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Abstract

In this paper we present a new problem arising in the context of non-emergency transportation of
patients. We consider a hospital (the depot) and a set of patients with a medical appointment.
Patients require either to go from home to hospital (inbound request) or from hospital to home
(outbound request). The problem can be addressed as a Pickup and Delivery Problem, but the
fact that all transportation requests are connected to the depot also allows tackling it as a special
Multi-Trip Vehicle Routing Problem. We adopt the second standpoint and call it the Multi-Trip Ve-
hicle Routing Problem with Mixed Pickup and Delivery, and Release and Due dates. We propose a
specialized branch-and-price algorithm and demonstrate computationally that our approach outper-
forms a classical branch-and-price algorithm based on the Pickup and Delivery Problem modeling.
We also show how our algorithm can be adapted to the solution of the Vehicle Routing Problem
with Simultaneous Pickup and Delivery and Time Windows, and obtain new optimal solutions on
benchmark instances.

Keywords: Medical transportation, pickup and delivery, multi-trip vehicle routing, column
generation.

1. Introduction

Since the seminal paper of Dantzig and Ramser (1959) that introduced the Vehicle Routing
Problem (VRP), thousands of research papers dealing with different variants of the VRP have been
published. A wide range of formulations and solution approaches have been proposed and allow to
tackle many types of real-world applications for the transportation of goods or people. Readers are
referred to the book by Toth and Vigo (2014) for a relatively recent overview of the field.

In this paper we are interested in the problem of transporting patients to hospitals for medical
appointments, and back home after their appointments. Vehicle routing problems in the context of
medical transportation have been widely studied, especially in the context of emergency services.
Works dealing with non-emergency transportation, like ours, are scarcer. We consider a hospital
and a set of patients with a medical appointment, that have either to be picked up at home and
transported to the hospital or the other way around. Appointments define time constraints that we
call release dates (time at which patients are available for transportation) and due dates (time at
which they must be arrived at their destination). Vehicles are available at the hospital to achieve
these tasks and for more efficiency, patients can be regrouped in the same vehicle, as long as time
constraints and the vehicle capacity are satisfied.
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Clearly, the studied problem is a special Pickup and Delivery Problem (PDP), with every patient
being moved from a pickup point to a delivery point. As transportation requests concern persons,
it is also a special Dial-A-Ride Problem (DARP). However, the fact that all transportation requests
start or end at the hospital makes this PDP very specific. Actually, the problem can also be viewed
as a special multi-trip VRP (MTVRP), with vehicles performing multiple trips from the depot
(the hospital). We adopt this standpoint and demonstrate that it helps solving the problem more
efficiently.

Seen as a multi-trip VRP, the problem, however, raises some important issues. First, trips
combine two types of requests: inbound requests, for patients that will be picked-up at their home
location and transported to the hospital, and outbound requests, for patients that are initially
at the hospital and need to be transported back home. It implies a complex management of the
vehicle capacity, similar to that encountered in PDPs. Second, operations at home locations are
not only constrained in time by the release date (resp., due date) at this node, but also by the due
date (resp., release date) at the hospital, which implies a complex time management. Given the
existing literature, our problem can be identified as a Multi-Trip Vehicle Routing Problem with
Mixed Pickup and Delivery, and Release and Due dates. In the following, we coin it MTMPD-RD.

The main contributions of this paper are threefold. First, we introduce a new variant of the
VRP, the MTMPD-RD, which is motivated by the non-emergency patient transportation. Second,
we present a branch-and-price algorithm specifically designed for this problem and we evaluate it
through an extensive computational campaign; in particular we show the benefits of our approach
against an off-the-shelf PDP branch-and-price algorithm and against a two-phase approach in which
mono-trip routes are generated first and a trip-to-vehicle assignment procedure is applied second.
Third, we show how our algorithm can be used to solve the Vehicle Routing Problem with Simul-
taneous Pickup and Delivery and Time Windows, and we close some benchmark instances for this
problem.

The paper is organized as follows: Section 2 reviews the literature related to the MTMPD-RD.
Section 3 describes the problem and provides a mathematical formulation. Section 4 describes the
proposed solution method, a branch-and-price algorithm with a column generation to solve the
linear relaxation. Section 5 describes the pricing problem used in the column generation algorithm.
Section 6 details the used instances and the experiments and discusses obtained results. Finally,
Section 7 concludes this paper, summarizing our findings and suggesting possible extensions to this
work.

2. Literature review

In this section, we position the MTMPD-RD in the literature. As briefly introduced in Section 1,
the MTMPD-RD is a variant of the PDP, and of the MTVRP. Also, it concerns the non-emergency
transportation of patients and can be assimilated to a DARP. In the following, we respectively
position our problem regarding the PDP, the MTVRP, the DARP and the non-emergency trans-
portation literature.

Positioning regarding the PDP literature

PDP have met a considerable interest in the literature. For complete states of the art, interested
readers are referred to Berbeglia et al. (2007) and Battarra et al. (2014).

Berbeglia et al. (2007) propose a classification of the different variants of the PDP. PDPs are
classified according to the route structure to be considered and the type of demand. Each variant
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can further be divided into two variants, a single vehicle and a multiple-vehicle variant. The three
main classes classified according to the route structure are the many-to-many problems (M-M),
the one-to-many-to-one problems (1-M-1), and the one-to-one problems (1-1). In M-M problems,
a commodity may have multiple origins and destinations and a location may be the origin or
destination of multiple commodities. This class is the least studied in the literature as it is the one
with the least concrete applications. In 1-M-1 problems, some commodities are delivered from the
depot to customers and other commodities are picked up at the customers’ locations and returned
back to the depot. The 1-M-1 has several applications. For example, in the beverage industry, full
bottles are delivered to customers while empty ones are returned to the depot (Privé et al., 2006).
In 1-1 problems, a commodity has a single origin and a single destination. This problem arises
in the context of urban carrier operations and maritime shipping, among others, and also in the
context of passenger transportation, where it is defined as a DARP (Cordeau and Laporte, 2003;
Cordeau, 2006). A recent review (Molenbruch et al., 2017) provides a comprehensive classification
of the DARP literature.

Clearly, the MTMPD-RD is classified within the 1-M-1 class, since commodities are transported
either from the depot to customers or from customers to the depot. The 1-M-1 problems can
be classified according to the demand type. If customers ask for a simultaneous service, i.e., a
combined service of pickup and delivery with at least one customer asking for both a pickup and a
delivery, the problem is called the Vehicle Routing Problem with Simultaneous Pickup and Delivery
(VRPSPD). The VRPSPD is the most generic and studied variant of 1-M-1 problems. Interested
readers are referred to Koç et al. (2020) for a complete literature review. If every customer requires
either a pickup or a delivery, but not both, the problem is said single demand. The MTMPD-RD
is a single-demand problem.

In the 1-M-1 with single demand, two classes can be derived depending on the way commodities
are handled. When all deliveries must be served first followed by all pickups, the problem is said
with backhaul. When pickups and deliveries can be mixed, the problem is said mixed (e.g., Vehicle
Routing Problem with Mixed Pickup and Delivery (VRPMPD), see for example Mosheiov (1998)).
The VRPMPD is actually a special case of the VRPSPD in which no customer makes a combined
demand. So a valid solution method for the VRPSPD is also valid for the VRPMPD.

Very few exact solution methods have been developed for the VRPSPD and the VRPMPD.
Subramanian et al. (2013) propose a branch-and-cut-and-price algorithm to solve the VRPSPD.
Instances with up to 100 customers are solved optimally. To the best of our knowledge, it is
currently the best exact solution for the VRPSPD, as well as for the VRPMPD. The MTMPD-RD
is a VRPMPD in which we add release and due dates and the possibility of performing multiple
trips.

In the literature, the VRP with Simultaneous Pickup and Delivery and Time Windows (VRP-
SPDTW) is the closest problem to the MTMPD-RD. However, the VRPSPDTW does not allow
multiple trips. To the best of our knowledge, Angelelli and Mansini (2002) were the first authors to
propose a method to solve the VRPSPDTW and until now, they are the only ones who proposed an
exact method. They developed a branch-and-price algorithm to solve the VRPSPDTW minimizing
the total cost. They tested their method on modified Solomon’s instances (from Solomon (1987),
initially designed for the Vehicle Routing Problem with Time Windows (VRPTW)) with up to 20
customers.

Since then, several authors have proposed heuristics to solve the VRPSPDTW. In these heuris-
tics, the VRPSPDTW is usually defined as a hierarchical bi-objective problem: a primary objective
minimizes the number of vehicles used and a secondary objective minimizes the total distance. Wang
and Chen (2012) introduce new instances from Solomon’s instances with up to 100 customers and
presents a genetic algorithm to solve the problem. Several other heuristics have been proposed and

3



evaluated on the same instances: a parallel simulated annealing algorithm in Wang et al. (2015),
a Tabu Search algorithm in Shi et al. (2018), an Adaptive Large Neighborhood Search with Path
Relinking in Hof and Schneider (2019), and a lexicographic-based two-stage algorithm in Shi et al.
(2020).

Positioning regarding the MTVRP literature

The multi-trip Vehicle Routing Problem (MTVRP) was introduced in Fleischmann (1990), which
argues on the necessity for vehicles to perform multiple trips when demands are high compared to
vehicle capacities and travel times are short. As explained in the survey on multi-trip vehicle routing
problems by Cattaruzza et al. (2016), the interest for these problems in the literature grew in the
last years, essentially due to the development of new city logistic distribution systems and the usage
of small eco-friendly vehicles.

In the literature, different naming have been used to refer to the use of multiple trips. In this
paper we use the terms trip and route. A trip is a sequence of customer location visits starting and
ending at the depot and without any intermediate stop at the depot. A route is a succession of one
or several trips processed by a single vehicle.

Despite the gain of interest for the use of multiple trips, publications on exact methods remain
limited. Koc and Karaoglan (2011) propose a branch-and-cut algorithm, while Mingozzi et al.
(2013) describe an exact algorithm for the MTVRP based on two set-partitioning formulations and
column-and-cut generation procedures for the linear relaxation. Hernandez et al. developed two
branch-and-price algorithms: for the MTVRP with time windows (Hernandez et al., 2016) and for
the MTVRP with time windows and limited trip duration (Hernandez et al., 2014). Hernandez
et al. (2016) also compare route-based and trip-based formulations i.e., formulations where columns
define complete routes or single trips. Clearly, the latter limits the size of the search space in the
pricing problem because the search is limited to trips instead of sequence of trips; but conversely,
it complicates the master problem in which the selected trips have to be able to combine into
a feasible set of routes. Computational experiments show a slight advantage for the trip-based
formulation on some instances, at the price of a much more complex implementation. In this work
we adopt the route-based model. More recently, Paradiso et al. (2020) report a seven-step solution
framework that allows solving efficiently different variants of the MTVRP. The framework relies
on the combination of many ideas: the concept of structure (roughly speaking, a structure is a
trip whose departure time is free), the generation of a relevant set of structure thanks to column
generation and thanks to different relaxations, a branch-and-cut algorithm to optimally combine
structures, ng-routes, subset-row inequalities, among others.

Positioning regarding the DARP and the non-emergency transportation literature

The literature on non-emergency transport of patients is relatively poor, the emergency case
having attracted more attention. Fogue et al. (2016) studie a problem that shares many similarities
with ours. The study focuses on the inconveniences of patients with wheelchairs or on stretchers.
It deals with several health facilities and the goal is to minimize both the average waiting time of
patients and the ambulance usage. The authors proposed a two-phase heuristic: first, a genetic
algorithm assigns requests to drivers, and second, a scheduling algorithm builds driver routes. The
authors tested the algorithm on different scenarios obtained from a real ambulance company. The
experiments show that the solution provided by the proposed algorithm outperforms human experts,
reducing the average waiting time of patients and increasing the ambulance usage.

