to reduce the computational resources (detailed values can be found in the table captions of the supplementary
material (see appendix A)).

The first targets of our study concern the mass flux between the ice layer and the overlying ocean and heat transfer
efficiency by convection in the ice layer. The former is quantified by the root-mean-square (RMS, the mean being
null by virtue of mass conservation) of the radial velocity at the top surface, w;,,, while the latter is measured by the
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Figure 5: The three panels are showing, from left to right respectively, the critical Rayleigh number, critical wave-number
and the minimum thickness d of the HP ice layer for the onset of convection as function of ®, depending on the bottom
boundary condition (BC) and the shell aspect ratio y.

Table 1
Detailed parameters applied to all simulations for each study-case. When several numbers are written in cells, the model
has been run for all possible combinations.

Study case Ra,/Ra, Bottom boundary | Phase change at top ) Y
—2 —1 2
sc1 Freeslip FE;;Z OIS LIOIO | 99,005
1.1,2,3,4,5,6,7,8,9, 10 B .
SC2 Rigid True 107,107, LI0107 |6 9 6 95
False 00
—2 —1 2
sC3 Freeslip FTarll‘See OIS LIOIO | 99,005
5.10',1.10%,5.10%,1.10%,5.10°, 1.10%, 1.10° Trie 02 10-T 110,107
SC4 Rigid d s 0.9,0.95
False 00

dimensionless mean temperature difference across the ice layer, AT, orits inverse, which, in our case of an imposed heat
flux at the bottom, is precisely the Nusselt number, i.e. the ratio between the heat flux and what would be transported
by steady-state conduction, Nu = 1/AT . In the following, we consider the lateral mean temperature 7', because as can
be seen on fig.3a, its variation along the shell can be important. Fully detailed results tables and figures corresponding
to the exploration of the parameters space for all cases described in table 1 can be found in the supplementary material
(see appendix A).

Starting with the low super-criticality cases (Ra, < 10Ra,), figure 7 shows the evolution of both diagnostics, wy,,
and Nu, as function of Ra, for both choices of bottom BC and various values of ®. As expected, the values of w;,, and
Nu rapidly increase with Raq from their values at onset (Raq = Ra,) of convection, 0 and 1, respectively. The increase
rate with Ra, gets larger when smaller values of @ are considered. This behaviour is similar to the one obtained in a
plane layer with different boundary conditions (Agrusta et al., 2020).

Figure 8 shows the global diagnostics wy,, and Nu for both choices of bottom BC and various values of @ for larger
values of Ra, (SC3 and SC4, see table 1). Since these diagnostics and Ra, vary on several orders of magnitude, the
plots use log-log scales. As expected, the values of w;,, and Nu increase with Ra, as power laws. We can also see
that, for a given value of Ra,, w,,, and Nu increase when decreasing @, as the top boundary becomes progressively
more permeable. The evolution of the Nusselt number saturates at some point which seems to depend on the value of
Ra, and the mechanical boundary condition at the bottom: for a rigid BC, the value for ® = 100 is similar to that for
lower values at large values of Ra, but is intermediate for small values of Ra,. For this reason, the exponent of the
Nu=f (Raq) law is different for @ = 100 than for other choices of that parameter.

Lebec et al.: Preprint submitted to Elsevier Page 10 of 25



Convection in HP ice layer for large icy moons

le—-11

0.3

K
o 4
& r0.2
r 0.5 .
-
l ol
Lo.o
»
L d ' r 0.0

N~ |: - |

Figure 6: Snapshot of the perturbation temperature along the entire HP ice layer for Ra, = 1.1Ra, (left) and Ra, = 2Ra,
(right) in the case of a free-slip BC for y = 0.9 and ® = 1072
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Each combination of choice of BC and @ value leads to a power law relationship of the form:

W,y = a,Ral", (18)
1 p

Nu=— =ayRa,", 19
AT T"\%q (19)

(a,. p,,) being the scaling coefficients for the top radial velocity and (ay, fi-) being those for the Nusselt number. These
scaling coefficient depend on the value of the phase change number ® and the mechanical boundary condition at the
bottom.

As can be seen on figure 8, the exponents f, depend on the choice of boundary condition but weakly on ®. On
the other hand, the coefficients a, depend strongly on @, as shown on fig. 9 on which a,, is plotted as function of ®.
In the case of a rigid BC, we get f,, = 0.47-0.53, i.e. close to 1/2, and fr = 0.2-0.22, i.e. close to 1/5. In the case
of a free-slip BC, we obtain f,, = 0.45-0.55 which is also similar to 1/2 but fr = 0.22-0.24 is close to 1/4. The
differences in exponents between the free-slip and no-slip BCs have been explained with some theoretical models in
a different context, notably using a fixed boundary condition on both boundaries (e.g. Roberts, 1979). Adapting that
theory to the present situation falls beyond the scope of this paper but we can explain in a simpler way how f can be
justified.

