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ABSTRACT Humanmovement analysis is a key area of research in robotics, biomechanics, and data science.
It encompasses tracking, posture estimation, and movement synthesis. While numerous methodologies have
evolved over time, a systematic and quantitative evaluation of these approaches using verifiable ground
truth data of three-dimensional human movement is still required to define the current state of the art. This
paper presents seven datasets recorded using inertial-basedmotion capture. The datasets contain professional
gestures carried out by industrial operators and skilled craftsmen performed in real conditions in-situ. The
datasets were created with the intention of being used for research in human motion modeling, analysis, and
generation. The protocols for data collection are described in detail, and a preliminary analysis of the col-
lected data is provided as a benchmark. The Gesture Operational Model, a hybrid stochastic-biomechanical
approach based on kinematic descriptors, is utilized to model the dynamics of the experts’ movements and
create mathematical representations of their motion trajectories for analyzing and quantifying their body
dexterity. The models allowed accurate generation of human professional poses and an intuitive description
of how body joints cooperate and change over time through the performance of the task.

INDEX TERMS Historical crafts, humanmotion generation, industrial tasks, inertial sensors, motion capture
datasets, real scenarios.

I. INTRODUCTION
Previous studies of human motion data helped researchers
better comprehend body dynamics and their stochastic behav-
ior. Capturing raw data from human movement performed
in different contexts permits quantifying and a better under-
standing of the motion parameters as well as the factors that
impact motor performance. By analyzing this data, hidden
parameters can be revealed, useful for motion evaluation in
sports, rehabilitation, and arts but also in more professional
and industrial contexts for ergonomic monitoring. Profes-
sional diseases linked to ergonomy, such asMuscular Skeletal
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Disorders (MSDs), constitute an important issue causing neg-
ative effects not only on the operators’ health but also on the
productivity of a factory/workshop.

In such context, numerous motion capture initiatives have
been undertaken in various fields. Most of them have
been made publicly available for visualization and analy-
sis, and they include data corresponding to different activ-
ities of human everyday life covering from ample body
motions to very fine facial expressions. These datasets can
be categorized based on the technologies used (marker-
based or marker-less motion capture, etc.), on the activities
recorded (everyday activity, sports, etc.), or on the number
of users (single user vs. multiuser interaction). For exam-
ple, HumanEva and MoVi [1], [2] are existing datasets that
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contain video and marker-based motion capture (MoCap)
data of a single person performing ordinary activities (like
walking and jogging) and sports motions. General body
movements were also recorded with a monocular camera
in the HMDB51 [3] dataset, including user-object interac-
tion, human-to-human interaction, and facial expressions.
A multimodal human action database MHAD [4] has been
published, including limb actions recorded with a camera,
accelerometers, and a microphone. Another more recent ini-
tiative has been done in the CMU dataset [5], also includ-
ing the multimodal signal from food preparation activities.
For motions in multiperson interactions and scenarios, the
UMPM benchmark was presented [6]. Also, the KIT dataset
recorded human-to-human interaction activities while manip-
ulating various objects [7].

In all the aforementioned studies, everyday activity has
monopolized the interest of researchers performing motion
capture. However, in the last decade, it has become more and
more interesting to use motion capture and to apply data anal-
ysis methods to scenarios inspired by a professional context
where human operators perform their tasks. The table below
presents recent works of industry-oriented human motion
data. Several examples can be found in the construction
industry since it is one of themost affected by intense physical
activity.

To detect excessive load-carrying tasks, Lee et al. [8] have
focused on creating a dataset with a non-invasive single IMU
sensor. The recorded data has served to automatically predict
load-carrying weights and postures using deep learning algo-
rithms. Fourteen subjects were recorded performing six dif-
ferent carryingmodes. The dataset’s analysis consists ofmod-
eling, classification, and predicting load-carrying weights.
Another interesting dataset was recorded in the framework of
the AnDy EU project [9], where various sensors were used,
such as a full-body IMU suit including a glove for finger
motion, a marker-based motion capture system, a finger pres-
sure sensor, and 2 video cameras. The subjects performed
industry-oriented activities inspired by car manufacturing.
The data was annotated and labeled and is intended for use by
researchers developing algorithms for classifying, predicting,
or evaluating human movement in industrial settings. The
evaluation focuses mostly on label reliability, not movement
analysis itself. The VTT-Conlot dataset includes motion data
inspired by the construction industry recorded with 3 IMUs,
with 13 subjects [10]. The principal goal of this dataset
is to be used for activity recognition and classification. Its
evaluation refers to sensor location, modalities used, and
features extracted. However, contrary to previous examples
cited, the VTT-ConIot validated and compared its data also
with real unannotated data belonging to real workers in a
real construction site (the real data is not included in the
VTT-Conlot dataset). The IKEAASMdataset is amulti-view,
furniture assembly video dataset that includes depth, atomic
actions, object segmentation, and human pose [11]. One of
the particularities of this one is that it includes unusual human
poses performed while assembling furniture, but it does not

