
HAL Id: hal-04311516
https://hal.science/hal-04311516v1

Submitted on 28 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Acute Aquatic Toxicity to Zebrafish and
Bioaccumulation in Marine Mussels of Antimony Tin

Oxide Nanoparticles
Ivone Pinheiro, Monica Quarato, Antonio Moreda-Piñeiro, Ana Vieira,

Virginie Serin, David Neumeyer, Nicolas Ratel-Ramond, Sébastien Joulié,
Alain Claverie, Miguel Spuch-Calvar, et al.

To cite this version:
Ivone Pinheiro, Monica Quarato, Antonio Moreda-Piñeiro, Ana Vieira, Virginie Serin, et al.. Acute
Aquatic Toxicity to Zebrafish and Bioaccumulation in Marine Mussels of Antimony Tin Oxide
Nanoparticles. Nanomaterials, 2023, 13 (14), pp.2112. �10.3390/nano13142112�. �hal-04311516�

https://hal.science/hal-04311516v1
https://hal.archives-ouvertes.fr


Citation: Pinheiro, I.; Quarato, M.;

Moreda-Piñeiro, A.; Vieira, A.; Serin,

V.; Neumeyer, D.; Ratel-Ramond, N.;

Joulié, S.; Claverie, A.; Spuch-Calvar,

M.; et al. Acute Aquatic Toxicity to

Zebrafish and Bioaccumulation in

Marine Mussels of Antimony Tin

Oxide Nanoparticles. Nanomaterials

2023, 13, 2112. https://doi.org/

10.3390/nano13142112

Academic Editors: Julian Blasco and

Ilaria Corsi

Received: 18 May 2023

Revised: 5 July 2023

Accepted: 17 July 2023

Published: 20 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Article

Acute Aquatic Toxicity to Zebrafish and Bioaccumulation in
Marine Mussels of Antimony Tin Oxide Nanoparticles
Ivone Pinheiro 1, Monica Quarato 1, Antonio Moreda-Piñeiro 2 , Ana Vieira 1 , Virginie Serin 3,
David Neumeyer 3, Nicolas Ratel-Ramond 3, Sébastien Joulié 3, Alain Claverie 3 , Miguel Spuch-Calvar 4 ,
Miguel A. Correa-Duarte 4, Alexandre Campos 5 , José Carlos Martins 5 , Pilar Bermejo-Barrera 2 ,
Marisa P. Sarriá 1,† , Laura Rodriguez-Lorenzo 1 and Begoña Espiña 1,*

1 Water Quality Group, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga,
4715-330 Braga, Portugal; ivone.pinheiro@inl.int (I.P.); monica.quarato@inl.int (M.Q.);
ana.vieira@inl.int (A.V.); vmarisapassos@gmail.com (M.P.S.); laura.rodriguez-lorenzo@inl.int (L.R.-L.)

2 Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry,
University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
antonio.moreda@usc.es (A.M.-P.); pilar.bermejo@usc.es (P.B.-B.)

3 Centre d’Élaboration de Matériaux et d’Etudes Structurales (CEMES/CNRS), 29, rue Jeanne Marvig,
31055 Toulouse, France; virginie.serin@univ-tlse3.fr (V.S.); david.neumeyer@cemes.fr (D.N.);
nicolas.ratel-ramond@cemes.fr (N.R.-R.); sebastien.joulie@cemes.fr (S.J.); claverie@cemes.fr (A.C.)

4 TeamNanoTech/Magnetic Materials Group, CINBIO, Universidade de Vigo, Campus Universitario Lagoas
Marcosende, 36310 Vigo, Spain; miguel.spuch.calvar@uvigo.es (M.S.-C.); macorrea@uvigo.gal (M.A.C.-D.)

5 CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Matosinhos, Portugal;
acampos@ciimar.up.pt (A.C.); jmartins@ciimar.up.pt (J.C.M.)

* Correspondence: begona.espina@inl.int
† Current address: Joint Research Centre (JRC), European Commission, 41092 Ispra, Italy.