The fr exponents can be obtained theoretically using the argument of the stability of boundary layers (Malkus,
1954): the thickness of the boundary layer is set by its stability, therefore its Rayleigh number, Ras. The existence of a
boundary layer at the top interface depends on the value of @. As shown on the average temperature profiles on figure
3a, when @ — 0, the boundary layer disappears at the top interface and only one boundary layer of thickness ' has to
be considered at the bottom interface, while there are two boundary layers of thickness 6’ in the case ® — oo. For a
free-slip BC at the bottom interface, when @ — 0,

Ras = Ra,AT5 = A (20)

with Rag the Rayleigh number of the boundary layer, 6 = 6’ /d the dimensionless thickness of the boundary layer and A
a constant related but not exactly equal to the crltlcal Rayleigh number for the instability of the boundary layer (Howard,

1964; Sotin and Labrosse, 1999). As ¢’ = = kAL 5, , primed variables being dimensional, is used to scale temperature, its

dimensionless value is equal to 1 and 1 = ?. Combining with equation 20 gives

1
Nu= AT3Ra,]. @D
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Figure 7: Cases Ra, ~ Ra, for a rigid bottom BC (a)&(b) and a free-slip bottom BC (c)&(d). Left panels (a)&(c) show the
dimensionless radial velocity at the top boundary of the HP ice layer, w,,,. Right panels (b)&(d) show the dimensionless
heat flux (Nusselt number). Both parameters are shown as functions of the Rayleigh Number Ra, and for various values
of @.

With this simple argument, we obtain the exponent f; = 1/4. The coefficient ay = A_}t cannot easily be predicted
from first principles (Sotin and Labrosse, 1999).

On the other hand, when ® — oo, the coefficient f should be the same, but the variation of the a; coefficient can
be computed in order to better understand the figure 8. The derivation is similar but the temperature jump is now split
between the two boundary layers. Neglecting the effect of curvature for simplicity, since the aspect ratio of the shell is
large (see Sotin and Labrosse, 1999, for a more complete derivation), we can assume that each boundary layer takes
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Figure 8: Cases Ra, > 50Ra, for a rigid bottom BC (a)&(b) and a free-slip bottom BC (c)&(d). Left panels (a)&(c) show
the dimensionless radial velocity at the top boundary of the HP ice layer. Right panels (b)&(d) show the dimensionless
heat flux (Nusselt number). Both parameters in function of the Rayleigh Number and for various values of ®.

an equal share of the total temperature jump, therefore
Ras = Ra, 2 5% = A (22)
2
and the dimensionless heat flux from the core is 1 = g—:. Then,

1L
Nu= AT Ra;. (23)
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Figure 9: Variation of the coefficient a,, of the scaling law for the radial velocity at the top boundary as function of the
1

phase change number @ (See eq. 18). For each value of @, it is computed as the mean of w /Ra[f over values of Ra,.

top

As expected for such a reasoning, we get the same exponent but a different expression for the coefficient, ap = 1A_}t.
We can assume that the dynamics of the bottom boundary layer is entirely determined by its own stability, which
implies that the value of A is independent from ®. In that case, we expect the Nusselt number to change by a factor of
2 between the ® — 0 and ® — oo limits, which is larger but similar to what can be seen on figure 8 for a free-slip BC.

Using a more sophisticated theory, Roberts (1979) obtained scaling laws for convection with both free-slip and no-
slip boundary conditions, both considering fixed temperature thermal boundary conditions. In both cases, he obtained
a scaling relationship Nu = aRa”, with p = 1/3 for free-slip BCs and g = 1/5 for rigid BCs. In order to compare
these scaling laws to our results, we need to account for the change of definition for the Rayleigh number:

!
_py 44
Raq = Ra AT (24)
Then,
_ p
"l all ’3
' NMkAT _ akAT agpAT'd 25
1 d d Kn
which gives us 1/AT’ and
’ 1 b
Nu=— = L 29 _ 5ag, (26)
AT AT’ k 1
Finally, for a rigid BC,
1
Nu = arRa, 27

ar being different than previously (See figure 8.d for values).

3.3. Numerical applications to planetary objects

In this section, we show how the dimensionless results obtained in our study can be applied to various planetary
objects using numerical values listed in table 2 to get dimensional results regarding the mass flux across the ice-ocean
interface and the bottom temperature. Some parameters are assumed to be known, essentially because they are not
expected to be too much in error with respect to the listed values. On the other hand, we express our results in a way
that permits to see the effects of a change in the heat flux from the core, the thickness of the HP ice layer and the ice
viscosity, over reference values, all having highly uncertain values.
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Detailed numerical application parameters for Ganymede from Kalousova et al. (2018) and a water-rich exoplanet from
Hernandez et al. (2022).
* Are the reference values used in the numerical application in section 3.3.1
¢ Hussmann et al. (2015).
b Valid for the reference thickness d of the HP ice layer chosen for Ganymede.