include any IMU-captured data and aims mostly at solving
computer vision challenges. The WGD dataset provides data
recorded with a marker-based system of subjects performing
assembly line working activities [12]. A kinematic evaluation
of the data has been performed, showing that the dataset
can be used for human ergonomics evaluations. Finally, the
WorkflowRecognition (WR) dataset comprisesmulti-camera
video sequences recorded from the production line of an auto-
mobile manufacturer. The WR dataset was created mainly to
test activity and workflow recognition algorithms [13].

All the aforementioned works went beyond record-
ing everyday activities and focused on professional
tasks/gestures/postures. However, there is still a need for
MoCap data that include a greater diversity of movements,
particularly professional gestures captured in real-world sce-
narios. Most of the datasets available were recorded inside
a laboratory, causing approximate measures since they may
lack authenticity and are not real workplace scenarios. Thus,
this paper presents datasets created to capture and study
operators’ and artisans’ gestures in their professional settings
and real environment, performed under real conditions.

The recording procedures and processing methods are
detailed in this paper. Additionally, it is provided a first
analysis of the seven datasets using an analytical model called
the Gesture Operational Model (GOM), which was proposed
in a previous work [14]. In this analysis are created inter-
pretable motion representations based on GOM that can be
used to artificially generate human movements and explain
the inter-collaboration of joints during the performance of
the modeled movements. The results comprise the forecast-
ing performance measures on every dataset and a dexterity
analysis of professional tasks. The dexterity analysis applies
GOM’s mathematical representations to describe the perfor-
mance of professional gestures. Dexterity can be defined as
the skill to perform a given movement or task using the hands
or other body parts. In addition, a method for identifying the
most significant joint motion descriptors for modeling and
recognizing a set of human movements is described. This
knowledge can then be utilized to determine the ideal sensor
configuration for human motion recognition problems.

II. DATA ACQUISITION
This section begins with a description of the MoCap system
used for recording, followed by information on the subjects
and gestures captured for each dataset.

A. MOTION CAPTURE TECHNOLOGY
The BioMed bundle motion capture system from Nansense
Inc.1 was utilized to capture the gestures of industrial oper-
ators and craftsmen. The system is composed of a full-body
suit with 52 IMUs strategically positioned across the torso,
limbs, and hands. At a rate of 90 frames per second, the
sensors measure the orientation and acceleration of body
segments on the articulated spine chain, shoulders, arms, legs,

1Baranger Studios, Los Angeles, CA, USA.
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TABLE 1. Datasets available and employed by the community.

TABLE 2. Overview of the generated datasets.

and fingertips. After a recording, the Euler local joint angles
on the X, Y, and Z axes are automatically calculated through
the Nansense Studio’s inverse kinematics solver and stored in
a Biovision Hierarchy format (BVH). A BVHfile is a text file
comprised of two parts. The first part provides a hierarchical
description of the skeleton, beginning with the root (hips) and
proceeding to the extremities of each limb. The second part of
the file contains, for each frame of the recording, the absolute
position of the root of the skeleton and the angles of the joints
defined in the first part of the BVH file.

B. SUBJECTS RECRUITED
For the creation of each dataset, industrial operators and
skilled artisans consented to be recorded in their actual work-
place while wearing the Nansense suit in accordance with
the General Data Protection Regulation (GDPR) principles.
Firstly, industrial operators from a television plant in Istanbul,
Turkey, and an aerospace company in Bucharest, Romania,
were captured as they carried out their professional tasks.
Four healthy people, three men and one woman, partici-
pated in the MoCap recording session at the television plant.

