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Abstract

Disasters such as major floods affect all part of the globe. Hospital and healthcare structures
are critical resources during such event and do not always benefit of emergency preparedness.
When hospitals are impacted by the disaster, it puts a strain on the system and a reorganisa-
tion of all available hospitals on a given territory is necessary. As part of case study applied
to the impact of floods on the Île-De-France region’s health system, we present in this paper
a simulation model that evaluates healthcare emergency plan by combining the healthcare
process with the flood dynamics. The results can be used to elaborate an optimized strategy
for evacuation and transfer operations. We provide a case study including several medical
specialties and quantify the impact of several flood scenarios on the healthcare system.

Highlights

• Flood dynamics Markov model

• Patient flow discrete-event model

• Operational flood emergency management planning tool at the territory scale

• Evacuation decision tool for hospital manager
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1 Introduction

1.1 Context

Like the majority of disasters, natural or man-made, floods can result in significant economic loss
and human casualties. Disaster Operations Management (DOM) is a set of actions and decisions
aimed at preparing responses to natural or man-made disasters by reallocating resources (e.g.
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health facilities, transportation). The Federal Emergency Management Agency defines DOM as
a cycle of four components: mitigation, preparedness, response and recovery [6] (Figure 1).

Mitigation activities take place before and after emergencies and aim at reducing the occur-
rence and the impact of a disaster. Preparedness activities take place before the disaster occurs
to prepare the right response. A response is the application of the preparedness plans during
the disaster by allocating the necessary resources to protect the community. Recovery includes
actions taken to return to a normal situation after a disaster.

Figure 1: Life cycle of Disaster Operation Management.

Operations Research (OR) techniques can be used in several components of the DOM cycle.
Lian and Yen [10] compares several risk calculation methods applied to flood mitigation. Wei
et al. [16] use artificial neural network to predict flood occurrence and prepare for the impact.
Artificial neural network is also used in [12] as well as geographical information system to predict
the dynamic of water during the flood and to optimize the gate-control strategies. A classified
survey of the use of OR techniques for DOM is presented in [2] and updated in [7].

One of the main challenges in DOM is the lack of resources [8], and understanding and
managing critical resources is essential for the minimization of the disaster impact. Health
facilities represent a key resource and must accommodate the usual patients flow and the flow
resulting from a disaster [1]. However, hospitals may be themselves at risk of flood and therefore
there is a simultaneous (i) increase of the demand for emergency services and (ii) decrease of
their provision. In addition, when a hospital is flooded, its evacuation is more constrained than
mass evacuation due to the patients’ health conditions and the necessity to relocate them in
appropriate facilities.

This research is supported by the Île-de-France Regional Health Agency (Agence Régionale
de Santé d’Île-de-France, ARSIF ). The mission of ARSIF is to implement health policy in the
region. In particular, ARSIF is working and the anticipation, preparation and management of
health crises. A practical study case that is the resilience of the healthcare facilities network of
Île-de-France region (Paris, France) in case of a major flood is studied in this paper.

1.2 Objective and contributions

The main objective of this study consists in proposing a management tool for hospital evacuation
planning in the event of a major flood of nearby rivers. Unlike most of the articles in literature,
we integrate in our model (i) the flood dynamics (movement in space and time) instead of
considering the impact at a predefined time using a Markov model, and (ii) the macroscopic
patient flow model on a long horizon (one year) using a discrete-event model.

Hospital evacuation decisions adapt to the evolution of the flood and the model is used
for both preparedness before the event and response during the event. We consider hospital
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capacities on a macroscopic level: our model does not include detailed evacuation decisions from
each building as proposed in several papers [3], but it allows to control the flow of patients over
the different facilities. The resulting tool is used by the ARSIF for both strategic and operational
control of evacuation in the event of a major flood.

This paper is organised as follows: after a short literature review (Section 2), we define
the problem settings and present the general approach used in this work in Section 3. Next we
present the flood model using Markov chain in Section 4. Section 5 defines the healthcare process
model in a normal situation and during the event of flood. Several policies and strategies are
implemented and applied to the process. Degradation of the process are measured using several
key performance indicators, and the results for a case study are presented Section 6. Conclusions
and perspectives are given in Section 7.

2 Related literature

In the literature, hospital evacuation operations have been approached in different ways: project
management, mathematical modelling, simulation models and hybrid models [13]. In DOM,
simulation models aim to evaluate several outcomes such as costs, mortality or focus directly on
the building architecture (e.g. exits and staircases) that are used during evacuation [9].

In [15], a simulation model is developed to compare the impact of different resources on the
evacuation operations. Results indicate that an increase of transportation resources (number of
ambulances or transit rate) has a smaller benefit for evacuation than a change in the available
capacity of the safe hospitals. In this study, disaster type is not specified.

The study [18] focuses on the analysis of the available capacity in safe hospitals in Florida,
and estimates the absorption ability of the region in case of an earthquake. In [14], simulation is
used to evaluate the effectiveness of an evacuation plan for one hospital under various scenarios
and resources (e.g. patient types, nurses, number of ambulances).

A simulation model is developed in [3] to evaluate and improve the evacuation of one hospital
in case of a flood considering internal resources (e.g. stretchers) and external resources (e.g.
ambulances). In a previous work [19], a discrete-event simulation model was proposed to evaluate
the impact of a flow on a network of hospital for strategic decision aid (decisions related to
resource preparation and localisation to ensure feasibility of evacuations).