Abstract: Antimony tin oxide (Sb2O5/SnO2) is effective in the absorption of infrared radiation
for applications, such as skylights. As a nanoparticle (NP), it can be incorporated into films or
sheets providing infrared radiation attenuation while allowing for a transparent final product. The
acute toxicity exerted by commercial Sb2O5/SnO2 (ATO) NPs was studied in adults and embryos
of zebrafish (Danio rerio). Our results suggest that these NPs do not induce an acute toxicity in
zebrafish, either adults or embryos. However, some sub-lethal parameters were altered: heart rate
and spontaneous movements. Finally, the possible bioaccumulation of these NPs in the aquacultured
marine mussel Mytilus sp. was studied. A quantitative analysis was performed using single particle
inductively coupled plasma mass spectrometry (sp-ICP-MS). The results indicated that, despite being
scarce (2.31 × 106 ± 9.05 × 105 NPs/g), there is some accumulation of the ATO NPs in the mussel. In
conclusion, commercial ATO NPs seem to be quite innocuous to aquatic organisms; however, the fact
that some of the developmental parameters in zebrafish embryos are altered should be considered for
further investigation. More in-depth analysis of these NPs transformations in the digestive tract of
humans is needed to assess whether their accumulation in mussels presents an actual risk to humans.

Keywords: Antimony Tin Oxide Nanoparticles; bioaccumulation; zebrafish embryo; marine mussels;
aquatic toxicity

1. Introduction

Nanotechnology is a fast-developing area that has introduced the massive use of en-
gineered nanomaterials (ENMs) in our society. Through their characteristics, the ENMs
improve the physicochemical properties and add extra functionalities to the material where
they are incorporated. With a wide range of applications, ENMs can be used in different
fields such as veterinary medicine [1,2], human health [3–5], aquaculture [6–8] and live-
stock production [9], environment [10,11], water treatment [12,13], and food [14–16]. The
widespread use of nanomaterials leads to their release and inevitable presence in different
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aquatic systems [17]. The analysis of their environmental concentrations is very challenging,
which makes it difficult to predict their behavior in aquatic environments [17–20].

Antimony tin oxide (ATO) nanoparticles (NPs) have as their main characteristics
their transparency and good electrical conductivity. These particles have been used in the
fabrication of bio/electrochemical devices [21–23] and solar cells [24], and conjugated with
other materials can improve the treatment of wastewater [25,26] and air [27]. More recently,
ATO NPs are being incorporated in smart windows [28] and studied as surface-enhanced
Raman scattering (SERS) substrates [29]. Despite their industrial use, there are very scarce
studies on their toxicity [30], and nothing about their environmental impact.

Water resources are considered one of the main sinks for nanomaterials in the envi-
ronment [31]. In this study, we wanted to make a preliminary assessment of the potential
impact of ATO NPs when reaching water environment (both freshwaters and marine wa-
ters) using two highly sensitive organisms that can provide insights on the acute toxicity
and bioaccumulation potential of NPs: zebrafish and marine mussels, respectively.

Small size, low cost-maintenance, reduced housing requirements, quick development,
and high genetic and physiologic similarity with humans [32,33] are some of the attractive
features that make zebrafish (Danio rerio) a consensually accepted and used animal model
to evaluate the potential risk of different xenobiotics present in water [34–36]. Following
the 3Rs (replacement, reduction, and refinement) principle and ethically accepted by the
European legislation [37], the Fish Embryo Acute Toxicity (FET) test [38] has been imple-
mented as a reliable assay in the environmental toxicology field. The zebrafish embryos, for
being transparent and presenting a fast and well-detailed described development [39], are
excellent candidates for this type of test. The zebrafish embryotoxicity test is considered a
robust and highly reproducible test with a good correlation with the results obtained for
adults [40,41].

On the other hand, marine mussels Mytilus spp. are filter-feeding mollusks used for
human consumption as seafood and an excellent contamination sentinel [42] due to their
extraordinary filtration rate (2–3 L/h) [43]. In the last decades, marine mussels have been
used as model organisms to evaluate their potential for bioaccumulation, bioconcentration,
and biomagnification of suspended particulate material in seawater, such as ENMs or
microplastics [44,45].

ATO NPs have been used for different applications; in particular, they have been
incorporated in polymers to improve their optical properties and resistance to scratches.
Their heavy metal content as well as their nano size makes them potentially hazardous
materials for humans and the environment. Despite being produced at significant levels
and incorporated in commercial products, the ecotoxicity of those nanoparticles has been
disregarded. ATO NPs’ ecotoxicity and bioaccumulation in aquatic organisms are described
in this manuscript for the first time.