Their average age was 31.5±6.2 years, their height was
167.8±4.6 cm, and their average weight of 65.3±9.9 kg.
Two male subjects participated in the MoCap session for the
recordings in the aerospace company. They had an average
age of 50±5 years, a height of 170±2 cm, and a weight of
77±1.4 kg. Ten healthy individuals consented to participate
in MoCap recordings of potentially dangerous ergonomic
postures in a neutral environment laboratory. The subjects
consisted of three women and seven men. The average age
was 28.7±4.6 years, with an average height of 172.9±9.2 cm,
and the average weight was 70.5±12.9 kg. None of them
sustained musculoskeletal injuries, and they all completed all
trials in under one hour.

Gestures of skilled artisans performing three different
crafts were recorded. The first is a master silk weaver
recorded at a traditional jacquard workshop in Krefeld,
Germany. The expert’s height was 168 cm, and his weight
was 62 kg. The second artisan is a master glassblower
who was recorded in action during a glassblowing work-
shop. The glassblower’s height was 177 cm, and his weight
was 73 kg. Finally, two mastic farmers were recorded at
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a mastic cultivation field in Chios, Greece. Their average
age was 30.5±5.5 years, height 178.8±8.5 cm, and average
weight 69.3±8.0 kg.

C. RECORDING OF THE PROFESSIONAL TASKS
The procedure followed for each recording is outlined next,
as well as a description of each captured task. Before record-
ing, a calibration procedure was done. The subject assumed
different postures, such as I-pose or T-pose, and performed
different movements, like walking or touching his fingertips,
each for 10 seconds. In order to facilitate the later annotation
and segmentation of the data, only operators and artisans
were asked to explain each component of the task prior to
the recording.

1) INDUSTRIAL-RELATED TASKS
The gestures performed in two industrial settings have been
recorded, delivering natural movements while operators exe-
cute industrial tasks. The tasks were captured on-site during
regular production by actual operators.

a: TELEVISION MANUFACTURING
Two tasks were recorded at a television manufacturing plant
related to assembly and packaging. The set of gestures
involved in each task is designated by the abbreviations TVA
(assembly) and TVP (packaging). Fig. 1 illustrates some of
the gestures recorded in television assembly and packaging.

The television assembly task consists of mounting elec-
tronic circuit boards to a television chassis and using a power
tool to drive screws into the boards to secure them firmly. For
this task it was defined the following gesture vocabulary:

• TVA1: Reaching high with one hand, above shoulder
level, to pick one component (circuit board) from a
container.

• TVA2: Reaching low with the other empty hand, below
the knee level, to pick up the second component (wire)
from a second container.

• TVA3: Connecting the components and placing the
board on the chassis to be screwed.

• TVA4: Drilling four screws on the circuit board by hold-
ing the driller with the right hand and placing the screws
with the left.

The final operation required stacking the completed, boxed
televisions on wooden pallets and wrapping them in a plastic
membrane for shipping (TVP). The following set of gestures
were recorded for this task:

• TVP1: Placing eight TVs on a wooden pallet (bottom
level).

• TVP2: Preparing to wrap the bottom level with a
membrane.

• TVP3: Wrapping the bottom level.
• TVP4: Placing eight TVs on top of the bottom level
(second level).

• TVP5: Wrapping the second level with a plastic
membrane.

• TVP6: Placing eight TVs on top of the second level (third
level).

• TVP7: Wrapping the third level with a plastic
membrane.

• TVP8: Placing eight TVs on top of the third level (fourth
level).

• TVP9: Wrapping the fourth level with a plastic
membrane.