A systematic review of hospital emergency evacuation in disasters is presented in [17]. To
the best of our knowledge, only one study [12] considers dynamic responses to the progression
of the disaster (open or close gates). Other works focus on actions to be taken when the disaster
is over. Studies dedicated to healthcare systems are often focused to a single facility.

The scientific objective of this paper is to fill a gap in the literature by providing a formal
method that involves dynamic decisions during the progression of the disaster for a healthcare
network using a modelling and simulation approach, taking into account a continuous flow of
data related to the flood and hospitals characteristics.

3 Problem settings

3.1 Position of the problem

In this paper we intend (i) to mimic the behavior of the healthcare network using data from
medico-administrative databases, and (ii) to evaluate the emergency plan of a regional healthcare
system and assess the region’s resilience in case of flood, on the strategic level (several months
before the supposed flood period) or on the operational level (a few days before the supposed
start of the flood, taking into account meteorological information).
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We define the region’s resilience as the ability to treat all scheduled patients and emergency
arrivals within the region (i.e. with no transfer to hospitals outside of the region). In other words,
the resilience is achieved if the non-flooded hospitals can take into care their patients as well
as emergency patients and the patients coming from the flooded hospitals. In the context of
very limited capacity, such solution may only be achieved by predefined management rules. For
example:

• Discharging patients in order to free up as many resources as possible, before and during
the flood.

• Preventive evacuation of high risk hospitals based on geographic location and electric
fragility.

• Transfer of flooded hospital patients according to pre-established preferences.

Unlike most other disasters (natural and man-made), these rules are feasible in case of
flood because of the alert period given by the weather forecast and water level measurements.
However, the effectiveness of the flood management rules is highly variable depending on the
flood dynamic (water level and speed) as well as the emergency patients flow.

3.2 General approach

To evaluate accurately the preparedness plan and the decisions before and during flood, the
proposed approach presented in Figure 2 combines a patient flow model using Petri nets with a
dynamic flood model using Markov chains. Data sources are depicted as green boxes, models as
blue boxes, and dashboards as brown boxes.

Hospital Data
Capacity

Flood risk

...

Patient Data
Hospital

LoS

Arrival time

Territorial data
Flooded zones

Patient flow
model

Petri net Flood model
Markov chain

KPI
Regional resilience

Number of evacuations

...

Figure 2: General approach

The patient flow model based on Petri nets is implemented in order to simulate all care
pathways in all hospitals at the macroscopic level over a long horizon (at least one year) across
the considered territory. The patient flow model replicates the operations of the healthcare
network and is fed using real data coming from medico-administrative databases (Hospital Data

4



and Patient Data). Using this model, we apply a disturbance at a certain time (start of a flood)
to evaluate the impact on the patient flow.

The flood model is a dynamic short term event (few days to few weeks). When the flood
alert starts, healthcare processes are adjusted by including the flood management rules until the
end of the flooding event. Such processes are considered as degraded care pathway (evacuation
of the hospital and/or patients transfers).

The input data feed for the aforementioned models are: (i) hospital data (capacity per
medical speciality and hospital, flood risk evaluation per hospital), (ii) patient data (referred
hospital, length of stay, arrival time), (iii) geographical data (maps of counties within the region,
flooded zones decomposition, transportation time).

Finally, several Key Performance Indicators (KPI) are computed to evaluate the performance
of the management rules applied during the flood event. The main KPI is the evaluation of the
autonomy of the region in case of major flood. The exhaustive list of KPI is presented in
Section 6. In the following we formally define the flood model in Section 4 and the patient flow
model in Section 5.

4 Formal flood modeling using Markov chain

A key contribution of this paper is to propose a flood model taking into account dynamics of
water. We present in this section the set of assumptions we considered regarding the flood
dynamic related to its starting time and its duration. Then a new Markov chain modeling flood
dynamics is proposed. A comprehensive example describing how to build the model from real
data is given in Section 6.

4.1 Assumptions on flood characteristics

The region is partitioned into zones. All the locations in a zone are impacted at the same level
during each period of the flood. A flood is characterized by a sequence of water level values
for each zone during rising and receding water times. Of course the water level values satisfy
physical constraints related to geography of the ground and the stream-bed configuration. The
speed and the extent of the flood is then characterized through the changes and maximal values
in the matrix that defines a water level for each pair of zone and time period.

Obviously the water level is not constant during a time period. The value used can either
be obtained by aggregating values over time (average, maximum) or taking a value at a specific
time-stamp (beginning, middle or end of the period).

In order to link this geographical model with the healthcare network, we combine the zones
coordinates with the geographic location of the facilities. We obtain the list of potentially flooded
facilities for each water level. Accuracy strongly depends on the number (i.e. the size) of zones
and the number (i.e. the length) of time periods involved in the model.

Assumption 1 (Starting time of a flood) The starting time of the flood event is selected
randomly to capture the impact of seasonality on the healthcare process as arrival distribution of
patients varies depending on the period of the year.

Assumption 2 (Flood types) We consider two phases in a flooding event: (i) flood rising
and (ii) flood receding. The length of the first phase determines if the flood is slow or fast.
The total duration of the flood and the duration of both phases are selected randomly within
realistic ranges extracted from historical data and validated by experts. This is a limitation of
our experiments design since several phases of increase and decrease may occur during a flood.
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When a flood alert is triggered, the severity of the event remains unknown. We consider
that the alert period allows the increase of preparedness to the worst possibilities. Consequently,
all hospitals in the territory set a priority for their patients and free, if possible, a predefined
percentage of their capacity. The performance of the rules applied during the alert period is
reflected through the three following outcomes:

1. Less transferred patients in case of flood.

2. Better preparedness to face to the flow of emergency patients caused by the flood.

3. Excess capacity for patients transferred from flooded hospitals.

4.2 Markov model

Based on the geographical decomposition into zones and the time decomposition into time
periods, we define a Markov chain with discrete index set (time) and discrete state space.