The ecotoxicity of ATO NPs was evaluated in this study by investigating its acute
aquatic toxicity to adult zebrafish and their embryos. An Organization for Economic Co-
operation and Development (OECD) test guideline 236 modified assay was used to register
sub-lethal endpoints in the zebrafish embryo development able to provide insights into the
action mechanism of toxicity and primary tissue targets. Furthermore, bioaccumulation
experiments were carried out using Mytilus spp., studying whether ATO NPs get retained
and concentrated in mussels and could consequently enter in the human food chain.

2. Materials and Methods
2.1. Nanoparticles Characterization

ATO nanopowder, NanoArc® (Alfa Aesar, Kandel and Germany), 100% crystalline,
non-porous, non-agglomerated particles, was purchased from Alfa Aesar (Kandel, Ger-
many). The size and size distribution of the nanoparticles have been investigated using
transmission electron microscopy (TEM), and the images were processed using a Tecnai
F20 FEI operating at 200 kV, equipped with a spherical aberration corrector. The structures
were determined with X-ray diffraction (XRD) measurements, performed on a Bruker D8
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Advance diffractometer, equipped with a Cu anticathode, programmable divergence slits,
soller slits on primary and secondary arms, and a Lynxeye position sensitive detector (Bragg
Brentano geometry), and the identification of the phases used Rietveld refinement. The
surface net charge of the pristine particles, specific surface area, and thermal behavior were
studied with a Zetasizer Ver. 6.12 from Malvern Instruments Ltd. (Great Malvern, UK).

2.2. Test Suspensions Preparation

Artificial seawater was prepared by dissolving 3.5 g/L of commercial marine salt
(Marine salt- ICA Basic Plus) into deionized water. ATO NPs stocks with a concentration
of 10 g/L were prepared by dispersing the NPs in specific media according with the
assay, i.e., freshwater or artificial seawater, using a sonicator probe with 50% amplitude
and 30 s pulse on/5 s pulse off for 30 min. The ATO NPs were characterized in each
media including ultrapure water as reference with Dynamic Light Scattering (DLS) and
ζ-potential. The stock dispersions were diluted to reach a concentration of 100 mg/L. Both
DLS measurements and ζ-potential were acquired with a SZ-100 device from Horiba at
scattering angle at 173◦.

For mussel exposure, the ENMs stock suspension was prepared using the same
artificial seawater used for their maintenance. For each exposure test concentration, a
stock suspension was prepared; stock I had a final nominal concentration of 1 mg/L in
the aquarium, and stock II was 0.1 mg/L. Stock I was sonicated for 30 min and used to
prepare the stock II which was sonicated for another 10 min. The stock solutions were
freshly prepared every time before being applied in the aquaria.

For the adult zebrafish exposure, the suspensions were prepared so that the nominal
test concentrations in the aquaria were 0.01, 0.1, 1, 10, and 100 mg/L NPs, and 0 mg/L
as control. The suspensions were made in freshwater. To 100 mg/L of ATO NPs, the
sonication time was 30 min, and 10 min more for the serial dilutions. Before the renewal
of the medium, the suspensions were sonicated for 5 min in an ultrasonic bath (Elma,
Elmasonic P, GE, Singen).

2.3. Mussel Maintenance and In Vivo Exposure Conditions

Adult mussels, Mytilus galloprovincialis (shell length 7.11 ± 0.14 cm and width
3.4 ± 0.08 cm) were obtained already depurated from a local company (Falcamar; Labruge,
Portugal). The acclimation period to the laboratory conditions was never less than one
week. During this period, the water was periodically renewed, and temperature, salinity,
conductivity, pH, and oxygen saturation were checked using a multiparametric probe
(model HI98194, Hanna Instruments®, Póvoa de Varzim, PT). The temperature was main-
tained at 18 ± 2 ◦C and the photoperiod was at 14 h/10 h light/dark. The animals were
fed every other day with commercial food for filter feeders (NT Labs, Tonbridge, UK).