Lim et al. (2017) studie a non-emergency ambulance service met by Hong Kong public hospitals.
The objective is threefold and hierarchical: first, maximizing the number of requests served; second,
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minimizing the total cost and third, balancing the workload for the staff. The authors proposed
a local search metaheuristic using a variable neighborhood descent procedure. They applied their
algorithm to real-world instances. The results show that the algorithm outperforms the human
experts, improving the number of requests served.

As previously stated, non-emergency transportation of patients can be defined as a DARP.
Indeed, a DARP is a pickup and delivery problem with time windows for transportation of people
with extra client convenience constraints. The standard definition of the DARP (Cordeau and
Laporte, 2003) states that, the ride time of a user must not exceed a maximal duration L and routes
must respect a maximum route duration. The MTMPD-RD distinguishes from this definition in
three points. First, we propose a formulation with a release date at the pickup node and a due
date at the delivery node instead of classic time windows and a constraint to limit ride time of a
user. Second, in the MTMPD-RD route duration is not limited. Finally, the main specificity of the
MTMPD-RD is that all requests are linked with the depot, either the pickup or the delivery node is
the depot and multi-trip is allowed. Several variants of the DARP, however, show some similarities
with our problem.

Parragh et al. (2012) include staff/accompanying persons which have restrictions on availability
and working time. This enforces to come back regularly at the depot where are located the staff
members. Other constraints can enforce to come back regularly at the depot, like lunch breaks or
vehicles disinfection (Zhang et al., 2015; Liu et al., 2015). In these cases, multi-trip is allowed but
requests are still characterized by a pickup and a delivery node.

Liu et al. (2015) point out that in real-world applications, several requests might have the depot
as the pickup or delivery location. They adapted their model by allowing the pickup or drop-off
operations on these requests with large time windows to be grouped together which reduces the size
of the graph and, the service time at the new node is equal to the sum of the concerned clients’
service time.

Qu and Bard (2013) present a problem motivated by the route planning for Program of All-
Inclusive Care for the Elderly (PACE) organisation. It consists in transporting elderly people
between their home and activity centers for socializing, or to go to a medical appointment. The
main specificity of the problem is that patients have different mobility type, so they might require a
simple seat, or more space for a walker or a wheelchair. Hence PACE owns different types of vehicles
whose interior can be modified. The problem is defined as a heterogeneous Pickup and Delivery
Problem with configurable vehicle capacity. The paper presents a Mixed Integer Linear Program
(MILP) formulation of the problem and an Adaptive Large Neighborhood Search algorithm. The
same authors extended their work in Qu and Bard (2015) providing a branch-and-price-and-cut
algorithm. The algorithm is tested on real instances and randomly generated instances and can
solve instances with up to 50 customers to optimality. Other DARP variant problems are solved
with exact methods (Cordeau, 2006; Luo et al., 2019).

3. Problem description and mathematical formulation

3.1. Problem description

The goal of the problem is to optimize the way customers are transported to or from a central
depot on a time horizon [0, Tmax]. This depot is denoted v0 and customer locations v1 to vn.
When a customer needs to be transported from their location to the depot, we call it an inbound
request. Otherwise, when the customer is transported from the depot to their location, it is called
an outbound request. We denote by N+ the set of inbound requests and by N− the set of outbound
requests. N = N+∪N− is the union of these two sets. We also equivalently denote N = {1, . . . , n},
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Figure 1: Route timing example

where the customer location of request i is vi. In what follows, terms request, patient and customer
will be used indifferently.

With each request i ∈ N is associated a demand qi ≥ 0, a release date ri, a due date di and a
service time si. The demand indicates the number of people involved in the request. The release
date is the time at which these people are available at the pickup node. The due date is the latest
allowed arrival time at the delivery node. The service time is the time needed at the customer
location for pickup (inbound request) or drop off (outbound request). A time might also be spent
at the depot, for pickups and drop-offs as explained below.

The transportation network can be represented by a complete graph G = (V,A), where V =
{v0, v1, . . . , vn} and A = {(vi, vj)|vi, vj ∈ V, i 6= j}. A travel time tij and a travel cost cij are defined
on each arc (vi, vj) ∈ A. A homogeneous fleet M = {m1, . . . ,mK} of K vehicles of capacity Q is
available to satisfy transportation requests. Vehicle routes consist of one or several successive trips,
starting and coming back to the depot. Each trip is allowed to mix inbound and outbound requests.
When leaving the depot (starting a new trip), a vehicle can either be empty (the trip will not fulfill
any outbound request) or not. In the second case, a constant pickup time TP is counted, before the
vehicle can leave and after all release dates associated with the outbound requests served in the trip
are passed. When returning to the depot (ending a trip), a vehicle can again either be empty (the
trip did not fulfill any inbound request) or not. In the second case, a constant time TD is counted
for drop-off.

Figure 1 illustrates on a simple example the time constraints that have to be satisfied. Signs +
and − respectively indicate inbound and outbound requests. The route is made of three trips. In
Trip 1, the vehicle has to serve two outbound requests for patients 3 and 6. The vehicle thus leaves
the depot not before time max(r3, r6) +TP , when the two patients are ready and picked-up. It first
goes to the location of inbound patient 1. If it arrives earlier than r1, it waits until the patient is
ready (time r1). Then, a time s1 is spent for pickup. The vehicle then successively goes to locations
v3 and v6 for drop-offs. These locations respectively need to be reached before due dates d3 and
d6. Once these locations reached, drop-offs times s3 and s6 are respectively spent. At worst, the
trip continues from v6 at time d6 + s6. Then, patient 4 is picked-up (not before r4, with service
time s4) and the vehicle returns to the depot with patients 1 and 4 inside. Due dates for these
patients impose that the depot is reached before time min(d1, d4). When the depot is reached, the
two patients leave the vehicle, for a drop-off time TD. The vehicle is now empty and ready for a
second trip. Trip 2 serves only one outbound request (patient 2), so the vehicle might have to wait
for time r2 + TP before starting. After having dropped-off patient 2 (before d2, with service time
s2), the vehicle returns to the depot empty. The arrival time is only constrained by Tmax and no
drop-off time is incurred. Furthermore, as Trip 3 only contains an inbound request (patient 5), the
vehicle can restart immediately. Patient 5 is picked-up (not before r5, with service time s5), the
vehicle returns to the depot before d5, a drop-off time TD is added and the vehicle route is finished,
at worst at time Tmax.

A solution is feasible if it contains at most K routes, serves all requests and is such that all
routes are valid, where a route r is valid if:
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• r starts and ends at the depot (with one or several trips),

• the vehicle capacity is never exceeded in the route,

• the timing of the route is consistent with release dates, due dates, service times and the time
horizon, as illustrated with Figure 1.

The objective is to minimize the total travelling cost. Table 1 reports the notation introduced in
the definition of the MTMPD-RD.

In the following, we assume that instances are not trivially unfeasible. In particular, rk + sk +
tk0 ≤ dk holds for all inbound customers and rk + TP + t0k ≤ dk holds for all outbound customers.
Furthermore, for inbound customers, we assume that dk ≤ Tmax − TD to leave time for drop-off
before the end of the time horizon. Finally, we assume that the triangle inequality holds for the
travel time and the travel cost matrices.

Table 1: Notation

Sets

N = {1, . . . , n} set of requests
V = {v0, v1, . . . , vn} vertices of the graph
A = {(vi, vj)|vi, vj ∈ V, i 6= j} set of arcs
G = (V,A) transportation network
M = {m1, . . . ,mK} fleet of vehicles
N+ set of inbound requests
N− set of outbound requests

Parameters

n number of requests
K number of vehicles
Q vehicle capacity
qi demand of customer i
ri release date of customer i
di due date of customer i
tij travel time between nodes vi and vj
cij travel cost between nodes vi and vj
si service time at location vi of customer i
TP pickup service time at the depot
TD delivery service time at the depot
Tmax ending time of the horizon

3.2. Mathematical formulation

We now propose a mathematical formulation for the MTMPD-RD. Usually in the literature,
1-M-1 pickup and delivery problems are formulated either using a commodity flow model or a
vehicle flow model (Koç et al., 2020). Instead of using these formulations, we adapt the vehicle flow
formulation presented in Cattaruzza et al. (2016) for the MTVRP.

In order to represent the trips, we introduce set H = {0, . . . , n − 1} to number trips within a
vehicle route. In the worst case, a vehicle can use up to n trips. The decision variables are reported
in Table 2. Note that for time variables τkti and for load variables ukti , we introduce a duplicate of
the depot, vn+1, to differentiate between the start and the end of the trip.
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Table 2: Decision variables

Variables

xktij ∈ {0, 1} 1 if trip t ∈ H of vehicle mk ∈M uses arc (vi, vj) ∈ A, 0 otherwise

ykti ∈ {0, 1} 1 if trip t ∈ H of vehicle mk ∈M serves request i ∈ N , 0 otherwise
ikt ∈ {0, 1} 1 if at least one inbound request is served in trip t ∈ H of vehicle mk ∈M, 0 otherwise
okt ∈ {0, 1} 1 if at least one outbound request is served in trip t ∈ H of vehicle mk ∈M, 0 otherwise
τkti ≥ 0 time at which trip t ∈ H of vehicle mk ∈M starts service at node vi ∈ V ∪ {vn+1}
ukti ≥ 0 load of vehicle mk ∈M on trip t ∈ H leaving node vi ∈ V ∪ {vn+1}

Using parameters and variables described in Tables 1 and 2, we propose the following mathe-
matical formulation to model the MTMPD-RD.

min
∑

(vi,vj)∈A

cij
∑

mk∈M

∑
t∈H

xktij (1)
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subject to∑
mk∈M

∑
t∈H

ykti = 1 ∀i ∈ N (2)

∑
vj∈V\{vi}

xktji = ykti ∀i ∈ N , ∀mk ∈M, ∀t ∈ H (3)

∑
vj∈V\{vi}

xktij = ykti ∀i ∈ N , ∀mk ∈M, ∀t ∈ H (4)

∑
vj∈V\{v0}

xkt0j ≤ 1 ∀mk ∈M, ∀t ∈ H (5)

∑
vi∈V\{v0}

xkti0 ≤ 1 ∀mk ∈M, ∀t ∈ H (6)

ikt ≤
∑
i∈N+

ykti ≤ |N+|ikt ∀mk ∈M, ∀t ∈ H (7)

okt ≤
∑
i∈N−

ykti ≤ |N−|okt ∀mk ∈M, ∀t ∈ H (8)

ukt0 =
∑
i∈N−

qi × ykti ∀mk ∈M, ∀t ∈ H (9)

uktj ≥ ukti + qj −Q(1− xktij ) ∀(vi, vj) ∈ A, j ∈ N+, ∀mk ∈M, ∀t ∈ H (10)

uktj ≥ ukti − qj −Q(1− xktij ) ∀(vi, vj) ∈ A, j ∈ N−, ∀mk ∈M, ∀t ∈ H (11)

uktn+1 =
∑
i∈N+

qi × ykti ∀mk ∈M, ∀t ∈ H (12)

ukti ≤ Q ∀vi ∈ V ∪ {vn+1}, ∀mk ∈M, ∀t ∈ H (13)

τktj ≥ τkt0 + TP × okt + t0j − Tmax(1− xkt0j) ∀(v0, vj) ∈ A, ∀mk ∈M, ∀t ∈ H (14)

τktj ≥ τkti + si + tij − Tmax(1− xktij ) ∀(vi, vj) ∈ A, i 6= 0, j 6= 0, ∀mk ∈M, ∀t ∈ H (15)