Boxes are given to the operator through a conveyor belt.
He places one box at a time onto the pallet using both
hands. After stacking eight boxes on a single level, he grabs
the plastic membrane with both hands and wraps them by
going around them with it. After wrapping them properly, the
operator proceeds to stack boxes on top of the previous one
wrapped, repeating the process. The task is complete when
there are four levels of boxes on the pallet.
All tasks associated with television assembly were

recorded over the course of an eight-hour shift, with one
subject recorded installing the circuit boards during the first
half of the shift and another recorded drilling the circuit
boards to the television chassis during the second half. Three
subjects were recorded separately for the packaging tasks
during one shift.

b: AIRPLANE FLOATER ASSEMBLY
The complete riveting task for an airplane floater was cap-
tured in an aerospace company. The floater is a plane com-
ponent that enables planes to float when they land on water.
The set of gestures recorded from this task is denoted asAPA.
Collaboration between two operators is essential for this
activity. Therefore, their data were collected sequentially; one
person wore the MoCap suit to capture their movement while
collaborating and then donned it to the second person and
continued the activity. As a result, the following gestures were
recorded, which are also illustrated in Fig. 2:

• APA1: Rivet with the pneumatic hammer.
• APA2: Prepare the pneumatic hammer and grab rivets.
• APA3: Place the bucking bar to counteract the incoming
rivet.

One iteration of rivet assembly consisted of the first oper-
ator placing a rivet in one hole (Fig. 2a). The second oper-
ator from the opposite side of the floater then positions the
bucking bar to counter the rivet (Fig. 2c). After precisely
positioning the bucking bar, the second operator signals the
first operator to activate the pneumatic hammer. The first
operator verifies the proper placement of the assembled rivet
by touching it, then moves on to the next hole and the process
is repeated. After completing one line of rivets, the first
operator grabs additional rivets and prepares the pneumatic
hammer for the second line (Fig. 2b).
The movement of the fingers during the riveting with the

pneumatic hammer was not recorded because the operator
could not work realistically while wearing theMoCap gloves.
The operator needed to touch with his bare hands the rivet to
determine whether it was positioned correctly.
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FIGURE 1. Professional gestures in television manufacturing.

FIGURE 2. Example of airplane assembly gestures.

c: POSTURES WITH VARYING ERGONOMIC RISK LEVEL
A recording protocol was designed to capture 28 postures
with varying ergonomic risk levels based on the European
Assembly Worksheet (EAWS) [15].

Each posture was repeated three times, giving a total
of 84 MoCap recordings per subject. The recorded postures
were neutral as they were not associated with a specific activ-
ity but rather served solely to demonstrate several ergonom-
ically incorrect postures. The postures can be divided into
three main categories: those performed standing, those per-
formed seated on a chair, and those executed while kneeling.
The postures are progressing from comfortable postures to
increasingly more uncomfortable but never dangerous ones.
All postures were held for six seconds, and no particular
discomfort was reported. This set of 28 postureswith different
ergonomic risk levels is denoted as ERGD. Three postures
assumed by the subjects are shown in Fig. 3. Initially, the
subject is standing with a straightened back. The subject then
assumes the following three postures:

• ERGD1: The subject remains standing straight up, with
the arms relaxed (I-pose).

• ERGD2: The subject rotates their torso to the left as far
as they can for six seconds.

• ERGD3: The subject bends laterally the torso to the left
for six seconds.

For the next three postures, the torso is slightly bent forwards:

• ERGD4: The subject remains in the bending position for
six seconds.

• ERGD5: While the subject is bending forward, they
rotate their torso to the left and hold this position for six
seconds.

• ERGD6: While the subject bends forward and rotates
their torso to the left, they extend their arm as if trying
to reach something that is on the ground.

The next three postures have the torso bending forward at a
large angle (> 60◦):

• ERGD7: The subject remains in the bending position for
six seconds.

• ERGD8: While the subject has bent forwards, they rotate
their torso to the left and hold this position for six
seconds.

• ERGD9: While the subject bends forward and rotates
their torso to the left, they extend their arm as if trying
to reach something that is on the ground.

In the next few postures, the position of the arms will change,
and the torso posture will be repeated:

• ERGD10: The subject is standing upright with the fore-
arms bend at 90◦ and the arms raise at the shoulder level,
perpendicular to the floor.

• ERGD11: With the arms at the same position as P10, the
subject rotates their torso, and laterally bends to the left.

• ERGD12: The participant raises their arms perpendicular
to the ground while the forearms are fully extended.
They proceed by rotating and laterally bending their
torso to the left.

• ERGD13: The subject raises their arms above the head
for six seconds.

• ERGD14:With the arms above the head level, the subject
rotates and laterally bends to the left for six seconds.

These were all the postures that were assumed from a stand-
ing position. The next part describes the postures that will be
recorded while the person is seated on a chair.
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FIGURE 3. Example of postures contained in ERGD.