Forty-six mussels were randomly distributed into aquariums, filled with artificial
seawater, and individually aerated. For 28 days the mussels were exposed, in triplicates,
to ATO NPs at the nominal concentrations of 0 mg/L as control, 0.1 mg/L, and 1 mg/L.
During the exposure time, the mussels were fed every other day with living microalgae
cultures of Chlorella vulgaris (105 cell/mL). Once per week, full aquaria water was renewed
and nanoparticles exposure was repeated by pre-mixing the freshly prepared ATO NPs
suspensions with the microalgae, and subsequently poured into each aquarium. Two
additional water renovations of 25% were performed per week. The mortality was verified
every day during the full experiment (see Scheme 1).

2.4. Sample Preparation and Quantification for Elemental and Nanoparticle Analysis with
Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

Five mussels from each aquarium were collected after 1, 7, 14, 21, and 28 days of
exposure to the ATO NPs. The mussels were de-shelled, the excess of water was removed,
and the total soft tissue was frozen at −80 ◦C until further processing.
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The alkaline digestion method was the selected technique for the ATO NPs extraction
and quantification from dry mussels. Before digestion, the mussels were freeze-dried and
the dry weight was recorded. The digestion approach involves the use of an aqueous
solution of 10% (v/v) tetramethylammonium hydroxide (TMAH) followed by a 2 h bath
sonication (Elma, Elmasonic P), and a centrifugation step (2500× g, 20 min). A second
TMAH digestion was then performed with the obtained pellet for 1 h. The mixture was
centrifuged at 2500× g for 20 min and redispersed in 1% (v/v) sodium dodecyl sulphate
(SDS) to improve the NP’s separation from proteins aggregates/organic matter. In the last
step, 15 mL of hydrogen peroxide (30% v/v H2O2) was gradually added to the suspension
while heating at 70 ◦C under stirring, reaching a final pale-yellow color, evidencing the
complete organic fraction digestion. The method recoveries were calculated using artifi-
cially spiked samples with 0.5, 1, 1.5, or 2 mg/L of ATO NPs (Figure S2). The solution was
then cooled down and filtered using a 5 µm pore size cellulose acetate (CA) filter. Standards
were prepared by spiking the mussels with ATO NPs in the range of 0–2 mg/L. Blanks
were prepared to correct the results from the potential procedure’ contamination.

The total antimony and tin concentration, as well as the ATO NPs quantification, was
performed using a NexIon 2000 ICP-MS (Perkin Elmer, Waltham, MA, USA). ATO NPs
assessment was carried out working in the single particle mode (sp-ICP-MS, Table S1)).

Scheme 1. Mussels’ experimental set-up.

2.5. Fish Acute Toxicity (FAT) Test
Zebrafish Animal Maintenance and Acute Exposure

FAT tests were performed according to OECD test guideline 203. In short, adult
zebrafish were acclimated to the laboratory conditions for at least one week. Water quality
was controlled, and the following physical–chemical parameters were measured: ammo-
nium, nitrites, pH, temperature, conductivity, and dissolved oxygen. The temperature was
27 ± 1 ◦C and the photoperiod 14 h/10 h light/dark. The animals were fed daily with
commercial dry flakes (TetraMin, Tetra, Germany).

Ten fish, both genders, were randomly distributed in a 10 L aquarium, individually
aerated and heated, and exposed in triplicates for 96 h to the test nominal concentrations
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previously indicated. During this period, the animals were fasting, and mortality was
checked daily (see Scheme 2).

Scheme 2. Zebrafish adults (top) and embryos (down) experimental set-up.

2.6. Fish Embryo Acute Toxicity (FET) Test
2.6.1. Zebrafish Spawning and Eggs Assortment

Wild-type zebrafish breeders were housed in a 50 L tank of dechlorinated and aerated
freshwater, connected to a unidirectional recirculation flow pump, coupled to mechanical
and biological filters, and acclimated at 25 ± 1 ◦C, for 14 h/10 h light/dark. Twice a day,
parental specimens were fed ad libitum with commercial flakes TetraMin (TetraMin, Tetra,
Germany), and supplemented every two days with (live) Artemia spp. nauplii (Ocean
Nutrition, Newark, CA, USA).