4.2.1 States definition

Let Z be the set of potential flooded zones indexed by z, and Sz be the set of possible states
for the zones. For each zone we define a finite set of n + 1 states {0, 1, . . . , n} with state 0
corresponding to a non-flooded zone and states 1 . . . n corresponding to water levels. The state
values do not necessarily correspond to proportional water levels. These values are selected in
order to model different impact level on the zone.

Water levels correspond to a flow value at each measuring station. Flow quantities can be
easily sum up following the main river and its contributing rivers. Water levels are preferred,
since they are more frequently measured and directly related to the flood severity.

A time horizon H discretized in time periods {1, . . . , t, . . . ,H} is considered to model flood
dynamics. At each time period, the flood advances in the direction of the water flow (for
example, the zones on the right (East) of Figure 7 are impacted first), and the changes of states
follow that flow.

Consequently, we consider a Markov chain where each State SRi = {s1 , .., s|Z |} of |Z | items
representing the water levels of all the region zones at a time period. The time period index is
discarded from the state definition since it is only used to decide on the phase, flood rising or
receding.

An example of flood simulation using our Markov chain is proposed in Figure 3 in five zones.
No flood is occurring during periods 1 and 2. Zones 1 and 2 are flooded at level 1 during period
3, and then at level 2 during period 4 whereas zones 3 and 4 are flooded at level 1, etc.

t1 (0, 0, 0, 0, 0) No flood
↓

t2 (0, 0, 0, 0, 0) No flood
↓

t3 (1, 1, 0, 0, 0) Zones 1 and 2 are flooded level 1
↓

t4 (2, 2, 1, 1, 0) Zones 1, 2 flooded at level 2, zones 3, 4 flooded at level 1

Figure 3: Example of flood dynamics
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4.2.2 Initial State

A flood may start at one or several different zones depending on the number of rivers. We
suppose that the flood event always starts at State SR0:

SR0[z] ≥ 1 if z is a source zone of a river, 0 otherwise. (1)

In the example of Figure 3, the flood starts at t3 from zones 1 and 2.

4.2.3 Transition Rules

The probability to reach state SRj from state SRi is denoted pij . A transition rule defines how
the level of water is changing between two consecutive time periods. Three types of transitions
or transition rules are applied in our model : loop, increase and decrease:

• Loop transition. The same state SRi with a probability pii is kept for all zones between
two time slots. The loop transition periods allow to control the speed of the flood rising
and receding.

• Increase and decrease transitions. The first (flood rising) and second (flood receding)
phases are symmetrically controlled by the following rules.

In order to keep the flow of water consistent with the flood direction, the water level in any
downstream zone z is lower (resp. upper) than the level in the upstream neighboring zone z′

during the previous period. Equations (2-3) and (4-5) enforce these constraints for State SRj

that follows SRi for the increase and decrease transitions, respectively.

∀z ∈ Z , SRj [z] ≤ SRi [z] ≤ SRj [z] + INCmax (2)

∀z, z′ ∈ Z , SRj [z] ≤ SRi

[
z′
]

(3)

∀z ∈ Z , SRj [z]−DECmax ≤ SRi [z] ≤ SRj [z] (4)

∀z, z′ ∈ Z , SRj [z] ≥ SRi

[
z′
]

(5)

Note that the rules are applied to the normalized water levels of the states definition.
Between two consecutive states a maximal increase INCmax (resp. decrease DECmax) values

are defined. Combined with the length of the time periods, these values limit the water rising
and receding speed.

We assume that the flood is rising (resp. receding) in all the zones at the same time. As
in the example of Section 6.3, slow floods in Paris area satisfy this statement. However some
extensions may consider zones in different phases at the same time. But, consistency with the
physical constraints of the water flow should be revised.

The rules (2) to (5) enforce consistency between neighbor zones according to the current
episode, rising or receding, by limiting the set of reachable states from State SRi. Of course,
the transition probabilities pij have two values; one for each episode.

When few historical data are available, like in our study case described in Section 6, the
first value to set is the stationary state probability pii, since this is the most common case for
slow floods. Then the probabilities of reachable states SRj , j 6= i are set to the same value
pij = (1− pii)/Card({j 6= i : SRj is a reachable state}).
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4.3 Monte-Carlo simulation

The proposed Markov chain model is integrated in a DES (Discrete Event Simulation) model in
the following way: at each time slot, an event of the DES model is triggered in order to activate
the transition probabilities of the Markov models. Depending on the result, the states of the
zones are updated, resulting in the triggering of new management rules in the patient flow model
described in the next section.

5 Patient flow model

In this paper the patient flow model is defined on a macroscopic scale and specific to a medical
specialty. The complete healthcare network is composed of multiple instances of patient flow
models, one for each medical specialty.