τktn+1 ≥ τkti + si + ti0 − Tmax(1− xkti0) ∀(vi, v0) ∈ A, ∀mk ∈M, ∀t ∈ H (16)

τktn+1 ≥ τkt0 ∀mk ∈M, ∀t ∈ H (17)

τk,t+1
0 ≥ τktn+1 + TD × ikt ∀mk ∈M, ∀t ∈ H\{n− 1} (18)

Tmax ≥ τk,n−1
n+1 + TD × ik,n−1 ∀mk ∈M (19)

τkti ≥ ri × ykti ∀i ∈ N+, ∀mk ∈M, ∀t ∈ H (20)

τktn+1 ≤ di + Tmax(1− ykti ) ∀i ∈ N+, ∀mk ∈M, ∀t ∈ H (21)

τkt0 ≥ ri × ykti ∀i ∈ N−, ∀mk ∈M, ∀t ∈ H (22)

τkti ≤ di + Tmax(1− ykti ) ∀i ∈ N−, ∀mk ∈M, ∀t ∈ H (23)

xktij ∈ {0, 1} ∀(vi, vj) ∈ A,∀mk ∈M, ∀t ∈ H (24)

ykti ∈ {0, 1} ∀i ∈ N , ∀mk ∈M, ∀t ∈ H (25)

ikt ∈ {0, 1} ∀mk ∈M, ∀t ∈ H (26)

okt ∈ {0, 1} ∀mk ∈M, ∀t ∈ H (27)

0 ≤ τkti ≤ Tmax ∀vi ∈ V ∪ {vn+1}, ∀mk ∈M, ∀t ∈ H (28)

ukti ≥ 0 ∀vi ∈ V ∪ {vn+1}, ∀mk ∈M, ∀t ∈ H (29)

The objective function (1) minimizes the total cost. Constraints (2) ensure that each request
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is assigned to exactly one vehicle and one trip. Constraints (3) and (4) are the flow conservation
constraints. Constraints (5) and (6) ensure that trips start and end at the depot. Constraints (7)
(resp., constraints (8)) ensure ikt (resp., okt) equals to 1 when at least one inbound (resp., outbound)
request is served in the trip, and equals to 0 otherwise. Constraints (9) to (13) are flow capacity
constraints, where constraints (9) ensure that the load of a vehicle starting a trip is equal to the sum
of loads of the outbound requests served in the trip, constraints (10) and (11) ensure vehicle load
flow conservation when visiting an inbound (resp., outbound) customer, constraints (12) ensure that
the load of a vehicle ending a trip is equal to the sum of loads of the inbound requests served in the
trip, and constraints (13) check that vehicle capacity is never exceeded. Time precedence relations
are ensured with constraints (14) to (19). Constraints (14) ensure that the pickup service time TP
is added when leaving the depot if the trip contains at least one outbound request. Constraints
(15) model travel and service times between two customers while constraints (16) model the return
to the depot. Constraints (17) ensure that the ending time of a trip is later than its starting time.
Constraints (18) are used to add the delivery service time TD when returning to the depot if the
trip contained at least one inbound request. Constraints (19) ensure that the service of a route ends
before the end of the time horizon. Release and due date constraints are respected with constraints
(20) to (23). Constraints (20) and (21) respectively check that an inbound customer is picked up at
home after their release date and dropped off at the depot before their due date, while constraints
(22) and (23) check that an outbound customer is picked up at the depot after their release date and
dropped off at home before their due date. Finally, constraints (24) to (27) define the variables.

4. Solution method

Solving the compact formulation (1)-(29) using a standard branch-and-cut solver is not efficient
because of the weakness of the lower bound provided by the linear relaxation. In this section, we
propose an extended formulation based on a set partitioning formulation (SP) which provides a much
stronger lower bound. This formulation is characterized by a large number of decision variables.
To cope with this drawback, we use a column generation approach to solve the linear relaxation.
This linear relaxation of the extended formulation is called the master problem (MP). The master
problem limited to the available set of columns is called the restricted master problem (RMP). After
solving the RMP, a subproblem (called pricing problem) is solved in order to find new columns to
add to the RMP. These columns correspond to routes with negative reduced costs. In our case,
the pricing problem is a multi-trip elementary shortest path problem with resource constraints. It
is solved using a specific label correcting algorithm (Feillet et al., 2004). The column generation
algorithm ends when the pricing problem does not find any column with a negative reduced cost.
Column generation is embedded into a branch-and-price algorithm. Due to the multi-trip aspect of
the problem formulation, and because we later compare it with another implementation of branch-
and-price, we call the algorithm the multi-trip branch-and-price algorithm (MT-BP).

4.1. Master problem

Let Ω be the set of feasible routes, as defined in Section 3.1. These routes satisfy capacity and
time constraints. Customer locations are visited at most once. Let ari = 1 if route r ∈ Ω serves
request i ∈ N , 0 otherwise. Let brij = 1 if route r uses arc (vi, vj) ∈ A, 0 otherwise. We denote by
cr =

∑
(vi,vj)∈A b

r
ijcij the cost of route r ∈ Ω. We introduce a non-negative integer decision variable

θr equal to the number of times route r ∈ Ω is selected in the solution. The problem is described
with the following set partitioning formulation (SP):
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min
∑
r∈Ω

crθr (30)

subject to ∑
r∈Ω

ari θr = 1 ∀i ∈ N (31)∑
r∈Ω

θr ≤ K (32)

θr ∈ N ∀r ∈ Ω (33)

The objective function (30) minimizes the total cost. Constraints (31) are the set partitioning
constraints, they ensure that each request is served. Constraint (32) imposes to build at most K
routes. The linear relaxation of (30)-(33) defines the master problem. We call MP (Ωt), the master
problem, restricted to the subset of routes Ωt ⊆ Ω.

4.2. Column generation

Column generation consists in finding columns with negative reduced cost and adding them to
the restricted master problem using dual variables of the current solution of the restricted master
problem. Let ∀vi ∈ V\{v0}, λi unsigned be the dual variables associated with constraints (31) and
λ0 ≤ 0 the dual variable associated with constraint (32). The algorithm starts with an initial set
of feasible columns Ω0 to solve the restricted master problem MP (Ω0). Then, the pricing problem
searches for columns with negative reduced costs and add them to the restricted master problem
MP (Ω1). This process is repeated until no column with a negative reduced cost is found. The
reduced cost of route r is defined as follows:

cr = cr −

(∑
i∈N

ariλi

)
− λ0 =

∑
(vi,vj)∈A,vj 6=v0

brij (cij − λj) +

 ∑
(vi,v0)∈A

bri0ci0

− λ0 (34)

Note that dual variable λ0 should not be subtracted every time the depot is visited.

Algorithm 1 describes the column generation scheme. MP(Ωt) corresponds to solving the master
problem restricted to Ωt and is used to determine the solution S and the dual variable vector
λ. Pricing(λ) corresponds to the call to the algorithm that solves the pricing problem with dual
variables λ. It returns a set of routes with negative reduced costs. The pricing problem as well as
an associated exact solution approach are described in detail in Section 5.

Algorithm 1 Column generation()

1: t← 0
2: Ω0 ← initial set of routes
3: repeat
4: S, λ←MP (Ωt)
5: R← Pricing(λ)
6: Ωt+1 ← Ωt ∪R
7: t← t+ 1
8: until R = ∅
9: return S

11



4.3. Branching rules

Before describing the branching strategy, let us introduce some definitions. Given a solution S
of MP (Ωt), we call flow on arc (vi, vj) ∈ A, the sum of variables using this arc in S, we denote
it as fij =

∑
r∈Ω b

r
ijθr. A well-known branching strategy for VRPs consists in looking for an arc

with a fractional flow and branch on it. When all arcs have an integer flow, the solution is feasible
for the integer problem. In our problem, due to the use of multiple trips, it may happen that a
solution is non-feasible for the integer problem but, has integer flows for all arcs. To deal with this
issue, we introduce the notion of triplet. We call a triplet the succession of three vertices with v0

as second vertex, i.e., (vi, v0, vj) is a triplet with 1 ≤ i, j ≤ n. Triplet (vi, v0, vj) can be seen as the
succession of arcs (vi, v0) and (v0, vj); actually, it represents the transition between the ending part
of a trip and the starting of the next trip in a route. Similarly to the definition of arc flow, the
flow on a triplet (vi, v0, vj) is defined as the sum of variables using this triplet in S, we denote it as
fi0j =

∑
r∈Ω b

r
i0jθr, where bri0j = 1 if subsequence (vi, v0, vj) exists in route r, 0 otherwise.

We show that any solution with integer flows both on arcs and on triplets is integer. We then
explain how we use triplets for branching. But first, let us emphasize that a solution might have
integer arc flows on all arcs and some fractional flows on triplets. We illustrate that with an example.
Let us consider a solution of the master problem defined as a set of 4 routes covering 5 requests:
r1 = (v0 v1 v0 v2 v0) with θ1 = 0.5, r2 = (v0 v1 v0 v3 v0 v4 v5 v0) with θ2 = 0.5, r3 = (v0 v4 v5 v0)
with θ3 = 0.5, and r4 = (v0 v2 v0 v3 v0) with θ4 = 0.5. In this solution, fij ∈ {0, 1} on all arcs
(vi, vj) ∈ A, but triplet (v1, v0, v2), for example, has a fractional flow f102 = 0.5 (supplied by route
r1).

Proposition 1. Let S be an optimal solution of MP . S is integer if and only if flows on all arcs
and triplets are integer.

Proof. The fact that all flows on arcs and triplets are integer when a solution is integer is trivial
because flows are sums of variables θr. We show that having integer flows on arcs and triplets
ensures that the solution is integer.

We consider a solution S that is not integer. We show that there exists at least one arc or
one triplet for which the flow is fractional. We proceed by contradiction, assuming that the flow
is integer for all arcs and triplets. Let r1 be a route such that 0 < θr1 < 1 and let (v0, vu) be the
first arc of this route. Let r2 be another route in the solution (i.e., θr2 > 0) that also traverses arc
(v0, vu). Route r2 exists because the flow on arc (v0, vu) is integer and 0 < θr1 < 1.

We first assume that route r2 does not start with (v0, vu) and call (vl, v0) the arc that precedes
(v0, vu) in r2. We know that fl0u =

∑
r∈Ω b

r
l0uθr ≥ θr2 > 0 and also that fl0u is integer. Then,

fl0u + θr1 > 1, while fl0u + θr1 ≤
∑

r∈Ω b
r
0uθr ≤

∑
r∈Ω a

r
uθr = 1, which makes a contradiction.

We now consider the case when r2 starts with the same arc as r1 (v0, vu). Let then call vi the
first node after which r1 and r2 diverge. Node vi exists because the two routes start with the same
arc and are different. We consider two cases:

• vi ∈ V \{v0}. We denote vj1 the node that follows vi in route r1 and vj2 the node that follows
vi in route r2. We know that:

∑
r∈Ω a

r
i θr = 1,

∑
r∈Ω a

r
i θr ≥

∑
r∈Ω(brij1 + brij2)θr = fij1 + fij2 ,

fij1 > 0 and fij2 > 0. It follows 0 < fij1 < 1 and 0 < fij2 < 1, which contradicts the initial
assumption.

• vi = v0. We know, by definition, that vi is not the first vertex of the two routes. We also
know that it is not the last for at least one route, say route r2, because the two routes are
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different. So, vi corresponds to an intermediate stop at the depot for route r2. We call vl
the customer before vi in the two routes and vu the customer after vi in route r2. We known
that fl0u =

∑
r∈Ω b

r
l0uθr ≥ θr2 > 0 and also that fl0u is integer. Then, fl0u + θr1 > 1, while

fl0u + θr1 ≤
∑

r∈Ω b
r
l0θr ≤

∑
r∈Ω a

r
l θr = 1, which makes a contradiction.