• ERGD15: The person is sitting on a chair with the arms
relaxed (neutral position).

• ERGD16: While seated, the subject bends forward at an
angle of 60◦ or more.

• ERGD17: The subject bends forwards at an angle of 60◦

or more while rotating their torso and bending laterally
to the left.

• ERGD18: The subject repeats P17 but has their arms
extended in front of them.

• ERGD19: The subject raises their arms above the head
level while they are fully extended.

• ERGD20: With the arms above the head level, the par-
ticipant will rotate and laterally bend their torso to the
left.

Finally, the remaining postures will be performed while
the subject is kneeling on their right knee. These are the
most ergonomically uncomfortable postures. Beyond that, the
upper body options will be the same as before:

• ERGD21: The subject stays upright.
• ERGD22: The subject rotates their torso to the left as far
as they can, they remain in that position for six seconds.

• ERGD23: The subject laterally bends their torso to the
left.

• ERGD24: The subject bends forward at an angle larger
than 60◦.

• ERGD25: While bending the torso at an angle larger than
60◦, the participant rotates and laterally bends their torso
to the left.

• ERGD26: The P25 posture is repeated, but this time, the
person’s arms are extended as if to pick something up
from the ground.

• ERGD27: The subject raises their arms to be perpendic-
ular to the ground.

• ERGD28: With the arms raised, the subject rotates and
laterally bends their torso to the left.

After completing the recordings, ERGD has examples from
the most comfortable positions to some of the most ergonom-
ically improper according to the risk factors defined by
EAWS. Though those postures are not in the context of any
specific goal, they can act as a baseline to test different
methods of an ergonomic assessment.

2) TRADITIONAL CRAFTS TASKS
Master artisans and mastic farmers were captured doing their
professional tasks in their real workplaces. An additional

MoCap session was conducted to capture the simulation of
themastic cultivation task without using anymaterial or tools.

a: SILK WEAVING
In a jacquard loom workshop in Krefeld, Germany, the ges-
tures of a skilled silk weaver were captured. This set of
gestures recorded is referenced as SLW, and some examples
of these are illustrated in Fig. 4. Throughout three days, the
expert was recorded performing the following silk weaving-
related tasks:
1) SLW1: The creation of the punch cards.
2) SLW2: Wrapping of the beam.
3) SLW3: Preparation of the beam.
4) SLW4,1:3: Jacquard weaving with looms of different

sizes (small, medium, and large).
On the first day, the silk weaver was recorded performing
SLW1, SLW2, and SLW3 continuously. The creation of the
punch cards was recorded for one hour. Due to the complexity
and length of the tasks, the wrapping and preparation of the
silk beams were recorded only once, taking about four hours
to record. The next two days consisted of continuous record-
ings of the expert weaving using looms of three different
sizes. The recording only stopped when the weaver switched
to a different loom. The task of waiving with a loom can
be divided into three main gestures (SLW4,1,SLW4,2, and
SLW4,3). Firstly, the expert pushes the pedal down with his
right leg at the same time that he pushes away the threads
with his left hand (the initial posture of the weaver is shown
in figures 4c an 4d). Then, by controlling the shuttle that
passes the thread horizontally with the right hand, he sends
the shuttle to the other side with a quick pulling gesture.
Finally, he pulls back the threads with the left hand while
simultaneously releasing the pedal with the right leg. This
process is repeated up to the end of the piece.

b: GLASSBLOWING
The creation of a glass decanter was recorded four times at
Vannes-le-Châtel, France, in a European center for research
and training in glasswork. Because the temperature of the
glass had to be maintained throughout the process, each
trial was recorded without pausing between gestures. This
resulted in one motion file for each attempt, which starts
with collecting the molten glass and finishes when the
decanter is left to cool down. The set of gestures composing
the process of creating one decanter is denoted as GLB.
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FIGURE 4. Examples of the jacquard weaving gestures recorded.

FIGURE 5. Example of gestures captured in a glassblowing workshop.

Fig. 5 shows some of the gestures that were recorded during
the decanter’s fabrication. The glass decanter was created in
three stages. To begin, inflate and shape the molten glass
inside the decanter’s main body (container). The base was
created next, followed by the handle. Next, the expert rolled
and shaped the decanter throughout the task to prevent the
glass from deforming due to gravity. Finally, an assistant was
necessary to blow into the glass while the expert shaped the
decanter’s main body.