5.1 Assumptions on patient flow

Data are related to hospitals and patients, as detailed below. In our case study, facilities are
all hospitals (but other types of facilities can be considered in our model). The capacities of
hospitals have a major role in our model as the available capacity of a non-flooded facility can
absorb the flow of patients caused by the flood (emergency and evacuation). Moreover, patients
have specific needs depending on their health troubles. For instance, a dialysis patient needs
a bed specifically equipped for dialysis. Therefore the capacity of each facility is defined by a
multidimensional vector with one value for each specialty.

We consider 3 health states for each patient:

• State 1 (ps1): the patient must be taken care of on the scheduled date, or if they is already
hospitalized, their care must continue,

• State 2 (ps2): the hospitalization may be delayed by a week maximum,

• State 3 (ps3): the hospitalization may be delayed by a week or more.

Hospitals and patients data sets are used as input of the discrete-event model. Basically,
patients arrive to facilities with specified arrival rate to receive care in a specialty for a given
length of stay. The patient’s specialty does not change during their stay. Parameters used in
the model are summarized in Table 1.

Table 1: List of parameters
Parameter Definition

S = {1, . . . , s, . . . , |S|} Set of medical specialties
H = {1, . . . , h, . . . , |H|} Set of hospitals in the network
ns,h Number of beds of specialty s in hospital h
F lexs Binary indicator that equals 1 if delaying patients of spe-

cialty s in states ps2 and ps3 during a major flood allows
the continuity of care of all patients in the state ps1, 0 oth-
erwise.

Assumption 3 (Binary impact on the flood on hospitals) We suppose that if a hospital
is flooded, it must be evacuated (all the patients are transferred).

Assumption 4 (Independence of specialities) Specialities are considered separately since
we assume no transfer between medical specialities is permitted during the flood. The autonomy
of the region in the event of a flood can therefore be evaluated for each speciality separately.
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5.2 Healthcare management strategies during a flood

When a hospital is flooded, hospitalized patients must be transferred. Also, future scheduled
patients and emergency patients are referred to other hospitals during the entire flood period.
During the flood period, disaster management operations (especially transportation) are complex
and involve several decision makers. We define two strategies for patients’ transfers based on
organization and feasibility constraints.

1. Strategy 1: patient transfer is prioritized depending on transportation resource manage-
ment. Thus, depending on the available capacity in the relevant specialty, a patient will
be transferred as first choice to a hospital in the same hospital group, then in the same
department (county), then outside the county but within the same region, and finally
outside of the region (Figure 4).

2. Strategy 2: we define an isolated territory which does not include any major critical
bridges. Depending on the available capacity in the relevant speciality, a patient will be
transferred to a hospital in the same isolated territory. The purpose is to prevent helicopter
transportation outside of the territory which is costly and should be avoided as much as
possible. If all hospitals in the territory are saturated, patients will be transferred outside
of the region (Figure 5).

Flooded Hospital Hospital group County Region Out of region

Figure 4: Strategy 1 for evacuations and transfers.

Flooded Hospital Isolated territory Out of region

Figure 5: Strategy 2 for evacuations and transfers.

Regardless of the selected strategy, all impacted hospitals remain closed after the end of the
flood event for repair purpose. The duration of the repair depends on the cause of the impact
(submersion or electrical failure).

5.3 Petri Net Model of Patient Flow

5.3.1 Basic notions of Petri nets

An ordinary Petri net (PN) is a 4-tuple R = (P, T, F,M0) where P and T are two disjointed sets
of nodes called respectively places and transitions, F ⊆ (P × T ) ∪ (T × P ) is a set of directed
arcs, M0 : P → N is the initial marking of the net.

The set of input (resp. output) transitions of a place p ∈ P is denoted by •p (resp. p•).
Similarly the set of input (resp. output) places of a transition t ∈ T is denoted by •t (resp. t•).

A transition t ∈ T is said to be enabled at M0 if for all p ∈ •t, M0(p) ≥ 1. A transition may
fire if it is enabled. The firing of a transition t at marking M removes one token from each of
its input places and puts one token to each of its output places.

A source transition is a transition without any input place. A source transition is always
enabled. A sink transition is a transition without any output place. When firing a sink transition,
all tokens are removed respecting usual rules but no tokens are generated.

A T-timed Petri net is a 5-tuple R = (P, T, F, θ,M0) where θ : T → N assigns to each tran-
sition t its transition firing time θ(t). Firing a timed transition t at time d removes immediately
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one token from each input place but add tokens to its output places only at time d + θ(t). In
this paper, we use a T-timed Petri net because we need to take into account duration of hospital
stays.

A colored Petri net is a 7-tuple CPN = (P, T,C,A,W+,W−,M0) where C : (P ∪ T ) → Ω,
C(p), p ∈ P , is the set of colors associated to a place p (i.e. the set of colors that place p may
have), C(t), t ∈ T , is the set of colors associated to a transition t (i.e. the set of ways to fire
t), W−p,t : C(t)→ N|C(P )| is the pre-condition of a transition in relation to a color which defines
for each way of firing t the required combination of tokens of different colors in different places,
W+

t,p : C(t)→ N|C(P )| is the post-condition of a transition in relation to a color which defines for
each way of firing t the combination of tokens of different colors added to different places. In
this paper we use a colored Petri net in order to take into account the various medical specialties
during the hospital stays.

5.3.2 Model description

In order to formally define the patient flow model, a colored T-timed Petri net model for each
specialty s ∈ {1, . . . , |S|} is proposed in Figure 6. Patients arrivals are modelled using a source
transition ts,1. Place ps,1 models the decision related to the triggering of a degraded mode
for patient care in the event of a flood. If the facility is not impacted, transition ts,2 is fired
(transportation time within the same facility) and the patient stays in the facility by firing
transition ts,3. The transition duration is defined by a random variable that depends on the
type of stay. When the patient exits the facility (patient discharge), sink transition ts,4 is fired.