Based on Proposition 1, we propose the following branching scheme. If S is not integer and
there exists at least one arc (vi, vj) with a fractional flow fij , then we derive two branches: in the
first branch, arc (vi, vj) is forbidden in the solution (fij = 0); in the second branch, arc (vi, vj) is
enforced (fij = 1). To forbid the use of (vi, vj), variables using this arc are removed from the master
problem and the arc is removed in the pricing problem. To enforce the use of (vi, vj), variables using
arcs (vi, vl) with vl 6= vj and (vl, vj) with vl 6= vi are removed from the master problem and these
arcs are removed in the pricing problem.

If a solution S is not integer but all arcs have an integer flow, then there exists a fractional
flow on a triplet (Proposition 1). Let (vi, v0, vj) be such a triplet. We derive two branches: in the
first branch, the triplet (vi, v0, vj) is forbidden in the solution (fi0j = 0); in the second branch,
the triplet (vi, v0, vj) is enforced (fi0j = 1). To forbid the use of (vi, v0, vj), variables using it are
removed from the master problem. In the pricing problem (see Section 5), a label that finishes with
(vi, v0) is never extended to vj . This constraint has some consequences on the dominance rule as
explained in Section 5.4. To enforce the use of (vi, v0, vj), variables using arcs (vi, vl) with vl 6= v0

and (vl, vj) with vl 6= v0 are removed from the master problem. Also, variables using arc (vi, v0)
not followed by (v0, vj) and variables using arc (v0, vj) not preceded by (vi, v0) are removed from
the master problem. In the pricing problem, arcs (vi, vl) with vl 6= v0 and (vl, vj) with vl 6= v0 are
removed. Also, during the execution of the labeling algorithm, all triplets (vi, v0, vl) with vl 6= vj
and (vl, v0, vj) with vl 6= vi are forbidden. To forbid a triplet, a label that finishes with the first arc
of the triplet cannot be extended using the second arc. Again, it impacts the dominance rule as
explained in Section 5.4.

4.4. Management of infeasible linear programs

At each node of the branch-and-price tree, it may happen that the current set of columns does
not allow finding a feasible solution in the RMP. To deal with that issue, we introduce a non-negative
decision variable z with a coefficient 1 in the left-hand side of Constraints (31). This variable is
penalized in the objective function with a large coefficient Mz. With this variable a feasible solution
always exists. When a LP is solved, variable z might then be equal to 0 or be positive. If z = 0, the
algorithm continues normally. If z > 0, it is probable that the RMP does not admit any feasible
solution (in the sense of the formulation without z). However, we cannot be sure: it might happen
that a solution with z = 0 exists but that this solution is not as good as the solution with z > 0.
We propose to deal with that as follows.

At the root node, Mz is set to a large initial value M0
z . When the column generation at a given

node N terminates with z > 0, the node is pruned, but a duplicate node N ′ is inserted in the
pending-nodes queue, with exactly the same characteristics except that M ′z = αzMz, with αz > 1.
With this mechanism, the LP bound will progressively increase when nodes are duplicated, until
z = 0 or a large-enough value is reached proving that the instance is not feasible. For each instance
we compute a feasibility bound FB, if no feasible solution is found and the pending nodes all have
a lower bound greater than FB, it proves that the instance is unfeasible.
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5. Multi-Trip Shortest Path Problem with Resource Constraints

The pricing problem for vehicle routing problems is classically reduced to an Elementary Short-
est Path Problem with Resource Constraints (ESPPRC), with ad hoc resource definitions. The
ESPPRC is then solved using a labeling algorithm (see for example Feillet et al. (2004)). A label-
ing algorithm consists in using labels to represent partial routes. Partial routes are obtained by
extending initial labels from a source node (the depot) in order to reach a final node (the depot).
The labels are obtained using an extension function from one node to its neighbors. The goal is
to find feasible routes with negative reduced costs. A dominance rule is used in order to eliminate
partial routes that cannot create an optimal route.

Different resource definitions have been proposed in the context of pickup and delivery problems,
but these definitions are always supported by a graph in which two nodes are introduced for each
request: a pickup node and a drop-off node. When one of these nodes is traversed, a specific
discrete resource is updated, to indicate that the associated request is either started or finished. In
the MT-BP, we propose a completely different approach. In the graph, we only introduce a node for
customer home locations, in addition to the depot. It drastically reduces the size of the graph but
induces a complex resource management because we cannot identify easily in a label which requests
are ongoing.

The main issues can be summarized as follows. When a label reaches a customer location vi, it
means that the associated request is added to the trip. If the request is inbound, it doesn’t raise
any special difficulty: the new patient is loaded into the vehicle, the time is updated to take account
of the release date and a new deadline is defined to make sure that the due date will be satisfied.
Outbound requests are much more difficult to manage. If vi is the drop-off point of an outbound
request, it reveals that the patient is in the vehicle from the beginning of the trip. We introduce
a dedicated resource q̃ to manage that issue and efficiently check that adding this patient complies
with the vehicle capacity. Furthermore, the starting time of the trip is potentially delayed because
of the release date ri (at which the patient was ready at the depot). In order to manage that second
difficulty, we anticipate delays: without deciding which outbound requests will be added to the
trip, we generate labels that leave the depot with delayed departures. Then, further delays are not
allowed when extending labels: if the starting time of the trip is too early for an outbound request,
this request can’t be added to the trip. The information on trip starting times is not kept with a new
resource: the vector of reachable requests (classically introduced to avoid that the same request is
satisfied several times in a route) allows keeping the information on acceptable outbound requests.
This vector is, however, somehow difficult to manage because a request could be unreachable in the
current trip but could become reachable in the next trip.

In the following we introduce the main components of the labeling algorithm: label definition,
label initialization, extension rules and dominance rules.

5.1. Label definition

A label L represents a path P starting at depot v0 in graph G. It is defined by a vector
L = (v, c, t, l, q, q̃, R = {R1, . . . , Rn}) of size n+ 6, with:

• v: the last node visited in P .

• c: the current reduced cost of P .

• t: the time at which node v is left (service time at node v included).

• l: the latest time allowed to be back to the depot in the current trip.
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• q: the load induced by inbound requests in the current trip (including node v).

• q̃: the maximal load reached up to node v (included) in the current trip.

• R: the reachability vector.

Resource l is introduced to limit the arrival time at the depot and ensure satisfaction of the
due date for inbound requests served in the trip. Resources q and q̃ allow managing the capacity
constraint in presence of inbound and outbound requests. Resource q̃ is actually enough to check the
capacity constraint, but q is needed to update q̃. Resource vector R is defined with three possible
states for each request. Given a request i ∈ N : (i) Ri = C if vi is reachable in the current trip (ii)
Ri = N if vi is unreachable in the current trip because of resource constraints but is reachable in
the next trip (iii) Ri = U if node vi cannot be reached anymore in the route because it has already
been reached or because resource constraints make it unreachable. Other fields in L are standard.

5.2. Label initialization

Usually, labeling algorithms are initialized with a single label that corresponds to the path
P = (v0), ready for extension at time 0. In the MT-BP, we propose to initialize the algorithms with
|N−|+ 1 labels:

• L0 = (v0,−λ0, 0, Tmax, 0, 0, R) with:

◦ ∀k ∈ N+: if max(rk, t+ t0k) + sk + tk0 ≤ dk, Rk = C; Rk = U otherwise

◦ ∀k ∈ N−, Rk = N

• Li = (v0,−λ0, ri + TP , Tmax, 0, 0, R) for i ∈ N− with:

◦ ∀k ∈ N+: if max(rk, t+ t0k) + sk + tk0 ≤ dk, Rk = C; Rk = U otherwise

◦ ∀k ∈ N−: if rk ≤ ri and t + t0k ≤ dk, Rk = C; if rk > ri and t + t0k ≤ dk, Rk = N ;
Rk = U otherwise

Label L0 represents a vehicle that would start empty from the depot at time 0. Pickup time TP
is not consumed before departure. Therefore, this vehicle can only serve inbound requests in this
trip. Other labels correspond to later departures from the depot. We create one label for each time
instant ri + TP (label Li), with i ∈ N−. These labels simulate vehicles that would start at time
ri + TP . Patients of outbound requests with a release date not larger than ri are apt to be in the
vehicle, but none is necessarily in. No other labels are needed because there is no interest to start
a route at any other time instant.

Resource R indicates which customers might be reached in the trip or in next trips. This
condition depends on the deadline dk for outbound customers. For inbound customers, Rk = U if
the deadline cannot be met, otherwise Rk = C or Rk = N depending on condition rk ≤ ri.

5.3. Extension rules

In this section, we describe resource extension functions when a label is extended to a customer
and when it is extended to the depot. These functions differ between inbound and outbound requests
for some resources.
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Extension to a customer

A label L1 = (v1, c1, t1, l1, q1, q̃1, R1) attached to a node v1 = vi ∈ V is extended to a node
vj ∈ V \ {v0} if and only if vj is reachable in the current trip, i.e., R1

j = C. The new label L2 is

given by L2 = (v2, c2, t2, l2, q2, q̃2, R2) such that:

• v2 ← vj , c
2 ← c1 + cij − λj

• if j ∈ N+:

◦ t2 ← max(rj , t
1 + tij) + sj

◦ l2 ← min(l1, dj)

◦ q2 ← q1 + qj

◦ q̃2 ← max(q̃1, q2)

The service cannot start before the release date (resource t). The deadline is updated if needed
(resource l). The load induced by inbound requests is increased (resource q). Resource q̃ is
increased if the load q2 at node v is larger than the highest load up to that node.

• if j ∈ N−:

◦ t2 ← t1 + tij + sj

◦ l2 ← l1

◦ q2 ← q1

◦ q̃2 ← q̃1 + qj

Resource t is simply updated. Neither the deadline (resource l) nor resource q are modified.
Resource q̃ is increased by qj because visiting vj reveals that the patient was in the vehicle
from the beginning of the trip.

• R2
j ← U

• ∀k ∈ N+ \ {j}:

◦ if R1
k = C and max(rk, t

2 + tjk) + sk + tk0 ≤ min(l2, dk), then R2
k ← C

◦ else if R1
k ∈ {C,N}, q2 = 0 and max(rk, t

2 + tj0 + t0k) + sk + tk0 ≤ dk, then R2
k ← N

◦ else if R1
k ∈ {C,N}, q2 > 0 and max(rk, t

2 + tj0 +TD + t0k)+sk + tk0 ≤ dk, then R2
k ← N

◦ else R2
k ← U

These conditions straightforwardly take account of the waiting times implied by release dates
and the deadlines derived from due dates. Time TD at the depot is introduced or not depending
on the presence of inbound customers in the trip.

• ∀k ∈ N− \ {j}:

◦ If R1
k = C and t2 + tjk ≤ dk and t2 + tjk + sk + tk0 ≤ l2, then R2

k ← C

◦ else if R1
k ∈ {C,N} and q2 = 0 and max(rk, t

2 + tj0) + TP + t0k ≤ dk, then R2
k ← N

◦ else if R1
k ∈ {C,N} and q2 > 0 and max(rk, t

2 + tj0 +TD) +TP + t0k ≤ dk, then R2
k ← N

◦ else R2
k ← U

Computationally, the feasibility of label L2 is checked before computing vector R2. The only
condition to check is q̃ ≤ Q. Time constraints are necessarily satisfied because the extension was
conditioned by R1

j = C.
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Extension to the depot

Note that contrary to classical implementations of the ESPPRC for vehicle routing problems,
labels that have been extended to the depot are still eligible for future extensions. Furthermore,
as for the label initialization, several new labels are created, with different starting times. These
labels represent the different times at which the vehicle might start its new trip.