A 30 L mesh bottom cage covered with an artificial substrate (marbles) filled with
dechlorinated and aerated freshwater at 28 ± 1 ◦C, under the same photoperiod as the
housing tank was used to host the breeding mates, with a male-biased sex ratio group.

Spawning events occur at light onset among sexual mates, conducting external fertil-
ization. The eggs were collected and submitted to a series of washing steps, and the viable
eggs were separated from unfertilized or dead zygotes under a stereo microscope, taking
into account their distinctive optical transparency. Pre-heated freshwater used in experi-
ments was pre-filtered on a Millipore Stericup-GP sterile vacuum system, coupled with a
0.22 µm pore size polyethersulfone membrane. All zebrafish eggs treated per experiment
derived from the same laying episode. Only egg clusters showing a fertilization rate greater
than 90% were used.

2.6.2. Zebrafish Embryotoxicity Test

ATO NPs’ embryotoxic effects were assessed at different developmental stages of
zebrafish (as referred at Kimmel et al., 1995), in an adaptation of OECD test guideline 236.
Ten viable zygotes per replicate (well) were arbitrarily transferred to a 24-well plate, and
waterborne exposed (in a semi-static regime) to the serial diluted nominal concentrations
0, 0.01, 0.1, 1, 10, and 100 mg/L of ATO NPs, for 80 h post-fertilization (hpf). Pre-filtered
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freshwater was defined as the experimental control. Four replicates of ATO NPs test
concentrations were screened at two independent experiments. Two mL per well (replicate)
were used (see Scheme 2).

ATO NPs test concentrations were first dispersed as detailed before, and the pH was
verified at the lowest and highest nominal concentrations to assure a tolerable environment
to zebrafish normal embryonic development [39]. ATO NPs test concentrations were pre-
heated at 26 ± 1 ◦C each day before the assay, and FET plates were exposed to the same
photoperiod as the spawners’ tank. One experiment was acknowledged as “valid” to an
embryonic lethality threshold set at 25% to experimental control.

At 8, 32, 56, and 80 hpf, different age-correspondent embryonic developmental events
were investigated, e.g., at 8 hpf, epibolic arc perimeter, heart rate for 32 and 56 hpf, and at
80 hpf, occurrence of burst swimming. Idiosyncratic morpho-physiological and behavioral
modifications occur at these early life stages [39], thus permitting the detection of premature
signals of toxicity. To assess the ATO NPs-associated cardiotoxic effects, twenty zebrafish
embryos per test concentration were randomly selected, and the heart beating was counted
for 10 s. A detailed morphometric analysis of the chorion, yolk, eye, and pupil (respective
per hpf) was performed, using ImageJ (v.1.53e), and their specific developmental charac-
teristics were photographed using a Nikon Eclipse Ts2 inverted microscope coupled to a
Nikon DS-Fi3 camera. Several sub-lethal endpoints were assessed: atypical hatching events,
anomalous cellular masses, structural aberrations, irregular movements, delayed traits, and
defective growth. Survival was checked at all hpf. The abovementioned test variables were
particularly selected given their presumed involvement at soundly conserved embryonic
developmental processes among vertebrates.

2.6.3. FET Test Data Analysis
Statistical Assessment

All assumptions were met before the data statistics, namely normality, using the
Shapiro–Wilk test and homogeneity of variances, using Levene’s test.

To investigate the ATO NPs exposure effects on zebrafish embryos’ spontaneous
movements, hatching rate, and cumulative survival, a chi-square (χ2) test was conducted
considering the observed values for each test (nominal) concentration. The null hypothesis
of “no differences among groups” was considered to outline the expected values (respec-
tively, the average percentage of involuntary motion events at 32 hpf, chorion extruding
rate at 56 hpf, or total embryonic survival at 80 hpf, of all treatments).

One-factor ANOVA (six levels: 0, 0.01, 0.1, 1, 10, and 100 mg/L of ATO NPs) was used
to test the effect on zebrafish embryos’ epiboly, head-trunk angle, and burst swimming.

ANCOVA analysis was performed to avoid biases related to covariates to assess the
ATO NPs effect on zebrafish yolk volume (egg volume was used as co-variable) and pupil
surface (eye surface was used as co-variable).