For shaping the molten glass, the glassblower constantly
rotatedwith his left hand the blowpipewhile shaping the glass
with his right hand. He utilized various tools with his right
hand, including a block (Fig. 5b), jacks (Fig. 5c), soffietta,
shears, and metal pencils. These were employed to give the
glass the form of the decanter and to add further decorative
details. The block is used to maintain the glass’s round shape.
The jacks are used to shape the decanter’s cervix. The shears
were utilized to cut the glass and form the decanter’s peak.
The soffietta forms the decanter’s top. Metal pencils were
then used to add the handle and extra glass details (cord
around the neck) and make the foot (base) of the decanter.
Manipulating the tools required constant movement of the
right shoulder, right arm, and right forearm. At the same
time, the glassblower was seated, rotating back and forth with
the left hand the blowpipe on a metal structure. Moving the
blowpipe on the metal structure required a small bending to
keep the grip of the blowpipe. Placing the handle or shaping
the cervix with the jacks required at times for the glassblower
to stand up, but he kept moving the blowpipe with the left
hand.

While forming the glass, the artisan frequently put the
glass on the blowpipe into the furnace (Fig. 5d). He also

continuously blew through the blowpipe while holding it
horizontally at shoulder height with both arms to maintain
the decanter’s round shape (Fig. 5b). After finishing, it was
passed to a punty to cool down.

c: MASTIC CULTIVATION
The cultivation of mastic was recorded in the span of three
days in Chios, Greece. The first and second days’ recordings
were made outside, in front of a mastic tree. The recordings
of the last day were simulated inside a room. Each task was
divided into separate recordings due to the nature of the
cultivation process. This resulted in separate MoCap files
for each part of the process. In general, the cultivation of
mastic was recorded realistically. However, specific tasks
are, in reality, done days or weeks apart or take hours to be
completed. As such, the expert was required to demonstrate
the gestures briefly while remaining realistic. The gestures
recorded from this cultivation process are denoted as MSC.
Some gestures that were captured from the mastic farmer
are shown in Fig. 6. The process begins with the preparation
of the soil beneath the trees. So that dripping mastic can be
easily collected, the earth surrounding the tree is cleaned and
the terrain around the tree trunk is leveled. The farmer was
recorded using two distinct tools to scrape the soil. The first
is an antique agricultural tool (Amia) with a metal head and
wooden handle, similar to a trowel. With this one, the farmer
scraped the soil on his knees, holding the tool with his right
hand. The second tool is a shovel, which allows the farmer
to scrape the soil while standing. The farmer then swept the
ground with a short broom (Fig. 6a). After preparing the soil,
the farmer evenly distributed calcium carbonate (CaCO3) on
the ground to create a flat surface. For this task, the farmer
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FIGURE 6. Example of gestures captured in the cultivation of mastic.

knelt and spread the white dust with his right hand while
holding the container with his left (Fig. 6b).

The tree is then cut in order to obtain mastic. There are
three different tools to do incisions in the tree. The first is a
small tool with sharp points at the ends (Kenditiri), the second
is another small tool called Timitiri, and the third is a small
axe. The farmer was standing while using each tool, but he
had to lean over to make the incisions in the tree. The tools
were held with the right hand. The next step recorded was the
gathering and harvesting of the mastic that had emerged from
the tree’s wounds. The farmer picked the fallen mastic using a
small basket and tweezers (Fig. 6d), and then harvested more
resin off the tree with a razor (Fig. 6c). Both gestures required
the farmer to bend andmanipulate the tool with his right hand.

The farmer wiped the soil to collect it on a metal mesh
with a brush. In order to remove dust from the mastic, the
mesh is continuouslymoved (or shifted). The use of two types
of mesh was recorded. For all variants, the farmer knelt and
moved the mesh with both hands. Finally, a third method for
removing the dust from the mastic was recorded: throwing
the mastic and dust while standing into the wind.