¢ Bridgman (1912, 1937) (Valid for the water-rich exoplanet at the ice/ocean interface).
¢ Valid at ice/ocean interface (Tchijov, 2004).

Parameter Symbol  Ganymede Water-rich exoplanet  Unit
Thermal expansivity a 1.5% 1074 2x 107 K-
Gravity g 1.6 8.4 m s—2
Thermal conductivity k 1.6 1.6 Wm~'K-!
Thermal diffusivity K 43x1077 43%x1077 m2s”!
Reference density p 1390 2x10? kgm~3
Density difference at R* Ap 160 - kgm™3
HP ice viscosity n *10" — 10" 10" Pas
Heat flux for silicate core q *10 — 40 30 mWm™2
HP ice thickness d *100 — 400 260 km

Core radius R 1700 —2 000* 5 000 km
Melting temperature at R* T 321° 367 K
Melting temperature at R~ T 332° 800 K
Pressure at R* P* 1378 2x103 MPa
Pressure at R~ P~ 1 600° 30x 10° — 40 x 10° MPa
Latent heat L 334¢ 350° kJ kg™
Heat capacity C, 2 850 2 850¢ J kg™ K

3.3.1. Application to Ganymede

Ganymede is the largest moon of the solar system, with a water-ice shell thickness in the 600-900 km range
(Hussmann et al., 2015). The HP ice layer thickness is estimated between 100 and 400 km (Kalousova et al., 2018).
For this numerical application we consider a HP ice layer reference thickness of 100 km, a reference heat flux from
the core of 10 mW m~2 and a reference ice VI viscosity of 10'3 Pa s (Kalousova et al., 2018). With these parameters,
the Rayleigh number can be computed as

agqpd* d \' -
Ra, = 289P% _ 485 108 a ) il
kxn 10 mW m—2 100 km 1015 Pa's

. (28)
It shows that the reference values give a large value of the Rayleigh number, of order 5 x 108, and larger values can
be obtained for a thicker layer, a larger heat flow from the core or a lower ice viscosity. The reference value is already
quite large, in particular compared to the critical value for the onset of convection for y = 0.9, which is in range
Ra, = 65—-915, depending on the bottom BC and the value of @ (see fig 4). All other parameters being kept identical,
the critical value Ra, = 292 for a rigid bottom BC when ® = 1072 is reached for a thickness of the ice layer around
1.6 km (see fig 5).

Considering first the situation for which the bottom boundary of the HP ice shell of Ganymede is a no-slip one (i.e.
in the absence of liquid water to lubricate that boundary) and the phase change at the top boundary is fast, ® = 1072,
with an aspect ratio y = 0.95, from the scaling laws obtained in § 3.2 on figure 8:

K‘ q 0.47 d 0.88 n -0.47
—0.262Ra"“E = 42,9 4 S - , 29
Wiop 9" MY\ 10 mwW m2 100 km 1015 Pa s @
-038 02 -02
— =0.531Ra*> L =46x 102K [ —L S (30)
AT 4 qd 10 mW m~2 100 km 1015 Pas

The scaling relationship for the temperature difference across the ice layer can be used to compute the mean temperature
at the ice-rock interface T~ from the one at the ice-ocean interface T™ as:

T~ =AT +T" =343K (€29
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Table 3
Results to the numerical applications to Ganymede using parameters from table 2, for ® = 1072 and y = 0.95
Bottom BC Rigid Free-slip
Raq 485%x10° 4.85x 108
w,, (cm yr™) 429 47.6
1/AT (K™')  46x102 0.1
T- (K) 343 331

with Tt = T”T = 321 K (see table 2) the melting temperature of ice VI at the pressure relevant for the ice-ocean
boundary (Kalousova et al., 2018; Bridgman, 1912, 1937). This temperature, obtained for our reference parameters
(eq. 30), should be compared to the melting temperature of ice VI at the pressure relevant for the ice-rock boundary
T, = 332 K (Kalousova et al., 2018; Bridgman, 1912, 1937). This means that taking the nominal values for all the
parameters implies a large amount of melting at the bottom of the ice layer. All these parameters being quite uncertain,
we can instead compute the value of any chosen parameter such that the bottom temperature is equal to the melting
one, all other parameters being kept the same. The melting temperature values T, and T”",' respectively at the bottom
and the top of the HP ice layer depend on the pressure at these corresponding depths and, then, for a fixed rocky core
radius, on the thickness d of the ice shell. For example, still in the case of a rigid bottom BC, for a fast phase change
® = 1072 at the top boundary and taking the reference values for d and #, it is possible to compute the minimum value
g, of the heat flux for which T~ = T, as follow:

pr/(—pr)
kAT _ d3AT
= E0m 1/app) [ 28PE 2T =43 mW m™> (32)
q; d T KN

with AT,, = T." — T'*. Note that the expression in brackets is simply the Rayleigh number of the layer based on the
temperature difference AT,,. For a rigid BC, even a heat flux from the core as small as 4.3 mW m~2 could be sufficient
to melt the bottom of the HP ice layer in Ganymede. This is further discussed in §4.