In order to investigate the impact of ATO NPs exposure on zebrafish embryonic heart
rate, a nested ANOVA [two factors: test nominal concentration (six levels: 0, 0.01, 0.1,
1, 10, and 100 mg/L of ATO NPs; and developmental ages (two levels: 32 and 56 hpf)]
was applied.

Post hoc comparisons were run using Student–Newman–Keuls (SNK). A p value of
0.05 was set for significance testing. Analyses were performed in STATISTICA (TIBCO
software, v. 14).

2.7. Ethics Statement

All experiments that implicated the use of adult specimens of wild-type zebrafish
were conducted at CIIMAR, an Interdisciplinary Centre of Marine and Environmental
Research (Matosinhos, Portugal) that presents a dedicated bioterium of aquatic organisms
(BOGA) certified by the Directorate General of Food and Veterinary (DGAV), the Portuguese
National Authority for Animal Health, issued under Article 21º, Decree-Law 113/2013 of
7th August. At BOGA, FAT tests were run in agreement with OECD guideline 203 and
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subjected to a prior ethical review by CIIMAR’s Ethical Committee and Animal Welfare
Body (ORBEA), in compliance to Directive 2010/63/EU on the protection of animals
used for scientific purposes, subscribing to the principles, rules, and procedures of the
European Code of Conduct for Research Integrity. At CIIMAR, Laboratory Animal Sciences
training and DGAV certification are mandatory for researchers to perform animal testing
involving vertebrates.

Tests on fish embryonic stages were conducted at the International Iberian Nan-
otechnology Laboratory (INL) (Braga, Portugal), as an adaptation to FET test (OECD test
guideline 236) as defined at the Council of Europe Directive 86/609/EEC on protection of
experimental animals, setting the regulatory limit of exposure at the free-living stage (that
is, at the end of embryogenesis). As the last endpoint tested preceded this developmental
age, the provisions of the directive do not apply, and therefore, a ratified ethical consent
was not required.

At FET and FAT experiments, 100 mg/L was considered as the highest test (nominal)
concentration of ATO NPs, according to OECD test guideline 203 which states limit for
testing of chemicals at this range.

3. Results

Commercial ATO NPs used in this study are highly polydisperse, as demonstrated
by the data obtained using DLS and TEM. Although the mean hydrodynamic diameter is
107 nm, a broad distribution of sizes can be found, and a large proportion of small NPs
around 5 nm diameter are present (Figure 1).
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Figure 1. Characterization of ATO NPs. (A) TEM image of ATO NPs, (B) Detail of TEM image at
higher magnification, (C) BET plot of ATO NPS, (D) XRD pattern, (E) ζ-potential. Scale bar in A and
B = 20 nm.

Additionally, the XRD pattern analysis after Rietvelt refinement shows that the com-
position of the NPs is actually Sn0.6Sb0.4O2 in crystallites of 16.8 nm. ATO NPs present
a ζ-potential of −32 ± 3.5 mV in a large distribution, a specific surface area (BET) of
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143 ± 5 m2 g−1, a mean pore diameter of 8.48 nm, and a total pore volume of 0.3039 cm3·g−1

(Figure 1).
It is well know that NPs can aggregate in media containing high salt concentration

such as seawater and that the formation of NP aggregates can influence their behavior in the
media, and therefore, their availability to interact with specific organisms (here zebrafish
adults and embryos, and mussels) [46,47]. Therefore, the colloidal stability of ATO NPs in
artificial seawater and freshwater was tested. The ATO NPs remained colloidally stable
in freshwater, while tending to aggregate in seawater (Table 1). Clearly, the difference
in the ionic strength of each medium (i.e., the concentration of salts: <1 ppt in salinity
for freshwater versus 35 ppt salinity for seawater) had a strong impact in the colloidal
stability; the higher ionic strength presented in seawater provoked the aggregation of the
ATO NPs due to screening of the electrostatic interaction, suppressing the stabilizing effect
of the electric double layer (EDL). The increase in the hydrodynamic diameter observed in
seawater is in agreement with the almost null ζ-potential measured in this medium. On the
other hand, the slightly variation both hydrodynamic size and ζ-potential of ATO NPs in
fresh water in comparison with ultrapure water (Table 1) can be attributed to the variation
in the composition of EDL since different ions present in freshwater can be adsorbed to the
NP surface modified the diffuse layer [48].