In the event of a flood, the degraded mode is triggered. Transitions ts,5, ts,6, ts,7 model
transfers to other hospitals following a predefined priority. Transition ts,8 is a special case and
models the transfer to an hospital out of the region, that penalizes the resilience of the region.
In that case, we do not consider the stay of the patient and thus transition ts,3 is skipped. For
the Strategy 1, ts,5 models a transfer to a facility from the hospital group, ts,6 models a transfer
to a facility from the county, and ts,7 models a transfer to a facility from the region.

Place ps,4 models the available beds for each hospital having the specialty s. Then we have
as many ways of firing ts,3 as we have hospitals having beds to take into care patients related
to specialty s.

The resulting model is replicated for all medical specialties of the region. Formally the
Petri Net of Patient Flow (PNPF) for a medical specialty s is a 7-tuple colored Petri net
PNPF∫ = (Ps, Ts, Cs, As,W

+,W−, θs,Ms,0) where:

• Ps = {ps,1, ps,2, ps,3, ps,4} is the set of places.

• Ts = {ts,1, . . . , ts,8} is the set of transitions.

• Cs : (Ps ∪ Ts) → Ω, C(p), p ∈ Ps, is the set of colors associated to a place p (i.e. the
set of colors that place p may have) and C(t), t ∈ Ts, is the set of colors associated to
a transition t (i.e. the set of ways to fire t). Here Cs(p) = {cp0} ∀p ∈ {ps,1, ps,2, ps,3},
Cs(ps,4) = {cp1, . . . , cp|H|}, Cs(t) = {ct0} ∀t ∈ T − {ts,3} and Cs(ts,3) = {ct1, . . . , ct|H|}.
Thus cp0 is the color of patient tokens and cp1, . . . , cp|H| are the colors of tokens modelling
beds in hospitals, one color for each hospital.

• As is the set of arcs of the PN.

• W−p,t : C(t) → N|Cs(P )| is the pre-condition of a transition in relation to a color which
defines for each way of firing t the required combination of tokens of different colors in
different places. Here all transitions have only one color except ts,3: W

−
ps,2,ts,3

(ct0) = 1 (we

need a patient token to start the stay) and W−ps,4,ts,3(cth) = (0, . . . , 1, . . . , 0) where 1 is at
rank h, ∀h ∈ H (we need a bed in a hospital of the network).

10



ts,1

ts,2
ts,3

ts,4

ts,5

ts,6

ts,7

ps,1
ps,2 ps,3
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Arrival of a
new patient

Patient transportation Patient stay Patient discharge

PN model for 
specialty 1

PN model for 
specialty 2

PN model for 
specialty s

PN model for 
specialty S

…
…

ps,4

Figure 6: Generic patient flow model

• W+
t,p : Cs(t) → N|Cs(Ps)| is the post-condition of a transition in relation to a color which

defines for each way of firing t the combination of tokens of different colors added to
different places. It is defined symmetrically as W−p,t.

• θs : Ts → N is a function returning the firing duration for a transition of the PN.

• Ms,0 ∈ NP ×N|Cs(Ps)| is the initial marking of the PN. Here place ps,4 has as many tokens
of color cph as hospital h has beds for medical specialty s.

5.4 Simulation of the Patient Flow Model

Anylogic Pro 7.1 has been chosen to implement both the patient flow model and the flood
dynamic model. The implementation of the Petri net model in a simulation software is straight-
forward: source and sink transitions are implemented using source and sink modules. Decision
places are implemented using decision nodes. Transportation or facility stay (temporized tran-
sitions) are implemented using process modules.

A virtual event is triggered periodically (following the time periods defined in the Markov
chain) during the simulation in order to update the Markov chain states. Global variables
describing the flow state are updated. Depending on these values, output of place ps,1 is chosen
accordingly to the currently used management rule and the flood state.

5.5 Key Performance Indicators

As introduced above, the ARSIF coordinates the evacuation operations and the patients trans-
portation over the region during a disaster. Therefore we choose a set of KPIs that quantify the
impact of each scenario and identify the decision makers involved (hospital groups, counties or
the entire region).

Following the sequence of evacuation and transfers, Table 2 defines the list of indicators
measured in this experiment.
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Table 2: Key performance indicators.
ET ot Number of evacuees for the entire region
EHG Number of hospitalized patients evacuated to a hospital in the same group
EDep Number of hospitalized patients evacuated to a hospital in the same county
EReg Number of hospitalized patients evacuated to a hospital within the region
EIT Number of hospitalized patients evacuated to a hospital within the isolated territory
EOut Number of hospitalized patients evacuated to a hospital outside the region
TTot Number of transferred activities for the entire region
THG Number of transferred activities to a hospital in the same group
Tdep Number of transferred activities to a hospital in the same county
Treg Number of transferred activities to a hospital within the region
TIT Number of transferred activities to a hospital within the isolated territory
TOut Number of transferred activities to a hospital outside the region
Auto Binary indicator that equals 1 if the region remains autonomous, 0 otherwise

6 Case study: Paris region flooding

In this section, we present some results obtained on the Paris region healthcare network which
has been impacted by a flood of the Seine and Marne rivers. We use several flood scenarios
obtained by the Markov chain model and real data for different specialties. The usual period of
major flooding is from November to April. Consequently, most preparedness plans are designed
according to the pattern of patients flow during this period. However, flooding may occur at
any time of the year, causing the sub-optimality of some of the emergency management rules
(e.g. June 2016 flood in Paris).