A label L1 = (v1, c1, t1, l1, q1, q̃1, R1) attached to a node v1 = vi ∈ V \ {v0} can always be
extended to the depot. Indeed, deadlines are checked in L1 thanks to resources l and Ri (the label
could not have reached vi if a direct return to the depot was not possible). Such an extension
means that the current trip is finished and that a new trip can start. We generate one label L2

0 for
which the new trip will start as early as possible, with the vehicle empty, and one label L2

j for each

departure time rj + Tp obtained from requests j ∈ N− such that R1
j ∈ {C,N}.

Label L2
0 = (v0, c

1 + ci0, at, Tmax, 0, 0, R
2) where:

• at indicates when the vehicle is ready: at = t1 + ti0 + TD if q1 > 0 (a drop-off time is needed
for inbound requests), at = t1 + ti0 otherwise

• ∀k ∈ N+:

◦ if R1
k ∈ {C,N} and max(rk, at + t0k) + sk + tk0 ≤ dk, then R2

k ← C

◦ else R2
k ← U

• ∀k ∈ N−:

◦ if R1
k ∈ {C,N}, then R2

k ← N

◦ else R2
k ← U

Label L2
j = (v0, c

1 + ci0, t
2 = max(rj , at) + TP , Tmax, 0, 0, R

2) where:

• at indicates when the vehicle is ready and is defined as above

• ∀k ∈ N+:

◦ if R1
k ∈ {C,N} and max(rk, t

2 + t0k) + sk + tk0 ≤ dk, then R2
k ← C

◦ else R2
k ← U

• ∀k ∈ N−:

◦ if R1
k ∈ {C,N}, and t2 + t0k ≤ dk, and rk ≤ max(rj , at), then R2

k ← C

◦ else if R1
k ∈ {C,N}, and rk > max(rj , at), then R2

k ← N

◦ else R2
k ← U

5.4. Dominance rule

We introduce the following dominance rule in order to improve the efficiency of the algorithm.
By definition, given two labels L1 and L2 attached to the same node, L1 dominates L2 if, (i) L1

has a better cost and (ii) any feasible extension of L2 is also feasible for L1 (i.e., each resource is
less consumed by L1 than L2 and, each node is in a better (or equivalent) reachability state in L1

than in L2). In the following, the label identifier is added as a superscript to the parameters of the
labels. Formally speaking, L1 dominates L2 if:
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• v1 = v2, c1 ≤ c2, t1 ≤ t2, l1 ≥ l2, q1 ≤ q2, q̃1 ≤ q̃2,

• for every i ∈ N : if R2
i = C, then R1

i = C and if R2
i = N , then R1

i ∈ {C,N}

Note that the dominance rule is not applied in a very specific situation, due to the fact that
branching constraints on triplets are non-robust with regard to the pricing problem. Let us consider
that a constraint on a triplet (vi, v0, vj) is active at the current branch-and-price node. Let also
consider two labels L1 and L2, both attached to the depot and such that L1 originates from vi.
Then, L1 is subject to a constraint that does not apply to L2 and is thus more restricted in its
extensions: L1 cannot dominate L2.

6. Computational experiments

In this section, we describe the benchmarks of instances used for our experiments and we analyze
the computational results.

As mentioned in Section 2, the MTMPD-RD was not addressed in the literature. However,
the MTMPD-RD has several similarities with the VRP with Simultaneous Pickup and Delivery
and Time Windows (VRPSPDTW) for which benchmark instances are available (Wang and Chen,
2012). To allow a comparison on the basis of these instances, we adapted our branch-and-price
algorithm to solve the VRPSPDTW.

We also generated a set of instances for the MTMPD-RD. In order to show the effectiveness of
our algorithm (MT-BP), we developed a standard branch-and-price algorithm to solve the classical
pickup and delivery problem. In the following we coin this algorithm PD-BP. In order to allow a
comparison between MT-BP and PD-BP, the generated instances were slightly simplified.

All algorithms are implemented in the C++ programming language and Linear Programs are
solved using the commercial solver IBM CPLEX 12.9. Experiments are executed on a computer
with a 3.6 GHz CPU and 32 GB of RAM running on Windows 10. All computational times are
given in seconds. Unless explicitly indicated, the computational time is limited to 7,200 seconds.

This section is organized in six parts. First, we explain the adaptation of our algorithm (MT-
BP) to solve the VRPSPDTW and we evaluate it on the existing benchmark instances. Second, we
explain how we generated benchmark instances for the MTMPD-RD. Third, we briefly describe the
PD-BP algorithm and compare it to MT-BP on a slightly simplified version of the new benchmark
instances. Fourth, we deeply analyze the behavior of MT-BP. Fifth, we study the impact of the size
of the fleet of vehicles on the solution cost and on the computing time. Finally, we conduct other
sensitivity analyses on challenging instances characterized by a larger interval between release and
due dates and/or a larger time horizon.

6.1. Comparison with the VRPSPDTW literature

As mentioned previously, the VRPSPDTW has several similarities with the MTMPD-RD except
for the few following points. In the VRPSPDTW, all customers require both a delivery (outbound)
and a pickup (inbound) request. When visiting a customer location, a vehicle has to serve both
requests, starting with the delivery request. Customer visits are subject to time windows at the
customer location, instead of release dates and due dates for the MTMPD-RD. A service time is only
considered at customer locations and includes both the time for delivery and for pickup. Finally,
multiple trips are not allowed.

In the literature, the VRPSPDTW is usually defined as a lexicographic bi-objective problem.
The first objective minimizes the number of vehicles, while the second objective minimizes the

18



total traveling cost. Readers are referred to Wang and Chen (2012) for a formal definition of the
VRPSPDTW.

In order to solve the VRPSPDTW, we adapted the MT-BP algorithm as follows:

• In the pricing problem, we do not allow extending labels that have reached the depot. It
prevents generating routes with multiple trips. When initializing labels and applying extension
rules, all values N (reachable in next trip) of the reachability vector are marked as unreachable
U in the reachability vector.

• The VRPSPDTW introduces a strict precedence between the inbound and outbound requests
associated with the same customer. Recall that these two requests are considered indepen-
dently in our model, i.e., two nodes are introduced in V even if they correspond to the same
physical location. To deal with the strict precedence between inbound and outbound requests,
we define the inbound node of the customer location as the unique successor of the outbound
node, and inversely, the outbound node as the unique predecessor of the inbound node. The
distance and the travel time between these two nodes are fixed to zero.

• Time windows at the customer locations are converted into release and due dates as follows.
Given a customer vi in a VRPSPDTW instance with a time window [ai, bi] and a service
time si, we denote i− (resp., i+) the associated outbound (resp., inbound) request and we set
ri− = 0, di− = bi, si− = 0, ri+ = ai, di+ = Tmax and si+ = si. Tmax is set to the closing time
b0 of the time window associated with the depot. TP and TD are set to 0.

For the sake of comparison, we set for each tested instances the number of vehicles equals to the
number of vehicles obtained in the best known solution in the literature and our single objective is
to minimize the total traveling distance.

To evaluate our algorithm, we use the benchmark instances of Wang and Chen (2012). They
consist of three 10-customers instances, three 25-customers instances, three 50-customers instances
and fifty-six 100-customers instances. Optimal solutions are only known for the three instances with
10 customers, for one instance with 25 customers and for one instance with 50 customers. These
solutions were found by Wang and Chen using a commercial solver. Since 2012, several papers
have addressed these instances with different heuristic solution methods. Shi et al. (2020) reports
best-known solutions.

Table 3 shows our results on the nine small instances (10, 25 and 50 customers). Column
“Instance” states the instance name; “#customers” the number of customers; “#vehicles” the
number of vehicles used in the best known solution from the literature; “BKS” the value of the best
known solution; “opt” the optimality status in the literature; “MT-BP” the value of the solution
obtained by MT-BP, and “CPU time” the computing time in seconds of MT-BP.

Table 3 shows that, except for instance RCdp5004, we could solve all instances very quickly.
Instance RCdp5004 could only be solved to optimality after more than 27 hours. We also conducted
complementary experiments by imposing to use one less vehicle. We proved that the problem
becomes infeasible in all cases (including instance RCdp5004). We thus closed the benchmark for
small instances.

For instances with 100 customers, MT-BP was able to solve to optimality six instances out of
the 56. Table 4 presents the results for these six instances. For these six instances, we found the

1A value of 725.59 was mistakenly reported in Wang and Chen (2012): the detail of the solution, provided by the
authors, permitted to see that this solution is not feasible
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Table 3: Comparison with the best-known solutions of the small-size instances for the VRPSPDTW

Instance #customers #vehicles BKS opt MT-BP CPU time

RCdp1001 10 3 348.98 yes 348.98 0.01
RCdp1004 10 2 216.69 yes 216.69 0.01
RCdp1007 10 2 310.81 yes 310.81 0.02

RCdp2501 25 5 551.05 yes 551.05 0.09
RCdp2504 25 4 473.46 473.46 0.25
RCdp2507 25 5 540.87 540.87 0.28

RCdp5001 50 9 994.18 yes 994.18 4.41
RCdp5004 50 6 733.211 733.21 99234.80
RCdp5007 50 7 809.72 809.72 76.83

same value as the best-known solution in the literature; we also proved for four of them infeasibility
when using one less vehicle. Thus we proved the optimality of four best-known solutions. When
using one less vehicle, we were unable to solve Rdp106 and Cdp106 or to prove their infeasibility.
For the fifty remaining instances, no feasible solution was found within two hours of computing
time.

Table 4: Comparison with the best-known solutions of the 100-customers instances for the VRPSPDTW

Instance #vehicles BKS MT-BP CPU time

Rdp101 19 1650.80 1650.80 11.34
Rdp102 17 1486.12 1486.12 76.59
Rdp105 14 1377.11 1377.11 598.54
Rdp106 12 1252.03 1252.03 7117.61
Cdp105 10 1053.12 1053.12 257.114
Cdp106 10 963.45 963.45 4932.52

The benchmark instances of Wang and Chen (2012) are derived from the instances of Solomon
(1987). Instances are classified according to two factors:

• Customer distribution: with clustered customers (C), with customer locations generated uni-
formly randomly over a square (R), with a combination of randomly placed and clustered
customers (RC).

• Time window type and vehicle capacity: 1 for narrow time windows and small vehicle capacity,
2 for large time windows and large vehicle capacity.

Small-size instances of Wang and Chen (2012) are all of type RC1, which means a combination of
randomly placed and clustered customers and, with narrow time windows and small vehicle capacity.
100-customers instances contain instances of any type (C1, R1, RC1, C2, R2, RC2) but MT-BP
was able to solve only instances of type 1.

Even though we closed the benchmark for some instances, we can conclude that the MT-BP is
not very suitable to address VRPSPDTW instances with 100 customers, as it did not find any feasible
solution for most of such instances within the considered time limit. In particular, instances involving
large time windows were harder to solve, as none of them could be solved. This behaviour is often
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encountered when using column generation to solve vehicle routing problems. In fact, enlarging time
windows increases the number of feasible solutions in the dynamic programming process when solving
the subproblems, which is a key element in the effectiveness of the solution method. We also notice that
MT-BP is able to solve instances of different types of customer distribution (randomly located (R) and
clustered customers (C)).

6.2. Generation of instances for the MTMPD-RD

In this section, we describe how we generated a set of realistic instances for the MTMPD-
RD. The instances were generated using real data from the city of Aix-en-Provence, France. The
depot is the Public Hospital of the city and the demands are unitary: they correspond to the
transportation of single patients from or to this hospital. The road network of the city is extracted
from OpenStreetMap and represented by a graph denoted GC . The travel times are expressed in
minutes and rounded up to integer values. The speeds considered are half of the maximal speeds
indicated on each road segment in OpenStreetMap, in order to match with the urban context.