Table 1. ATO NPs characterization in seawater and freshwater. Hydrodynamic size and polydisper-
sity index measured with DLS and ζ-potential of ATO NPs after dispersion in the test media for acute
fish toxicity, embryotoxicity, and bioaccumulation in mussels; freshwater and artificial seawater, as
compared to dispersions in ultrapure water.

Ultrapure Water Freshwater Artificial Seawater

Hydrodynamic diameter 1 (nm) 107 ± 2 127 ± 4 9665 ± 820
PDI 2 0.32 ± 0.04 0.31 ± 0.05 0.67 ± 0.28

ζ-potential 3 (mV) −32 ± 4 −43 ± 1 −1 ± 4
1 Mean hydrodynamic diameter and 2 polydispersity index obtained with DLS at a scattering angle of 173◦ and
25 ◦C. DLS measurements were carried by quintupled: mean ± standard deviation (SD). 3 ζ-potential values were
measured in five runs (mean ± SD).

No mortality was observed either in the control group or at any of the test concen-
trations with ATO NPs in the FAT test (Figure S1). Likewise, no significant mortality was
found when exposing zebrafish embryos to the ATO NPs during the first 80 h of develop-
ment (Figure 2A). However, some sub-lethal effects were observed; heart beats of embryos
at 32 hpf were significantly less at the highest (nominal) concentration tested (Figure 2B,
100 mg/L), and the number of embryos presenting spontaneous movements at the same
hpf were also less and decreased dose-dependently until 10 mg/L (Figure 2C).
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Other morphometric parameters evaluated, such as eye surface and volume, head-
trunk angle, yolk extension, or total body length, remained unaltered (see Table S2).

The concentrations of 0, 0.1, and 1 mg/L were the selected nominal concentrations
to test the ATO NPs accumulation into the bivalve mollusks during 28 days of exposure,
performing four different sampling every seven days.

For each time point, six different mussels from three independent replicates were
analyzed for total Sb and Sn quantification after being subjected to the TMAH alkaline
digestion (see details in the Materials and Methods section). The low amount of Sb (11%)
contained in the particles does not allow the NPs determination, and thus only Sn was
quantified in its nano form using sp-ICP-MS.

Sn NPs concentration shows a time and dose-dependent accumulation trend, reaching
the highest level of 2.31 × 106 ± 9.05 × 105 NPs/g of dry weight in the last time point, after
28 days of exposure (Figure 3A). The high SD value could be attributed to the considerable
number of dilutions performed prior to sp-ICP-MS analysis. Taking a look at the dissolved
Sn concentration measured in the Nano configuration, the relatively low amount indicates
that the technique is not responsible for NPs dissolution, and this could also be confirmed
by the averaged particles’ size calculation (Figure 3B,C). It is also interesting to point out
that there is no trend in dose or time-dependency on the ionic concentration, indicating that
there is no significant dissolution of the ATO NPs in the mussel’s tissue. The presence of
some NPs observed in the control condition could suggest that NPs that contain Sn in their
composition were already accumulated into mussels at the starting time of the experiment.
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(A). Ionic Sn concentration found in mussels after digestion of the tissues, but not dissolution of the
NPs, (B) and size of the measured NPs at different sampling times and concentrations (C). Error bars
correspond to the SD of three experimental replicates.

As concerned with the total Sb and Sn recovery, the measured element amount in-
creased related to the time of exposure, especially at higher concentrations (Figure 4), which
is in agreement with the results obtained using the NPs with sp-ICP-MS.
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4. Discussion

ATO NPs clearly aggregate in seawater. This destabilization is due to the decrease
in ζ-potential from—32 mV to almost null surface charge (Table 1), most probably due to
the presence of a high ionic strength in seawater, which decreases the repulsion between
NPs, caused by the EDL [48]. This aggregation of ATO NPs seems to occur because only
electrostatic repulsions were presented since no additional stabilizer (e.g., polymer) was
used. However, this artificial seawater did not contain natural (NOM) or particulate organic
matter, nor any of the other substances that are secreted or excreted by living organisms
into the water. NOM can increase ENMs’ stability, extending their residence time in the
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water column and consequently increasing the exposure of aquatic biota, including benthic
organisms. In addition, polymeric substances secreted by aquatic microorganisms and
bivalve mollusks, such as extracellular polymeric substances (EPS), polysaccharides, and
proteins, may induce aggregation/agglomeration, acting as chelating agents to bind and
stabilize ENMs dispersion [49].