6.1 Data and Scenarios

Several specialties were treated in the experiments and we choose to present as example the
results for general medicine as well as a synthesis of other specialties.

The French national hospitalization database (Programme de Médicalisation des Systèmes
d’Information, PMSI) is an exhaustive nationwide medico-administrative database that covers
the data of patients in both public and private hospitals. We extract from this database the
dates of start and end of stays of patients of all hospitals for every considered specialty.

Data collected from the hospitals in the Paris region are summarized in Table 3. Hospitals
provided for each specialty their capacity, the number of patient per month, the mean length of
stay. The flood risk is evaluated for each flood scenario by mapping the hospitals locations and
the flood coverage.

Table 3: Hospitals and patients data for the studied specialties.
Specialty Number

of hospi-
tals

Maximum
flooded
hospitals

Maximum
electrical
failures

Total
capacity

Patients
per year

Mean
LoS
(in
days)

General
medicine

189 12 53 20,601 1,748,569 3.9

In these experiments, we consider 24 scenarios based on the combination of the two following
parameters:

• Flood starting time (month): The flow of patients of each specialty strongly depends on
the month of the year. It is important to test the impact of a flood on several periods
during the year.
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• Transfer strategy: Represents the priority sequence selected for the evacuation of hospi-
talized patients and transferred activities, as presented in Figures 4 and 5.

We ran 1000 replications per scenario. Depending on the specialty, the computing time of one
replication is between 5 and 15 seconds. All the results presented below are mean values of the
replications.

The patient process Petri net model is calibrated using (i) hospitalisation medico-administrative
data for length of stay modelling and (ii) geographical data for transportation duration. For
each medical speciality, we fit a lognormal distribution for the length of stay in the hospital
(transition ts3 and an exponential distribution for the inter-arrival duration (transition ts,1 in
Figure 6). For each pair of hospitals of the considered region, a transportation duration is mod-
elled using a triangular distribution (the minimum value is the required transportation duration
without traffic, the maximum value corresponds to the duration with heavy traffic, and the mod
value corresponds to the most observed transportation duration).

6.2 Flood characteristics

The flood model proposed in this paper is based on the detailed maps of regional zones. These
characteristics can be used in order to evaluate transfer strategies face to potential scenarios.

6.2.1 Zones

Water level and flow are monitored by reference stations. We consider that for each reference
station there is a potential flood zone (PFZ), i.e., a zone in our Markov chain model. An
example of reference stations and 15 associated zones is shown in Figure 7.

Figure 7: Water flow and the potential flooded zones associated to reference stations.
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6.2.2 Water levels

The water levels that define possible states of each zone are computed relatively to a reference
flood. Based on the results of a hydraulic model ALPHEE [5], the Regional and Interdepartmen-
tal Directorate for Environment and Energy designed regional scenarios to estimate the impact
of floods in the Paris region.

These scenarios use a set of simplified maps of flooded zones according to the flow of the main
rivers in the region and are proportional to the flood of 1910, one of the most devastating floods
in the region. Figure 8 shows examples of the impact of the three most important scenarios
representing, from left to right, 80%, 100% and 115% of 1910’s flood. These scenarios are
respectively denoted R0.8, R1 and R1.15 in the rest of the paper.

Figure 8: Three regional flood scenarios in Paris region as a percentage of 1910’s flood.

We use these data to set four possible states to each zone, as shown in Table 4.

Table 4: Notation and definition of zone states relatively to 1910’s flood.
State of the zone z ∈ Z Definition

sz = 0 The zone is not flooded
sz = 1 The zone is impacted by the scenario R0.8
sz = 2 The zone is impacted by the scenario R1
sz = 3 The zone is impacted by the scenario R1.15

Figure 9 shows an example of the combination on a sub part of the map. The yellow areas
represent the flooded area in case of scenario R0.8, the pink in case of R1 and the blue areas in
case of R1.15. The hospitals are represented by the orange dots.

Figure 9: Example of the mapping of the three scenarios and hospitals locations

Compared to static maps, our model is able to easily deal with many possible scenarios that
mix the water levels of reference scenarios no-flood, R0.8, R1 and R1.15 among zones.

In this case study, we tested the impact of a slow flood on the territory, as it is the most
frequent one for the Paris region.
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6.3 Flood Markov model validation

The parameters (water levels, time periods and transition probabilities) of the Markov chain
model are set according to the flood in Paris (2016) in order to validate our approach.

In the current section, the flood model is run starting from different time periods, in order
to measure the convergence of the model when real information is revealed time to time.

Reference water levels are real data collected from [4]. These data are simplified through a
subset of five zones along the Seine river which correspond to the five measuring stations located
after the main rivers confluences.

The eleven water levels considered in the Markov chain model are computed as one tenth of
the gap between the maximum expected level (115% of the 1910 flood) and the default level.

Real water levels reached by the flood are given at the top of Figure 10 from 2016-05-28 to
2016-06-12. The corresponding normalized water levels according the 1910 flood are given in
the bottom graph of Figure 10.