These calculations have also been performed for a free-slip BC and the results can be seen in table 3 for comparison.
As expected, the free-slip situation leads to a convection that is faster, more efficient to transfer heat and therefore to
a cooler bottom temperature. Then, T~ does not reach the melting temperature when using the reference values of
table 2 for d, g and 5. Indeed, a minimum heat flux of 11.4 mW m~2 would be necessary in the case of a free-slip BC
for the mean temperature to equal the melting temperature. However, the obtained temperature is the lateral mean one,
which varies a lot along the shell (See fig.3a), and is only one Kelvin under T, meaning that pockets of melt likely
exist along the bottom boundary. In addition, the parameters chosen here for Ganymede are rather conservative and it
is in fact likely that significant melting actually occurs.

3.3.2. Application to a water-rich exoplanet

To compare with a larger planetary object, a numerical application has been performed on an hypothetical ocean
exoplanet modelled as described on figure 1, with a surface ocean instead of ice Th. All the values considered for this
application are coming from the study of Hernandez et al. (2022) with some adjustments to match the conditions used
here. We consider a rocky core/mantle of density p, = 6 x 103 kg m™3 with a radius R, = 5 000 km and a HP ice
shell thickness of around d = 260 km in order to have an aspect ratio y = 0.95 as the scaling laws of part § 3.2 are
computed for this value. The aspect ratio considered by Hernandez et al. (2022) is ~ 0.6 and the HP ice layer thickness
considered in their study is much larger than the one used for the current numerical application. Therefore the melting
temperature at the top boundary has to be adjusted and is computed as

pP—pt

——po (33)

T, =Ty + (T, —Tr)
with
P=P —pgz. (34

The pressure considered in Hernandez et al. (2022) at the bottom of the HP ice layer is in the range 30 — 40 GPa for
a melting temperature 7" = 800 K, which corresponds to ice VII. The melting temperature at the top of their HP
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Table 4
Results to the numerical applications to an ocean exoplanet using parameters from table 2, for ® = 1072 and y = 0.95
Bottom BC Rigid Free-slip
Ra, 67x10° 6.7x10°
w,, (cm yr™) 57 61
1/AT (K1) 1x102  24x10°2
T- (K) 830 772

ice layer is T,¥ = 367 K, which implies a pressure of about 2 GPa for ice VII. Then, we can compute the pressure
260 km above the ice/core boundary, which is the top of the HP ice layer in our case. This value should be in the range
25 — 35 GPa and the melting temperature associated is around 730 K. The gravitational acceleration is computed as
function of R, and p, as g = 47Gp,R,/3 = 8.4 ms~2 with G = 6.67 x 10~"! m3 kg~! 572,

The heat flux from the core depends on the composition of the star, which will imply more or less radioactivity inside
the planet. If we consider a star similar to ours, the heat flux is function of the core radius. For a given concentration
in heat producing elements, the total radiogenic heating in the core scales as RS while the surface scales as Rg and,
therefore, its contribution to the heat flux density scales as R,.. As the value of R, chosen for our application is ~ 2.5-3
times higher than the one of Ganymede, the heat flux should be about 3 times higher. For this numerical application
we consider a reference heat flux from the core of 30 mW m~2 and a reference ice VI viscosity of 1017 Pa s. With these
parameters, the Rayleigh number Ra,, the radial velocity at ocean/ice interface wy,, and the Nusselt number é for a

rigid BC and a fast phase change ® = 1072 at the top boundary have been computed as follows:

4 -1
agqpd* 9 R, q d n
Ra, = =1 —6.7%10 , 35
4= Thrn <5 000km /) \30mwm-2/ \260km ) \ 1017 Pas 53
. R 0.47
_ -1 047 _ -1 ¢
Wiop = 32.62 x 10 xRaq =57 cm yr <m)
0.47 0.88 —-0.47 (36)
(o) (o) ()
30 mW m—2 260 km 1017 Pa s ’
R 0.2
L K s31 %10 R = 1 x 102K [ ——e

-0.8 -0.2 -0.2
(o) (o) (o)
30 mW m—2 260 km 1017 Pa's '