ATO NPs induce an effect on the zebrafish embryo neuromotor system that does not
advance to fatal consequences in the following development, as the heart beats recover
at 56 hpf. Spontaneous movements come from a primitive spinal network [50] and are
triggered jointly with the proteolytic fragmentation of the chorionic membrane inner
layer [51], to assist the egg-shell rupture towards a successful hatching event. On the other
hand, heart beating is mediated through secondary neuromotor circuits, responsive to the
inputs of a mature hindbrain, requiring a complex arrangement of functional transmitter
stripes at later stages of development [52]. Other ENMs have been recently found to alter
those parameters in zebrafish embryos [53]. Thus, a careful analysis of chronic or sub-acute
exposures to ATO NPs should be considered.

In the only previous study found regarding their toxicity, ATO NPs resulted quite
innocuously to differentiated MucilAirTM bronchial epithelial cells, a well-stablished
model for human pulmonary toxicity. Only low cytotoxicity was observed after 24 h of
air-liquid interface exposure to aerosolized suspensions of 10 mg/mL ATO NPs, which
was recovered in longer times of exposure [30]. Other cytotoxicity studies on pulmonary
A549 cells have previously shown long-term exposure toxicity of Sb2O3 NP displaying an
EC50 of 22 mg/mL [54], and reactive oxygen species (ROS) generation, expression of heme
oxygenase 1 (HO-1) gene, and DNA damage by indium-doped SnO2 (ITO) [55]. These
doses highly exceed the ones environmentally relevant, so no correlation can be established
with the data obtained in this study.

Marine mussels are filter-feeding mollusks that retain particles usually in a range
between 5 and 35 µm in diameter. The percentage of retention decreases with the size and
the smallest particles that are effectively retained (100%) are close to 7 µm [56]. Maximum
retention efficiency was reported at 30 to 35 µm. The average hydrodynamic diameter of
ATO NPs in artificial seawater was close to 10 µm (Table 1), making feasible their efficient
retention in the mussels’ digestive system.

Despite the fact that there is an existing time-dependent accumulation of ATO NPs in
the mussels and that available studies confirm the digestive gland being the main organ for
ENMs accumulation in bivalve mollusks [49], we could not find NPs in the digestive gland
and mantle tissue analyzed using TEM, as the number of ATO NPs is not enough to allow
any detection. Usually, only when the number of particles accumulated is higher than
1 × 108 NPs/g of tissue there is a fair possibility to find them. In any case, tissues from mus-
sels exposed to the ATO NPs did not show any ultrastructural difference when compared
to the control (Figure S3). However, recent studies such as the one by Sun et al. [57] found
between 2.1 × 106 and 8.4 × 106 particles/mg of Ti-containing NPs in marine mussels,
suggesting that marine shellfish may be a significant sink for Ti-containing NPs.

5. Conclusions

Commercial ATO NPs seem to be quite innocuous to aquatic organisms; no acute toxicity
was registered on zebrafish adults or eggs/embryos. However, the significant alteration of
heartbeat and spontaneous movements observed deserve a deeper investigation. Additionally,
a slight bioaccumulation was observed in mussels (2.31 × 106 ± 9.05 × 105 NPs/g), indicating
that ATO NPs are not a potential concern to human health by seafood consumption.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13142112/s1, Table S1: Operating conditions for sp-ICP-MS
measurements; Figure S1: Results of (standard) FAT upon exposure to 0, 0.01, 0.1, 1, 10 and 100 mg/L
of ATO NPs, for 96 h; Table S2: Statistics of (standard) FET upon exposure to 0, 0.01, 0.1, 1, 10
and 100 mg/L of ATO NPs, for 80 hpf; Figure S2: Dissolved concentrations of Sb (A) and Sn (B),
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recovered after mussels’ alkaline digestion of spiked samples at different concentrations.; Figure S3:
Transmission electron microscopy images of mussel’ tissues.
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