Figure 10: Water levels at five measuring stations during the 2016 flood in Paris

We defined empirically the values of the parameters of the flood of 2016. The stability
probability pii = 0.3, the maximal increment for flood rising or receding is equal to 2. In
Figure 11, the forecasts performed at three different days are displayed. The forecast computed
on 2016-05-28 is displayed in the top graph, on 2016-06-02 in the middle graph, and on 2016-06-
06 in the bottom graph. Actually, the forecast for next days can be refined when new measures
are collected and used for a warm start of the Markov chain model. The values displayed are
averaged over one hundred runs.
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The average error over one hundred independent runs of the forecast at the first day (2016-
05-28) of the simulation was 1.77. The error is computed as the average deviation between every
real and forecast water level (with normalized units), at every station, every day and for every
run.

Figure 11: Update of forecasts on 05-28, 06-02 and 06-06

Flood simulation model is validated using historical water levels: for one possible flood
dynamic we want to test, we adjust probabilities of the Markov model in order to match the real
flood. This way it is possible to test the impact of slight variations of a flood on the hospital
network.

6.4 Patient flow model validation

There are several ways to validate a simulation model. In [11], the author summarises and
presents 15 of the most commonly used validation techniques. Among these techniques, we
selected historical data validation for our problem: since we have historical data, part of the
data is used to build the model and the remaining data are used to test whether the model
behaves as the system does.

Patient flow model is constructed using 80% of historical data to build distributions used in
the model. Then we inject the patients from the other 20% of historical data in our simulation
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model (without any flood occurring) and we compare the KPI length of stay of patients against
the actual values. We used a 90% confidence interval and we verified our average length of stay
for each specialty is within the given confidence interval.

Figure 12 presents the validation results for all medical specialties taken into consideration
in this case study. Note that the simulation model under estimates the length of stay for
neuro-vascular and long term care patients. This phenomenom is caused by the occurrence of
extreme points in the historical data for these specialties. After discussing with practitioners,
we consider the results given by the model are fair considering these particular cases. Also, for
dialysis, length of stay is always equal to one. Apart from these 3 particular cases, simulation
results are validated as the historical data sample average always fit in the error interval of the
simulation results.
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Figure 12: Validation results

6.5 Results

6.5.1 General medicine speciality

In the region, 65 institutions are likely to be affected by a flood, of which 12 are due to flooding
and 53 to electrical failure. On average, a flood requires the evacuation of 1,500 hospitalised
patients and nearly 10,000 scheduled or urgent activities are displaced during the flood and the
repair period (Figure 13). There is an impact of seasonality on the activity of general medicine.
The months of May and August are the least critical, while the months of June and November
are the most critical.

Electric frailty is the main cause of flood impact on health facilities: 80.52% of the evacuated
patients and transferred activities are due to an electrical power failure, whereas the remaining
19.48% of evacuation are caused by an actual flooding of the hospital. The next results represent
the indicators of the absorption ability of the region depending on the scenarios.

Scenario 1 In Scenario 1, we suppose that the major bridges are functional and can be used
for evacuation and transfer operations. Using this sequence of priority, the region remains
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Figure 13: Number of evacuees and transferred activities in the region

autonomous for healthcare (Auto = 1). Moreover, the flood impact is absorbed within the
county for evacuations and activity transfers. Table 5 shows that hospital groups absorb most
of the evacuees from impacted hospitals. This result has a major advantage as hospital groups
may share patients files as well as human and material resources. Transfer of activities are less
absorbed by the hospital groups but still remain in the same county. We also observe that
seasonality have little impact on the distribution of evacuees and transferred activities. In this
scenario, no hospitalized patient (resp. no medical activity) is evacuated (resp. transferred)
outside of the region.

Table 5: Percentage of hospitalized patients evacuated to a hospital in the same hospital group
(E HG) (resp. same county (E Dep), same region (E Reg), out of the region) and number of
activities transferred in the same hospital group (T HG) (resp. same county (T Dep), same
region (T Reg), out of the region) for Scenario 1

Beginning Patients evacuations Transferred activities
of the flood E HG E Dep E Reg Out T HG T Dep T Reg Out

January 78.83% 21.17% 0.00% 0.00% 5,187 4,899 0 0
February 77.65% 22.35% 0.00% 0.00% 5,318 5,278 0 0
March 78.14% 21.86% 0.00% 0.00% 5,621 5,722 0 0
April 78.39% 21.61% 0.00% 0.00% 5,209 5,236 0 0
May 78.71% 21.29% 0.00% 0.00% 4,191 4,248 0 0
June 78.36% 21.64% 0.00% 0.00% 5,677 5,649 0 0
July 80.11% 19.89% 0.00% 0.00% 4,419 3,746 0 0
August 81.85% 18.15% 0.00% 0.00% 4,428 2,808 0 0
September 78.95% 21.05% 0.00% 0.00% 5,538 5,247 0 0
October 78.15% 21.85% 0.00% 0.00% 5,638 5,431 0 0
November 77.72% 22.28% 0.00% 0.00% 5,743 5,696 0 0
December 78.47% 21.53% 0.00% 0.00% 5,176 5,155 0 0

Scenario 2 In Scenario 2 the main bridges are not functional and thus evacuation and trans-
fers must stay within isolated territories. Isolated territories absorb 97% of evacuations and
transferred activities as shown in Table 6. The remaining 3% of patients therefore need out-
of-region transfers. In this strategy as well, seasonality have little impact on the number of
evacuees and transferred activities.