The results can be found in table 4 for comparison between rigid and free-slip boundary conditions and with
Ganymede numerical application given in table 3. Obviously, the reference Rayleigh number is higher in the case
of a large ocean exoplanet than for a Ganymede-like body, meaning a more efficient convection leading to a higher
Nusselt number and a higher dimensionless AT, but a larger dimensional temperature gap between the two HP ice layer
boundaries. But, the layer being ~ 2.5 times thicker, the melting temperature gap between boundaries is also important
and this should not have a huge impact on the melt production at the core/ice interface. For the same efficiency of the
phase change at the top, the melting ability at the bottom of the HP ice layer, looking at the temperatures 7~ obtained,
are comparable to the Ganymede case, but the difference of bottom temperature between rigid and free-slip BC seems
to be more pronounced in the case of a large water-rich exoplanet. In fact, for both objects, the temperature difference
across the ice layer is roughly twice larger for a rigid boundary condition than for a free-slip one. Scaling back to
dimensional units for a larger object leads however to larger dimensional differences. In the case computed here, T~
does notreach T, for a free-slip BC but it does for a rigid boundary condition. First of all, as already discussed above for
the application to Ganymede, the exact parameters for this application are subject to discussion and higher temperatures
are possible. But the fact that a free-slip boundary condition leads to a lower value of the bottom temperature than a

Lebec et al.: Preprint submitted to Elsevier Page 17 of 25



Convection in HP ice layer for large icy moons

rigid one remains and this could lead to a conundrum: the free-slip BC that is justified by the presence of melt could
predict its absence while the rigid BC that results from the absence of melt could predict its presence. In this case, we
would expect a mixed situation with the presence of melt where the temperature is high and its absence elsewhere with
a non-uniform boundary condition that depends on the local temperature. Such a situation could be the topic of future
studies.

Finally, the vertical velocity at the top of the HP ice layer, w,,,, is larger for this study case, meaning that the mass
transfer between the core and the ocean should be more important.

4. Discussion

The model and results presented above are simple and concentrate on one effect not considered before, the phase-
change boundary condition at the upper boundary. We showed that this effect alone is sufficient to considerably alter
the solution, its structure and the efficiency of heat and mass transfer. Interestingly, the temperature profiles we obtain
are similar to the ones Kalousova et al. (2018) and Kalousova and Sotin (2018) obtained with a mechanical conditions
that is non-penetrative for the solid but considering the possibility of partial melting in the bulk of the ice layer and
extraction of the liquid.

As mentioned before, in this study we considered the HP ice layer as an isoviscous material, for the sake of
simplicity, while the viscosity is expected to depend on pressure, temperature and melt fraction (Choblet et al., 2017;
Kalousova and Sotin, 2018; Kalousova et al., 2018). To get a hint on the potential effect of viscosity variations,
we performed a single simulation with a depth- (pressure-) and temperature-dependent viscosity following the
dimensionless Arrhenius law established so that the surface viscosity serves as reference in the Rayleigh number:

E+(l-2)V
7 = exp <%—E> (38)

with E and V' the dimensionless activation energy volume. The values E = 230 and V' = 4.6 are chosen for the
simulation to be comparable with the ones of Choblet et al. (2017). This simulation has been ran for a rigid bottom
boundary condition, ® = 1072 and Ra g = 10%. As can be seen on fig 10, the lowest viscosity is located at the
bottom boundary and inside the up-welling hot plumes. This is consistent with the fact that the temperature is higher in
these locations and could reach the melting temperature, implying the formation of melt and a lower viscosity. Beside
that obvious difference in viscosity, the thermal structure of the solution is similar to that obtained with a constant
viscosity, with a boundary layer at the bottom from which hot plumes originate and a passive downward return flow
whose temperature is that of the upper boundary. Comparing fig 11.a) and fig 11.b), we can see that our chosen viscosity
law (eq.38) makes it increase by 10 with depth and vary by more than six orders of magnitude with temperature. Also,
we can observe on fig 11.c) that the RMS radial velocity curve shape is slightly different than the one for an isoviscous
calculation (as can be seen on the blue curve of fig 3.b). In both cases, the radial velocity increases with height in the
layer, but the curvature are somewhat different. Of particular interest here are the local maximum reached in the bottom
boundary layer, where the viscosity is lowest and the increase when getting close to the upper boundary, because of the
decrease of the viscosity with height. When the statistically steady-state is reached, the time-averaged Nusselt number
is Nu = 12.8 and the time-averaged radial velocity at the top is w,,, = 264.9. From the scaling obtained in § 3.2 for a
constant viscosity and the same boundary conditions (See fig 8.a and fig 8.b), the Rayleigh number corresponding to
the radial velocity at the top is Ra,, = 2.5x 10° and the one corresponding to the Nusselt number is Ra,, = 8.1x10°,
compared to the nominal value of 10° used for this calculation. It means that the calculation with this type of viscosity
variation leads to results similar to those obtained with a constant viscosity but a slightly larger Rayleigh number. This
is not surprising since the average viscosity is lower than one. It would however be worth exploring these effects more
systematically in the future, especially if we take into account partial melting.