To create an instance with n requests, we randomly select n nodes from GC . From these n nodes
plus the depot node, we compute the travel time matrix with the Dijkstra’s shortest path algorithm
minimizing traveling time and we construct the complete graph G and the input data tij . We set
cij = tij . The time horizon is set to [0min., 240min.] corresponding to a working period of 4 hours.
Pickup and drop-off times at the depot (TP and TD) are fixed to 3 minutes, as well as service times
at customer locations.

To generate release and due dates, we suppose that an acceptable ride time for a customer is
the time needed for a direct ride between pickup and drop-off locations plus 20 minutes. To ensure
feasibility for each request i, we randomly generate ri and di as follows:

• if i ∈ N+, then ri ≥ t0i, di ≤ Tmax − TD, and di − ri = si + ti0 + 20.

• if i ∈ N−, then ri ≥ 0, di ≤ Tmax − si − ti0, and di − ri = TP + t0i + 20.

Four series of instances are generated with 50 or 100 customers and two types of vehicles: sedan
(Q = 2) and minivan (Q = 4). Series of instances are named Sn/t where, n is the number of
requests (50 or 100) and t is the vehicle type (s for sedan or m for minivan). The fleet size differs
from an instance to another and is determined in a way that guarantees both feasibility and a high
utilization rate of vehicles (see details below).

Given n and t, series Sn/t is composed of 3 subsets of instances corresponding to different
distributions of inbound and outbound requests. The probability that a request is inbound is fixed
to: 25%, 50% or 75%. Each subset is composed of 5 instances identified from 1 to 5. We then obtain
a total of 15 instances per series. Instances are named In/t/p/i(k), with n the number of customers,
t the vehicle type, p the probability that a request is inbound, i the instance id, and k the number
of vehicles.

We first generated the set of instances S50/s. This set of instances is used to generate S50/m

by setting Q to 4. In both sets we determine for each instance I, the minimum number of needed
vehicles to ensure feasibility. So, the size of the fleet of vehicles K can differ from one instance to
another.

100-customers instances are generated by combining 50-customers instances. Given a vehicle
type t and a probability p that a request is inbound, an instance I100/t/p/i(k) is a combination of
instances I50/t/p/i1(k1) and I50/t/p/i2(k2) where i = i1, i2 = i1 (mod 5) + 1 and k = k1 + k2 to ensure
feasibility.
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Figure 2: Customers distribution of instance I100/s/25/5(15)

So, we generate 4 series of instances characterized by the number of requests and the type of
vehicles: S50/s, S50/m, S100/s and S100/m with 15 instances each.

Even though patient locations are selected randomly and uniformly among the graph GC , their
distribution is not uniform in space. The graph GC represents a real road network and the denser an
area is, the more nodes it contains. Consequently, nodes are more likely to be selected in urban areas
than in the countryside. As an illustration, Figure 2 shows the customer distribution of instance
I100/s/25/5(15) (and of instance I100/m/25/5(15) as only the vehicle capacity and fleet size change).
The green flag corresponds to the Public Hospital of Aix-en-Provence, while the small blue points
are customer locations. We can see that the distribution mixes clusters and random nodes. The
biggest cluster is in the city of Aix-en-Provence, other smaller clusters exist in smallest cities like
Gardanne or Bouc-Bel-Air, but also some nodes are more isolated.

6.3. Comparison against a pickup and delivery branch-and-price algorithm

As mentioned previously, the MTMPD-RD problem is formulated as a multi-trip vehicle routing
problem but it can also be seen as a Pickup and Delivery Problem, with the pickup (resp., delivery)
node as the depot of outbound (resp., inbound) requests. In order to transform the MTMPD-
RD into a pickup and delivery problem, we duplicate the depot for each request, giving rise to
a graph with 2n + 1 nodes. In order to convert the MTMPD-RD problem into a Pickup and
Delivery Problem, we need to simplify the MTMPD-RD by removing the service time at the depot
location (i.e., TD = TP = 0). Indeed, the service time is associated with the depot and cannot be
duplicated for each equivalent node when moving to the Pickup and Delivery formulation. With
this representation, the MTMPD-RD problem can be solved using a standard branch-and-price for
pickup and delivery problems.

To solve the problem, we implemented a branch-and-price algorithm based on Garaix et al.
(2010). This algorithm is denoted PD-BP for Pickup and Delivery Branch-and-Price. For a fair
comparison, the symmetries induced by the n + 1 copies of the depot is broken by removing arcs
(vi, vj) with i > j where vi and vj correspond to the depot.
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Tables 5 and 6 provide experimental results on the generated instances with respectively 50
customers and 100 customers (recall that in the experiments of this section the service time at the
depot location is ignored). They show for both solution approaches, the value of the lower bound at
the root node (“RLB”), the computing time at the root node (“TimeRLB”) in seconds, the objective
value of the best integer solution found at the end of the branch-and-price algorithm (“UB”) and
the total computing time (“Time”) in seconds. For “RLB” and “UB”, the symbol “-” means that no
solution has been found within the allocated computing time. For the computing time, the symbol
“-” means that the time limit of two hours was reached. Upper bounds are given in bold when
optimality is proven.

The two tables show that MT-BP significantly outperforms PD-BP. Both algorithms found the
root lower bound for all instances but, the running time is most of the time better for the MT-
BP (for 59 instances out of 60). One might note that this difference grows significantly for the
100-customers instances. This shows that the column generation of MT-BP is much more efficient
than the one of PD-BP. PD-BP found a feasible solution for all 50-customers instances and proved
optimality for 26 of them, while MT-BP proved optimality for all instances. For the 100-customers
instances, PD-BP found a feasible solution for 13 out of 30 instances and proved optimality for 4 of
them, while MT-BP found a feasible solution for 22 out of 30 instances and proved optimality for
16 of them. Those figures highlight the efficiency of MT-BP against PD-BP.

6.4. Detailed analysis of MT-BP

In this section, we conduct a deep analysis on the behaviour of MT-BP. Tables 7 and 8 provide
results of the MT-BP algorithm on the benchmark instances that we generated. Note that contrary
to the instances used in Section 6.3, service times TP and TD are not ignored. These tables show
for each instance, the value of the lower bound (“RLB”) at the root node, the computing time
(“TimeRLB”) in seconds to reach “RLB”, the objective function value of the best integer solution
found (“UB”) and the total computing time (”Time”) in seconds of MT-BP. The symbol ”-” for
“TimeRLB” and “Time” means that the process did not finish within the time limit of two hours.
For the other parameters, the symbol ”-” means that no value was found within the time limit of
two hours.

UB is highlighted in bold if optimality is proven. We also provide the gap at the root node
(“root gap”) between RLB and the optimal solution and, the final gap (“final gap”) when MT-BP
terminates with a non-proven optimum. The value “root gap” is only provided if optimality is
proven. Columns “#trips”, “min”, and “max” respectively provide the total number of trips, the
minimum number of trips per vehicle, and the maximum number of trips per vehicle in the obtained
solution.

From the two tables, we can notice that the root lower bound is found for all instances and the
gap at the root node is very small ; it rarely exceeds 2% and never exceeds 3% (except for instance
I50/m/25/4(7) with a gap of 5.09%) which denotes the high quality of the lower bound provided by
the set partitioning formulation and the efficiency of the column generation algorithm. When a
feasible solution is found but optimality not proven, the final gap is lower than 1% which also shows
the high quality of the solutions found within two hours of computing time.

All 50-customers instances are solved optimally and, mostly with a computing time of less than
10 seconds. For 100-customers instances, 21 feasible solutions are found and optimality is proven
for 18 of these instances. These figures show that MT-BP is still efficient on instances with up to
100 customers. One might notice that the algorithm is more efficient with minivans (13 feasible
solutions with 11 optimal solutions) than sedans (8 feasible solutions with 7 optimal solutions).
As we can notice from the last three columns of Table 8, using sedan vehicles requires more trips
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Table 5: Comparison of the PD-BP and the MT-BP on 50-customers instances

PD-BP MT-BP
Instance RLB TimeRLB UB Time RLB TimeRLB UB Time

I50/s/25/1(8) 1079.50 1.6 1092 4.9 1079.50 1.8 1092 8.3

I50/s/25/2(7) 933.19 4.6 934 5.0 933.19 2.4 934 3.5

I50/s/25/3(7) 957.00 3.9 959 12.1 957.00 2.7 959 11.5

I50/s/25/4(8) 903.00 3.0 911 155.4 903.00 2.3 911 8.4

I50/s/25/5(7) 859.50 3.1 865 9.7 859.50 2.7 865 9.4

I50/s/50/1(7) 882.33 2.5 886 - 882.33 1.2 886 6.1

I50/s/50/2(8) 769.79 4.2 771 4.5 769.79 0.9 771 1.3

I50/s/50/3(9) 996.50 1.4 997 1.6 996.50 1.0 997 1.3

I50/s/50/4(7) 917.50 2.1 928 3.9 917.50 1.7 928 3.2

I50/s/50/5(7) 849.50 2.7 855 3.5 849.50 1.7 855 3.4

I50/s/75/1(7) 942.25 1.7 948 2.7 942.25 1.1 948 2.5

I50/s/75/2(7) 878.00 2.8 878 2.8 878.00 1.0 878 1.0

I50/s/75/3(7) 903.00 1.6 913 10.3 903.00 1.2 913 11.9

I50/s/75/4(7) 922.00 1.6 933 8.5 922.00 0.7 933 4.8

I50/s/75/5(8) 995.00 4.0 999 - 995.00 0.6 999 1.5

I50/m/25/1(8) 1021.50 1.8 1031 3.9 1021.50 1.6 1031 3.4

I50/m/25/2(7) 824.27 5.9 829 10.0 824.27 2.7 829 9.7

I50/m/25/3(7) 906.50 7.2 914 47.9 906.50 2.8 914 8.7

I50/m/25/4(7) 874.50 4.7 886 25.7 874.50 3.3 886 82.0

I50/m/25/5(7) 811.00 4.5 811 4.5 811.00 2.8 811 3.3

I50/m/50/1(7) 868.50 3.1 875 12.8 868.50 1.2 875 7.9

I50/m/50/2(7) 736.50 11.9 742 41.8 736.50 1.6 742 4.5

I50/m/50/3(9) 969.00 3.1 974 4.4 969.00 1.0 974 1.9

I50/m/50/4(7) 902.54 2.9 913 4.5 902.54 1.9 913 3.1

I50/m/50/5(7) 774.00 3.7 779 5.1 774.00 1.9 779 3.3

I50/m/75/1(6) 888.40 14.0 897 32.6 888.40 1.7 897 3.0

I50/m/75/2(7) 840.00 5.2 842 196.5 840.00 0.9 842 1.4

I50/m/75/3(7) 862.50 4.0 867 - 862.50 1.2 867 2.9

I50/m/75/4(7) 863.00 3.5 871 342.9 863.00 0.7 871 4.4

I50/m/75/5(7) 931.83 15.3 951 - 931.83 0.7 949 2.9
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Table 6: Comparison of the PD-BP and the MT-BP on 100-customers instances