Technically, this strategy is very difficult to implement in real life for a logistical reason.
Transportation resources are managed by either hospital groups or counties. An isolated territory
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Table 6: Percentage of hospitalized patients evacuated to a hospital in the same territory (E IT)
(resp. same county (E Dep), same region (E Reg), out of the region) and number of activities
transferred in the same territory (T IT) (resp. same hospital group (T HG), same county
(T Dep), same region (T Reg), out of the region) for Scenario 2

Beginning Patients evacuations Transferred activities
of the flood E IT E Dep E Reg Out T IT T HG T Dep T Reg Out

January 97.93% 2.07% 0.00% 0.00% 10,657 54 198 0 0
February 97.66% 2.34% 0.00% 0.00% 11,013 69 222 0 0
March 97.69% 2.31% 0.00% 0.00% 11,187 57 195 0 0
April 97.74% 2.26% 0.00% 0.00% 10,325 28 148 0 0
May 97.78% 2.22% 0.00% 0.00% 8,097 15 102 0 0
June 97.90% 2.10% 0.00% 0.00% 11,771 39 174 0 0
July 97.75% 2.25% 0.00% 0.00% 10,073 11 130 0 0
August 97.81% 2.19% 0.00% 0.00% 6,996 15 100 0 0
September 97.80% 2.20% 0.00% 0.00% 10,919 25 149 0 0
October 97.96% 2.04% 0.00% 0.00% 11,316 25 147 0 0
November 97.86% 2.14% 0.00% 0.00% 10,889 39 181 0 0
December 97.70% 2.30% 0.00% 0.00% 10,212 40 191 0 0

may contain several counties, and a hospital group may have establishments in several isolated
territories. An extra effort is needed to coordinate the cooperation between several decision
makers.

In general medicine, an average of 13% of patients must be treated immediately (ps1), 30%
can be postponed for several days as needed (ps2) and more than 56% can be rescheduled in
one to several weeks (ps3). By studying the lists of patients and their states, decision makers
may avoid evacuations and transfers outside of the region.

6.5.2 Other specialties

As mentioned previously, several major and critical specialties were studied in our work. Each
specialty necessitates detailed modeling of the healthcare process as well as specific management
rules in case of a flood. We summarize in Table 7 the results obtained : the averages on all the
replications of the number of evacuations and transfers, the probability of autonomy for the two
selected strategies, the impact of seasonality and the flexibility of the specialty.

Table 7: Hospitals and patients data for the studied specialties.
Specialty Flexibility Nb of Nb of Autonomy Autonomy Season.

evacuees transfers Strat1 Strat2 impact

Surgery YES 1027 6715 100% 99% YES
Obstetrics NO 500 1661 100% 82% NO
Neurosurgery NO 122 200 100% 98% YES
Neuro-vascular NO 1 41 100% 78% YES
Dialysis NO 324 1338 100% 92% NO
Cancerology YES 86 422 100% 100% YES
ICU NO 490 1222 100% 98% NO
Long term care NO 2558 861 100% 86% NO

For all the studied specialties, regional independence is guaranteed if the major bridges and
roads are available (Strategy 1). On the other hand, the independence of the isolated territories
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is not always guaranteed: in the worst case (neuro vascular unit), the probability of independence
of the isolated territory amounts to 78%. This means that in 22% of flood scenarios, patients
must be evacuated and activities transferred outside the region. For many specialties, there is
no flexibility in the rescheduling due to the states of the patients. However, it is possible to free
more capacity in other specialties and avoid the loss of the regional autonomy.

7 Conclusions and perspectives

We presented in this paper the work realized with the Regional Health Agency that aims to
evaluate healthcare emergency plan and assess the regional resilience in case of major flood. We
developed a modeling and simulation approach that combines a healthcare process model with a
flood model using Markov chain. The model is used both as a preparedness tool and a response
tool for healthcare decision makers. The results obtained on real data allow us to validate the
model and estimate the impact of several flood scenarios on each specialty. The measured key
performance indicators also identify the decisions makers involved for each scenario (the hospital
groups, counties or isolated territories).

In future work, additional evacuation strategies will be tested depending on more than the
hospitals capacity and political preferences. Moreover, optimization models should be integrated
to the model to solve several disaster operations problems, such as transportation operations
and human resources assignment.

A Appendix: Software Development

A visualization interface is integrated to the model using the AnyLogic software and the Java
programming1. It is intended to be used by medical authorities in order to visualize the flood
impact and organize the response accordingly. Several parameters are selected at the start of
the simulation:

• The initial date of the simulation - a drop-down menu to choose the start day and month;

• The initial force of the flood - a choice between the intensities of 80, 90, 100, 105 and 115
representing the water levels;

• The force and speed variations of the flood - a choice between “no variation”, “low varia-
tion” and “high variation”.

• The availability of major bridges and roads - this choice defines the evacuation strategy.

To visualize the evolution of the simulation we used the Map tool provided by AnyLogic.
The flood evolution is illustrated by colored zones corresponding to the water level (on the map
of Figure 14).

When a hospital is damaged, its color changes depending on the cause of damage (active,
flooded or power failure). KPI measures are visible through data graphs and updated with the
flood evolution.

As mentioned previously, the application can be used as a preparedness tool by varying the
parameters and executing replications, and also as a response tool if connected to input data in
real time as a digital twin application.

1Work done with the participation of students from the Engieering School ISIMA of Clermont-Ferrand: M.
Bertoni and D. Selimovic
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Figure 14: Simulation Manager
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