As already mentioned (§3.2), for some values of the input parameters, we predict a temperature at the bottom of
the ice layer that is larger than the melting temperature. This should result in the presence of melt, either everywhere
or restricted to melt pockets, since the temperature is laterally variable. This melt, containing salts by interacting with
the core, could be transported to the ocean by various processes, as modeled by Kalousova et al. (2018). This partial
melting process has not been considered in this preliminary study, which only takes into account solid-state convection
through the HP ice layer, but could have an important impact on the efficiency of the mass transfer. To justify the need
of adding this property in future models, we computed the regions where melting would happen and the amount of
melt produced in considering Ganymede’s HP ice layer if the temperature field we obtained was not too affected by the
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Figure 10: Snapshots of 1/14 of the HP ice shell for Ra, = 108, ® = 1072 and a rigid bottom boundary condition. The left
(respectively right) panel shows the viscosity variations (respectively temperature) through the HP ice layer.

presence of melt. This is obviously a very crude assumption but it can be useful to provide a first order estimate. For
this calculation, we use the same reference values than previously used in § 3.3.1 and other parameters from table 2.
The variations of the melting temperature T, of ice VI as function of pressure P has been computed from eq. 33, with
P = Pt + pgz, using values given in table 2.

Comparing the actual temperature at each point to the melting value at the same position allows to find places
that would be expected to partially melt. For regions where the temperature T > T,,, the melting temperature at this
depth, partial melting should occur and this should limit the temperature to the melting one, at least as long as the melt
fraction is lower than 1. We compute the expected melt fraction by equating the energy associated with the temperature
in excess to the melting temperature, AT =T — T, to latent heat of melting. The melt fraction is then

C,AT
fm = 17

(39)

with C,, the heat capacity and L the latent heat as defined in table 2. Since this calculation does not account for porous
flow, the melt is assumed to stay in place, even for high fractions. In reality, differential motion of liquid and solid
resulting from gravity would act to limit this melt fraction within the ice layer. The results presented in this part are
therefore only indicative of the relative importance of melt as function of the input parameters.

Figure 12 shows the horizontal average of the melt mass fraction produced into the HP ice layer as function of
the radius for various values of Ra,, considering a rigid BC at the bottom of the ice shell, a phase-change number
® = 1072 and the reference values of g and d identified in table 2, implying a viscosity in the range 10'°-10'8Pa s
which corresponds more or less to the ranges defined for Ganymede. For all values of the Rayleigh number considered,
the melt fraction profiles are similar to the mean temperature profile as shown on figure 3. The melt fraction is largest
at the bottom boundary and decays with radius in the boundary layer until it reaches a nearly constant value in the
bulk. The cases with the lowest values of the Rayleigh number show a slight increase when getting close to the upper
boundary.
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Figure 11: Radial profiles of the minimum (orange), maximum (green) and horizontal average (blue) viscosity (a) and
temperatures (b). ¢) shows the RMS radial velocity profile through the HP ice layer. All the panels come from a varying
viscosity simulation made with Ra, = 10°, ® = 1072 and a rigid bottom boundary condition.
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Figure 12: This plot shows the horizontal average melt fraction f,, produced in the HP ice layer as function of the radius
for a rigid bottom boundary with ® = 1072, y = 0.95, for various values of Ra, in the case of Ganymede, using reference
parameters values given in table 2 for d & q, implying a viscosity in the range 10'®~10'®Pa s which corresponds more or
less to the ranges defined for Ganymede. Note that these figures are an a posteriori prediction from calculations that do
not consider partial melting in a self-consistent way (see text for details).
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Figure 13: Maps of the temperature field (left) and melt fraction (right) for a snapshot at statistically steady-state from the
following simulation: ® = 1072, y = 0.95, Ra, ~ 2.8 X 10°, rigid bottom boundary and applied to Ganymede for d = 100 km
and various values of the heat flux from the core, g = 1 mW m™2, g =5 mW m™2, g = 40 mW m2, as labelled. As the
Rayleigh number and the thickness of the HP ice layer are fixed while the heat flux is varying, it means that the viscosity
is varying in the range 10'°-10"7 Pa s as considered for Ganymede (See table 2). The yellow line on left panels shows the
points where T = T,,, which delimits regions of partial melting. Each panel shows the whole computational domain (1/5"
of the shell) as well as a zoom on a small fraction of the domain. Note that these figures are an a posteriori prediction
from calculations that do not consider partial melting in a self-consistent way (see text for details).
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The melt fraction decreases with the Rayleigh number and reaches zero in the bulk of the layer for Ra, 2 107. In
that case, the melt would refreeze during its ascent before remelting upon reaching the ice/ocean interface. As a mass
transfer mechanism from the core to the ocean, this situation is likely less efficient than the cases with lower Rayleigh
number which allow partial melt to be maintained in the whole layer. The amount of melt produced for low Ra,, cases
in fig 12 reaches very high values which clearly falls out of the range where the assumption of no motion between
phases fails. However, the Rayleigh number expected for Ganymede is at least Ra, ~ 5 X 108 as computed in § 3.3.1,
for which the maximum melt mass fraction produced at the bottom of the HP ice layer would be smaller than for the
ones shown in fig 12.