PD-BP MT-BP
Instance RLB TimeRLB UB Time RLB TimeRLB UB Time

I100/s/25/1(15) 1823.50 94.7 - - 1823.50 63.0 - -

I100/s/25/2(14) 1710.75 258.8 - - 1710.75 133.1 1721 -

I100/s/25/3(15) 1643.00 176.6 1655 - 1643.00 107.6 - -

I100/s/25/4(15) 1557.25 142.0 1559 151.0 1557.25 97.5 1559 152.0

I100/s/25/5(15) 1710.00 88.5 1734 - 1710.00 67.1 1736 -

I100/s/50/1(15) 1400.50 139.8 - - 1400.50 32.2 - -

I100/s/50/2(17) 1546.00 39.7 1564 - 1546.00 34.3 1566 -

I100/s/50/3(16) 1687.83 64.2 1692 - 1687.83 44.6 1692 1822.4

I100/s/50/4(14) 1552.83 95.1 - - 1552.83 53.6 1575 -

I100/s/50/5(14) 1510.53 89.4 - - 1510.53 39.8 1519 535.1

I100/s/75/1(14) 1673.00 74.0 1675 77.7 1673.00 26.0 1675 35.4

I100/s/75/2(14) 1581.33 156.3 - - 1581.33 32.2 1589 919.7

I100/s/75/3(14) 1632.00 108.4 - - 1632.00 24.5 - -

I100/s/75/4(15) 1750.50 72.5 1759 356.1 1750.50 16.1 1759 58.1

I100/s/75/5(15) 1756.50 89.5 - - 1756.50 23.2 - -

I100/m/25/1(15) 1560.00 302.6 - - 1560.00 60.8 1573 651.3

I100/m/25/2(14) 1471.97 419.5 - - 1471.97 98.1 1480 -

I100/m/25/3(14) 1481.92 387.7 1491 - 1481.92 102.3 1490 1758.4

I100/m/25/4(14) 1422.67 232.2 1426 263.9 1422.67 102.1 1426 244.3

I100/m/25/5(15) 1525.43 319.0 - - 1525.43 55.7 - -

I100/m/50/1(14) 1291.75 545.9 1309 - 1291.75 44.5 1306 -

I100/m/50/2(16) 1401.46 312.3 - - 1401.46 39.8 - -

I100/m/50/3(16) 1559.43 402.2 - - 1559.43 39.0 1575 1612.5

I100/m/50/4(14) 1445.94 168.1 1456 - 1445.94 52.9 1456 216.6

I100/m/50/5(14) 1419.43 300.4 1425 - 1419.43 45.3 1425 79.9

I100/m/75/1(13) 1483.50 481.6 - - 1483.50 24.4 1497 502.0

I100/m/75/2(14) 1458.20 548.3 - - 1458.20 29.4 1471 515.5

I100/m/75/3(14) 1486.50 211.9 1491 - 1486.50 26.2 1491 53.2

I100/m/75/4(14) 1547.33 625.0 - - 1547.33 18.0 1554 117.9

I100/m/75/5(13) 1477.00 590.9 - - 1477.00 24.6 - -
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than using minivans because of the smaller vehicle capacity. It may explain why the algorithm
is more efficient with minivans. From these instances, the impact of the distribution of inbound
and outbound requests does not seem to have an impact on the computing time or the quality of
obtained solutions.

Table 7: Results of the MT-BP algorithm on 50-customers instances

RLB UB Gaps (%) Trips
Instance RLB TimeRLB UB Time root gap final gap nb trips min max

I50/s/25/1(8) 1129.53 1.2 1146 6.6 1.44 0.00 23 2 4

I50/s/25/2(7) 976.17 2.5 988 7.3 1.20 0.00 21 2 5

I50/s/25/3(7) 1027.78 2.8 1054 21.6 2.49 0.00 23 3 4

I50/s/25/4(8) 949.75 2.0 956 9.4 0.65 0.00 24 2 4

I50/s/25/5(7) 889.83 2.7 902 16.1 1.35 0.00 23 2 5

I50/s/50/1(7) 903.50 1.4 910 10.3 0.71 0.00 21 2 4

I50/s/50/2(8) 771.00 0.9 771 0.9 0.00 0.00 18 1 4

I50/s/50/3(9) 1036.00 1.0 1047 2.6 1.05 0.00 22 1 4

I50/s/50/4(7) 964.00 1.5 976 5.6 1.23 0.00 20 2 4

I50/s/50/5(7) 881.50 1.8 884 2.7 0.28 0.00 21 2 4

I50/s/75/1(7) 948.00 1.1 952 2.0 0.42 0.00 23 2 4

I50/s/75/2(7) 879.00 1.1 879 1.2 0.00 0.00 19 2 4

I50/s/75/3(7) 905.50 1.4 915 9.3 1.04 0.00 23 2 5

I50/s/75/4(7) 943.71 0.8 967 21.2 2.41 0.00 22 2 5

I50/s/75/5(8) 1026.63 0.8 1040 11.6 1.29 0.00 24 2 4

I50/m/25/1(8) 1065.00 1.5 1069 2.2 0.37 0.00 19 2 4

I50/m/25/2(7) 892.50 2.1 908 21.7 1.71 0.00 18 2 4

I50/m/25/3(7) 968.38 2.7 993 45.4 2.48 0.00 21 2 4

I50/m/25/4(7) 962.43 3.0 1014 4.5 5.09 0.00 23 2 4

I50/m/25/5(7) 857.02 2.6 864 6.0 0.81 0.00 19 2 3

I50/m/50/1(7) 874.00 1.2 877 1.8 0.34 0.00 20 2 4

I50/m/50/2(7) 743.33 1.4 745 2.8 0.22 0.00 16 1 3

I50/m/50/3(9) 1015.00 0.8 1026 1.7 1.07 0.00 19 2 3

I50/m/50/4(7) 949.00 1.6 962 6.1 1.35 0.00 19 2 4

I50/m/50/5(7) 809.00 1.6 809 1.6 0.00 0.00 18 2 3

I50/m/75/1(6) 924.75 1.7 935 4.5 1.10 0.00 23 3 5

I50/m/75/2(7) 851.25 1.1 857 2.1 0.67 0.00 18 2 4

I50/m/75/3(7) 863.00 1.3 867 2.8 0.46 0.00 20 2 4

I50/m/75/4(7) 869.00 0.9 879 2.0 1.14 0.00 19 1 4

I50/m/75/5(7) 971.50 1.0 995 7.7 2.36 0.00 22 3 4

Table 9 summarizes computational results of MT-BP for the four series of instances Sn/t with
n ∈ {50, 100} and t ∈ {s,m} (15 instances per set). The reported statistics are: the number of
feasible solutions (“#Feas.”), the number of optimal solutions (“#Opt.”), the average number of
trips per vehicle (“#trips/veh.”), the average number of requests per trip (“#req/trip”), and the
average number of requests per vehicle (“#req/veh.”). Note that “#trips/veh.”, “#req/trip” and
“#req/veh.” are computed only if a feasible solution is obtained.

Table 9 highlights the efficiency of MT-BP both on 50-customers instances and 100-customers
instances. Note that theoretically, the maximum number of requests served in a trip can reach twice
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Table 8: Results of the MT-BP algorithm on 100-customers instances

RLB UB Gaps (%) Trips
Instance RLB TimeRLB UB Time root gap final gap nb trips min max

I100/s/25/1(15) 1868.24 48.1 - - - - - - -

I100/s/25/2(14) 1746.50 86.2 - - - - - - -

I100/s/25/3(15) 1712.00 75.5 1718 289.2 0.35 0.00 41 1 4

I100/s/25/4(15) 1584.67 68.7 1591 142.9 0.40 0.00 39 1 5

I100/s/25/5(15) 1753.50 47.3 1757 95.1 0.20 0.00 38 2 4

I100/s/50/1(15) 1413.75 26.3 - - - - - - -

I100/s/50/2(17) 1575.22 24.8 - - - - - - -

I100/s/50/3(16) 1726.90 30.6 1751 - - 0.70 35 1 3

I100/s/50/4(14) 1588.67 36.5 - - - - - - -

I100/s/50/5(14) 1537.50 29.4 1547 205.2 0.61 0.00 34 1 3

I100/s/75/1(14) 1688.83 22.6 1693 507.5 0.25 0.00 40 2 4

I100/s/75/2(14) 1595.88 33.8 1606 898.4 0.63 0.00 40 1 4

I100/s/75/3(14) 1637.50 21.3 - - - - - - -

I100/s/75/4(15) 1755.00 14.9 1766 4780.3 0.62 0.00 42 1 6

I100/s/75/5(15) 1762.75 22.2 - - - - - - -

I100/m/25/1(15) 1646.29 50.2 1658 1104.0 0.71 0.00 34 1 3

I100/m/25/2(14) 1582.06 72.0 - - - - - - -

I100/m/25/3(14) 1569.31 77.4 1582 1526.5 0.80 0.00 35 1 3

I100/m/25/4(14) 1486.92 79.2 1497 971.6 0.67 0.00 34 1 4

I100/m/25/5(15) 1599.61 50.9 1612 1077.3 0.77 0.00 34 1 4

I100/m/50/1(14) 1307.82 33.9 1327 - - 0.59 28 1 3

I100/m/50/2(16) 1451.83 32.3 1472 - - 0.20 28 1 3

I100/m/50/3(16) 1605.81 30.1 1614 117.5 0.51 0.00 30 1 3

I100/m/50/4(14) 1495.67 35.9 1505 117.1 0.62 0.00 29 1 3

I100/m/50/5(14) 1481.67 32.3 1484 48.4 0.16 0.00 31 1 4

I100/m/75/1(13) 1494.17 22.2 1506 123.3 0.79 0.00 32 1 4

I100/m/75/2(14) 1470.99 27.7 1485 377.3 0.94 0.00 35 1 4

I100/m/75/3(14) 1490.00 26.2 1500 786.3 0.67 0.00 30 1 4

I100/m/75/4(14) 1549.28 16.1 1561 264.8 0.75 0.00 32 1 3

I100/m/75/5(13) 1490.27 21.5 - - - - - - -
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the vehicle capacity Q (Q outbound requests and Q inbound requests). For sedans (Q = 2), we
can notice that the average filling rate of vehicles is not far from the maximal theoretical capacity.
However, this average filling rate is relatively low for minivans (Q = 4). This behaviour can be
explained by the value of the time horizon (4 hours) that makes the number of requests per hour
relatively small. This is also due to the ride time that limits the detours to pickup or drop off of
other patients. We can also notice that the number of trips per vehicle varies between 2 and 3. Note
finally that the average number of requests per vehicle #req/veh is equal to #trips/veh×#req/trip.

Table 9: Summary of obtained solutions with MT-BP

Instance set #feas. #opt. #trips/veh. #req/trip #req/veh.

S50/s 15 15 2.95 2.29 6.76

S50/m 15 15 2.74 2.55 7.00

S100/s 8 7 2.62 2.59 6.78

S100/m 13 11 2.20 3.16 6.95

6.5. Impact of the fleet size

In this section, we study the impact of the fleet size on the total cost and on the computing time.
One objective is also to evaluate the opportunity to address this problem by first considering an
infinite fleet of vehicles and second assigning the obtained trips to vehicles. This approach should
simplify the solution process. Indeed, when the fleet is infinite, the set of feasible routes Ω can
equivalently be reduced to the set of mono-trip routes: a multi-trip route can be considered as
several mono-trip routes performed by several vehicles. To deal with the case of an infinite fleet, we
thus implemented a mono-trip variant of MT-BP (following what is already explained in Section
6.1).

In order to perform this study, we selected four instances, one from each series of instances
and run MT-BP with different fleet sizes. The selected instances are I50/s/25/3(7), I50/m/25/4(7),
I100/s/25/4(15) and, I100/m/25/5(15). Note that for each instance and each fleet size MT-BP is able to
prove either optimality or infeasibility. Obtained results are summarized in Tables 10, 11, 12 and,
13.