Figure 13 shows spherical representations of 1/5” of the HP ice shell, with a zoom on several plumes. The left
panels depict the temperature field for various values of the heat flux coming from the core, the yellow line being
the contour on which T = T,,. The expected melt fraction is shown on the right panels of the figure. Each panel
is in fact based on the same snapshot of the results obtained for a rigid BC at the bottom of the HP ice layer when
Ra, = 103 x Ra, ~ 2.8 x 10° and ® = 1072 and differ only by the choice of the heat flux to render the results
dimensional. It shows that three options are conceivable depending on the heat flux.

In the first case, obtained for small values of the heat flux (3 = 1 mW m~2 on fig 13), partial melting only occurs
in hot plumes close to the upper boundary where it can reach a fraction of at most 0.5%. Actually taking into account
partial melting in the model would make this melt rise faster to the ocean but would probably not change the overall
dynamics. Salts can enter the ice layer by contact with the rocky core but is limited by their partitioning behaviour and
by diffusion in both solids, a rather inefficient process. We expect therefore that the salt concentration is rather small
in the ice layer and its effect on the dynamics should be limited (Hernandez et al., 2022). However small in quantity,
all the salts introduced at the bottom should be efficiently transported by convection in the solid.

For an intermediate value of the heat flux ¢ = 5 mW m™2 on fig. 13, we obtain localised melt pockets in the vicinity
of hot plumes, both at their roots and close to the upper boundary, while these are not generally connected with each
other. It means the liquid water would refreeze upon ascending in the ice layer and remelt again before reaching the
overlying ocean. We expect that the liquid in contact with the rocky core would get enriched in salts, which would help
keep it liquid while ascending and potentially making a continuous path toward the ocean, possibly as an independent
porous flow (Kalousovéa and Sotin, 2018; Kalousova et al., 2018; Choblet et al., 2017). If it crystallises on the way up,
the ice-salt mixture is likely to be denser than pure ice, which could slow down the up-welling flow, depending on the
relative effects of salt and temperature on the density. A full treatment of that case requires a model that includes both
a two-phase-flow approach (Kalousova and Sotin, 2018; Kalousova et al., 2018) and a proper treatment of composition
variations. This will be the topic of our future studies.

Finally, for a large heat flux ¢ = 40 mW m~2 on fig 13, we get melt everywhere at the bottom that even reaches
complete melting at places (melt fraction equal to 1). If the melt is so rich in salts that it is denser than pure ice, we
expect a full layer of liquid below the ice layer, which would require applying a phase change boundary condition
there as well as at the surface. Previous studies (Deguen, 2013; Morison et al., 2019; Morison, 2020) show that we
should expect a totally different flow pattern dominated by a degree one mode of convection, a translation of the shell.
This is a very efficient heat transport mechanism that would act to cool down the core very efficiently and freezing the
dense water. Clearly, a more complete study of that scenario is needed to conclude. On the other hand, in the likely
situation where the liquid water contains a small enough fraction of salt to stay less dense than the ice above, it is
likely to transport it very efficiently toward the ocean as a porous flow. Even with our purely solid calculations, we
predict a continuous connection between the melt layer at the bottom and the upper boundary, a situation that would
be reinforced by the presence of salts in the water. We therefore expect this situation to be the most efficient one to
transport salts from the core to the ocean.

Several choices have been made for the numerical applications and need to be discuss (See § 3.3). First, despite
the range estimated for the value of ® for Ganymede in § 2.1.2, we chose ® = 10~ for the numerical application (See
§ 3.3.1). This range is a very rough estimate and according to figure 9, between ® = 1072 and ® ~ 10, the coefficient
a,, of the scaling law for the radial velocity hardly varies. Therefore, we chose the most extreme case among those we
have studied for perform these calculations. Also, the scaling laws in § 3.2 are established for an aspect ratio in the
range 0.9-0.95 (See table 1). For Ganymede, this ratio is not yet well constrained, with a value varying from 0.8 to
0.95 depending on the core radius, the thickness of the HP ice layer and the period considered in the different studies.
From the study of Bland et al. (2009), in the thermal history of Ganymede, the thickness of the HP ice layer could
have vary between 100 km for a heat flux of about 25 mW m~2 and 500 km (~700 km if the ocean is closed) for a heat
flux of about 5 mW m~2. The aim of this first numerical application was not to conclude about the actual efficiency of
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heat and mass transfers from the core to the ocean on Ganymede, but to give an idea of what kind of exchanges could
happen through an HP ice layer for that type of planetary objects. Then, we chose to base this numerical application
on the study of Kalousova et al. (2018), which considers a large range of combinations between the heat flux from the
core and the thickness of the HP ice layer and we decided to represent the extreme case with the smallest values of ¢
and d, which means a minimum of melt at the bottom, in order to observe if melt could occur at the interface between
the core and the HP ice shell even in this specific case. In addition, the main parameters currently not well constrained
(g, d and ) are kept in clear in the application equations (See eq. 28, eq. 29 and eq. 30) and can be quickly modified to
fit another planetary object, as Titan. Finally, future missions should one day allow to better constrain these parameters
for various bodies and this study will allow to quickly conclude about the presence of melt at the bottom and the mass
transfer efficiency through the HP ice layer.

5. Conclusions

This paper addresses the possibility of convection in a high pressure ice layer between a solid core and a liquid
water ocean on icy/water-rich bodies and its heat and mass transfer efficiency. We include an effect not considered
previously in this context: the solid-liquid phase change at the upper boundary and its implications for the mechanical
boundary condition. As shown by previous papers in other contexts (Deguen, 2013; Deguen et al., 2013; Labrosse
et al., 2018; Morison et al., 2019; Agrusta et al., 2020), this leads to a non-zero vertical velocity at the ocean/ice
interface, a decreased value for the critical Rayleigh number, a markedly different thermal structure and an enhanced
heat and mass transfer efficiency. In order to conclude about the effect of this only aspect of the problem, convection
of constant-viscosity pure solid water ice has been considered. Compared to previous papers that consider the effect
of the phase change boundary condition, we consider here several aspects that are specific to the application of the HP
ice layers in contact with a rocky core: we consider a thin spherical shell, with boundary conditions at the bottom not
considered before, an imposed heat flux and either a rigid or free-slip mechanical condition. On the other hand, for the
sake of simplicity, we have not included the effect of variable viscosity and partial melting that were considered by
some previous studies (Choblet et al., 2017; Kalousova et al., 2018; Kalousova and Sotin, 2018). Future studies should
be performed to combine all these effects.

First of all, our results largely confirm those obtained on the effect of the phase change boundary condition in other
contexts. The critical Rayleigh number decreases with a decrease of the phase change number, while the wavelength
of the most unstable mode increases (Deguen, 2013; Labrosse et al., 2018; Morison, 2020). The Rayleigh number
expected for the HP ice layer of most icy satellites and planets is expected to be largely supercritical and, in that
regime, the radial velocity at the upper boundary and heat transfer efficiency, as measured by the Nusselt number,
scale as power laws of the Rayleigh number (Agrusta et al., 2020). With the setup considered here, the exponents are
close to 1/2 and 1/5 for the velocity and the Nusselt number, respectively, for a rigid BC at the bottom and 1/2 and
1/4 for a free-slip BC. The coefficients of the scaling laws increase when the phase change number is decreased, which
eases the phase change, by roughly a factor 2 between end-members for the Nusselt number.

The scaling laws obtained in a dimensionless parameter space can be easily applied to any object by chosing
the relevant values of all parameters. Section 3.3 presents applications to Ganymede and a hypothetical large water
exoplanet, imposing values for the best constrained parameters and leaving the possibility of adjusting around reference
values for the others, in particular the heat flux from the core, the ice layer thickness and its viscosity. In both cases,
we find a typical RMS velocity across the upper boundary of the order of 50 cm yr~! in the limit of a small phase
change number. With such values, the mass exchange between the ice and the overlying ocean should be quite efficient
and any salt added to the ice layer by interacting with the underlying core should be easily transported to the ocean.
Conversely, if the ocean starts already salted, the efficient mass transfer at the top of the HP ice layer should lead to a
rapid chemical equilibrium (Bolrdo et al., 2021).

Using the heat transfer scaling laws, we can predict the temperature at the bottom of the HP ice layer as function
of the governing parameters. Using the reference values, we predict that the mean temperature at the bottom of the
ice layer is close to the melting temperature, both for Ganymede and a large water planet. All parameters being equal,
the temperature is lower for a free-slip boundary condition at the bottom than for a no-slip one but in both cases, it
is close to the melting one. Considering the lateral variations of the temperature, it means that we should expect the
presence of partial melt at least in some areas of the core-ice interface, and the mechanical boundary condition should
be intermediate between the two end-members considered in this study. Chemical interaction with the rocky core by
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hydrothermal activity should enrich this melt in various salts, and its upward motion by porous flow should make it
freeze and bring salts in the ice layer. The effect of this salt on convection remains to be studied in details.

Further studies focusing on salts and partial melting will complete the model in order to be more relevant to
conclude about mass transfer efficiency through HP ice layer on icy/water-rich bodies. As several parameters are
not well constraint yet, these studies will be useful when more information from future exploration missions will
be available in order to conclude about the habitability of these bodies from this perspective.
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