Tables 10, 11, 12 and, 13 contain one row per fleet size. Columns show for each fleet size:
the solution cost (”cost”), the running time in seconds (”Time”), the total number of trips in the
solution (”#trips”), the average number of trips per vehicle (“#trips/veh.”), the average number
of requests per trip (“#req/trip”), and the average number of requests per vehicle (“#req/veh.”).
The tables report the results with an unlimited number of vehicles and a single trip per vehicle
(denoted ∞), then all fleet sizes K ∈ {K1, . . . ,K2} where K1 is the minimum fleet size required to
obtain the minimal cost equivalent to an infinite size fleet, and K2 is the maximum fleet size which
enforces unfeasibility.

Table 10 shows that the best cost is 995 and is achievable with 10 vehicles. Then, reducing the
fleet size first slightly increases the cost (from 995 to 1002 between 10 and 8 vehicles), then highly
increases to 1054 with 7 vehicles. The instance is infeasible for K ≤ 6. We notice that reducing the
fleet size also impacts the computing time. An interesting remark is that the number of trips is not
drastically impacted by the fleet size.

Results on tables 11, 12 and, 13 are similar. They show a slight impact on the cost when the
fleet size is near K1 and a high impact when the fleet size is close to K2, especially for instance
I100/m/25/5 where the cost increases from 1631 to 1728 when passing from 13 to 12 vehicles.
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Table 10: Impact of fleet size for instance I50/s/25/3

Fleet size (K) cost Time #trips #trips/veh. #req/trip #req/veh.

∞ 995 0.1 22 1.00 2.27 2.27
10 995 1.7 22 2.20 2.27 5.00
9 996 2.1 22 2.44 2.27 5.56
8 1002 4.2 22 2.75 2.27 6.25
7 1054 30.7 23 3.29 2.17 7.14
6 ∅ 4.3 - - - -

Table 11: Impact of fleet size for instance I50/m/25/4

Fleet size (K) cost Time #trips #trips/veh. #req/trip #req/veh.

∞ 920 0.4 22 1.00 2.27 2.27
10 920 4.2 22 2.20 2.27 5.00
9 922 9.6 22 2.44 2.27 5.56
8 932 66.9 22 2.75 2.27 6.25
7 1014 7 23 3.29 2.17 7.14
6 ∅ 4.2 - - - -

Table 12: Impact of fleet size for instance I100/s/25/4

Fleet size (K) cost Time #trips #trips/veh. #req/trip #req/veh.

∞ 1591 7.7 39 1.00 2.56 2.56
15 1591 142.7 39 2.60 2.56 6.67
14 1595 218.7 39 2.79 2.56 7.14
13 1607 418.1 39 3.00 2.56 7.69
12 1642 473.4 42 3.25 2.38 8.33
11 ∅ 151.5 - - - -

Table 13: Impact of fleet size for instance I100/m/25/5

Fleet size (K) cost Time #trips #trips/veh. #req/trip #req/veh.

∞ 1606 16.8 33 1.00 3.03 3.03
17 1606 156.8 33 1.94 3.03 5.88
16 1607 238.1 33 2.06 3.03 6.25
15 1612 1075.5 34 2.27 2.94 6.67
14 1617 844.2 34 2.43 2.94 7.14
13 1631 401.8 34 2.62 2.94 7.69
12 1728 1779.1 38 3.17 2.63 8.33
11 ∅ 82.0 - - - -
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As expected, the computing time is significantly lower when the fleet is infinite and that the
mono-trip variant of MT-BP is used. This approach, combined with a post-assignment of trips to
vehicles, is clearly to be preferred when the fleet is large enough. However, the tables show its
limits. Indeed, it would never give a solution with less than K1 vehicles. Our results suggest that
reducing the fleet size by a few vehicles by allowing multiple trips does not have a high impact on
transportation costs. Furthermore, if the number of available vehicles is a critical resource for the
company providing the transportation service, the use of multiple trips can be necessary to satisfy
all requests. It is also important to note that K1 and K2 are not known in advance and depend on
the instance characteristics. Hence, it is difficult to be sure in advance that the solution provided
by the mono-trip variant would comply with the fleet size.

6.6. Other sensitivity analyses

In this section, we present other sensitivity analyses. We generated new challenging instances
for the MTMPD-RD based on instances presented in Section 6.2 with modified parameters to assess
the limits of the MT-BP algorithm.

Let us recall that, for all instances presented in Section 6.2, the time horizon is [0min., 240min.]
which corresponds to a working period of 4 hours, and a ride is considered acceptable for a customer
if its duration is the time needed for a direct ride between the pickup and drop-off locations plus
20 minutes (i.e., 20 minutes corresponds to the maximal acceptable detour).

In this section we consider a larger time horizon and a larger acceptable ride time to evaluate
how the MT-BP algorithm scales up. We propose three new sets of instances:

• Larger acceptable ride time: allowing detours of 40 minutes and keeping a time horizon of 240
minutes.

• Larger time horizon: [0min., 480min.] (8 hours) and keeping acceptable detours of 20 minutes.

• Both a larger time horizon [0min., 480min.] and larger acceptable detours (40 minutes).

Let E0 be the initial set of instances presented in Section 6.2. E0 is composed of 60 instances:
30 instances with 50 requests and 30 instances with 100 requests. The three new sets are derived
from E0, especially customers remain the same, and are defined as follows:

• E1 : instances of E0 with modified release and due dates to extend the maximal detour from 20
to 40 minutes: ri ← ri−10 and di ← di+10; however, if the new values are not consistent with
the conditions defined in Section 6.2, we rather set ri ← ri and di ← di + 20, or ri ← ri − 20
and di ← di, when the new release date is too small or the new due date too large, respectively.

• E2 : instances of E0 with the time horizon enlarged from [0min., 240min.] to [0min., 480min.]
and the release and due dates regenerated.

• E3 : instances of E2 with release and due dates modified similarly to instance set E1.

Fleet sizes are determined the same way as they were for instances of set E0. We run the MT-BP
algorithm on all these new instances. Similarly to Table 9 for instances of set E0, tables 14, 15 and
16 summarize computational results for instances of sets E1, E2 and, E3.

Tables 14 and 16 show the limits of MT-BP to solve instances with large maximal detour
allowed. Both for E1 and E3, optimality could not be proven for three 50-customers instances. For
100-customers instances, MT-BP found feasible solutions for 5 and 4 for instances respectively in
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Table 14: Summary of obtained solutions with MT-BP for the E1 instances

Instance set #feas. #opt. #trips/veh. #req/trip #req/veh.

S50/s 15 13 3.16 2.58 8.15

S50/m 15 14 2.64 3.64 9.62

S100/s 0 0 - - -

S100/m 5 2 2.13 4.50 9.62

Table 15: Summary of obtained solutions with MT-BP for the E2 instances

Instance set #feas. #opt. #trips/veh. #req/trip #req/veh.

S50/s 15 15 5.29 2.15 11.36

S50/m 15 15 4.69 2.25 10.56

S100/s 10 5 4.44 2.53 11.24

S100/m 13 10 3.77 2.80 10.57

Table 16: Summary of obtained solutions with MT-BP for the E3 instances

Instance set #feas. #opt. #trips/veh. #req/trip #req/veh.

S50/s 15 14 5.45 2.50 13.64

S50/m 15 13 3.96 3.32 13.16

S100/s 2 1 4.77 3.23 15.38

S100/m 2 1 3.19 3.92 12.50
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E1 and E3, and was able to prove optimality for 2 instances in both sets. Similarly to the issue of
large time windows for the VRPSPDTW, enlarging the maximal detour in instances of the MTMPD-
RD increases the number of feasible solutions in the dynamic programming process when solving the
subproblems and drastically impacts the effectiveness of the solution method. Table 15 shows results
for E2 comparable to those of E0 (see Table 9) with all 50-customers instances solved to optimality
and 23 feasible solutions found (of which 15 are proven optimal) for 100-customers instances. These
results highlight that the time horizon doesn’t seem to have an important impact on efficiency of
the MT-BP algorithm. However, increasing the maximal detour highly deteriorates its efficiency.

7. Conclusion

In this paper we introduced a new problem arising from the context of non-emergency trans-
portation of patients. The main originality of the studied problem is that there are two types of
requests, a patient is either picked-up at home and transported to the hospital or the other way
around. Requests are thus always connected to the hospital, and routes combine both types of
requests. In addition, the quality of service is preserved with riding time constraints that enforce
the vehicles to regularly come back to the hospital. Consequently, the problem can be addressed
either as a special Pickup and Delivery Problem or as a special multi-trip VRP. We call it the
Multi-Trip Vehicle Routing Problem with Mixed Pickup and Delivery, and Release and Due dates
(MTMPD-RD).

The main goal of the paper was then to evaluate if tackling the problem as a multi-trip VRP
should be preferred. We proposed a branch-and-price algorithm (MT-BP). The complex time and
capacity constraints of the problem make the definition and the management of resources complex
in the pricing problem. Also, they implied some difficulties in the branching scheme.

As the MTMPD-RD is a new problem, we generated a new set of realistic instances. We also
implemented a branch-and-price algorithm based on the pickup and delivery formulation (PD-BP).
Experiments showed that the MT-BP outperforms the PD-BP and prove the efficiency of a multi-
trip model for this problem. MT-BP proved its efficiency by solving to optimally instances involving
up to 100 requests.

To further validate the MT-BP, we adapted it for the solution of the VRPSPDTW. Our ex-
periments on benchmark instances closed the benchmark for small instances and closed four 100-
customers instances. We also detected that an infeasible solution was published in the literature.
In addition, we evaluated the opportunity to tackle the problem as a mono-trip vehicle routing
problem followed by a trip-to-vehicle assignment. Experiments show the computational interest
but also the limits of this standpoint. Finally, we conducted other sensitivity analyses generating
new challenging instances with a larger time horizon and/or a larger acceptable ride time. Results
show that the computational time of the MT-BP algorithm is strongly impacted when the maximal
detour is increased, but remains relatively stable for larger time horizons.

A first perspective for this work would be to improve the solution method, by adding valid cuts
or using a bidirectional approach for the pricing problem. Also, one might propose heuristics to
solve the MTMPD-RD to be able to solve larger instances in a short amount of time, which would
be appreciated in real-life applications. An important real-life constraint is also missing in this
study. Results show a strong imbalance in the duration of routes. It is inappropriate in our context
because the transportation is subcontracted to independent paramedics that should be considered
equitably. In addition, the easiness of patient management may vary depending on their pathology
or their lodging accessibility, which also potentially generates inequity among drivers. An interesting
perspective would thus be to integrate equity into the problem with both regards.
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Koç, Ç., Laporte, G., Tükenmez, İ., 2020. A review of vehicle routing with simultaneous pickup
and delivery. Computers & Operations Research 122, 104987.

Lim, A., Zhang, Z., Qin, H., 2017. Pickup and delivery service with manpower planning in hong
kong public hospitals. Transportation Science 51, 688–705.

Liu, M., Luo, Z., Lim, A., 2015. A branch-and-cut algorithm for a realistic dial-a-ride problem.
Transportation Research Part B: Methodological 81, 267–288.

Luo, Z., Liu, M., Lim, A., 2019. A two-phase branch-and-price-and-cut for a dial-a-ride problem in
patient transportation. Transportation Science 53, 113–130.

Mingozzi, A., Roberti, R., Toth, P., 2013. An exact algorithm for the multitrip vehicle routing
problem. INFORMS Journal on Computing 25, 193–207.

Molenbruch, Y., Braekers, K., Caris, A., 2017. Typology and literature review for dial-a-ride
problems. Annals of Operations Research 259, 295–325.

Mosheiov, G., 1998. Vehicle routing with pick-up and delivery: tour-partitioning heuristics. Com-
puters & Industrial Engineering 34, 669–684.
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