III. DATA PROCESSING AND SEGMENTATION
The processing of the MoCap consisted of two steps.
To begin, a low pass filter was applied, followed by the
correction of incorrect postures caused by electromagnetic
interference or sensors drifting when the recording lasted
too long, and calibration was required. A low-pass Butter-
worth filter was applied to the raw MoCap data to eliminate
high-frequency noise. To avoid over-smoothing the data, the
cut-off frequency was selected using the power spectrum
density of the signal.

The MoCap system’s sensors may drift or be influenced
by magnetic disturbances from surrounding metallic objects
during the recording process. As a result, occasionally erro-
neous joint angles were recorded during otherwise precise
motion capture. The recordings were adjusted to correct this
error using a 3D character animation software.2 The software
was used to adjust the unrealistic movements based on com-
mon sense and video feedback. After adjusting and removing
noise from the MoCap data, it was segmented by gestures.
Firstly, recordings were collected per task, with one recording

2MotionBuilder, Autodesk Inc., San Rafael, CA. USA.

representing a whole task; however, these recordings were
later segmented by gestures. Fig. 7 illustrates an example of
how the task of television assembly is segmented, extracting
the gestures TVA1, TVA2, and TVA3. All the tasks’ repeti-
tions in the seven datasets were segmented by gestures or
postures for ERGD. A task may contain a single gesture that
is performed numerous times, or it may contain additional
gestures that are repeated throughout the task.

The segmentation of the television assembly and pack-
aging is based on repetitions of the gestures given in
Section II-C1. The repetitions segmented from the recordings
are shown in Table 3. For the riveting task, the segmentation
of the first gesture consisted of riveting and completing an
entire line. The second gesture is to set up the pneumatic
hammer for the next line of rivets. Lastly, the final gesture
involved placing a bucking bar for an entire line of rivets.
Table 4 illustrates the final segmentation. The recordings of
postures with different ergonomic risk levels were segmented
into repetitions. Given that ten subjects were recorded assum-
ing 28 poses three times, segmentation produced 840 files
containing one repetition of each pose. The tasks recorded
from traditional crafts were segmented by single gestures
(as there were repetitions). The resulting segmentation is
displayed in tables 5, 6, and 7.

Only to facilitate the training of the models described
in the next sections, the discontinuities of the Euler joint
angles present in part of the MoCap files were reduced
manually. These discontinuities are dramatic shifts between
the values 180◦ and -180◦ in only certain local joint angles.

TABLE 3. Segmentation of the television assembly task.
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FIGURE 7. Gesture segmentation of one repetition of the task of television assembly.

TABLE 4. Segmentation of the riveting task.

TABLE 5. Segmentation of the silk weaving tasks.

By examining each MoCap file, it was determined to
transform the time series with discontinuities to a data of
range [−250◦, 250◦]. Note that this transformation may not
be appropriate for new movements recorded with IMUs.
Nonetheless, it was sufficient to eliminate most discontinu-
ities in the datasets presented in this paper. Each transfor-
mation was documented so that the transformed data may
be inversed to Euler angles. An example of these transfor-
mations is represented in Fig. 8. The figure illustrates the
MoCap data before and after the modifications, as well as the
reconstructed skeleton.

The angles from the arms and forearms and one angle of the
Hips were mainly the local angles with discontinuities. The
angle of the Hips on the Y axis (pointing up, measuring torso

TABLE 6. Segmentation of the glassblowing task.

TABLE 7. Segmentation of the mastic cultivation task.

rotation) was the most problematic and prone to drifting. The
explanation for this could be related to the sensor’s position.
If the suit is loose, the sensor can produce inaccurate readings.
Another factor is that after the suit is turned on and connected
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FIGURE 8. Elimination of data discontinuities for subsequent analysis. The recorded movement
corresponds to the Euler angle of the left lower leg on the X-axis (shown in Fig. 9 as LL) for the
posture ERGD25.

to the computer for recording, the subjects must move their
entire body to ‘‘wake up’’ the sensors. This sensor was most
likely still in an idle state while performing calibrations.
Any MoCap file with a distortion caused by drifting or poor
calibration was removed from the datasets. The total size of
the seven datasets utilized in the following chapters is 5GB.
A total of 163,4776 frames, or 5 hours and 2minutes, make up
the segmented gestures with 156 local joint angles measured.
All BVHfiles of the seven datasets are accessible in Zenodo.3

IV. ANALYSIS OF THE DATASETS USING ANALYTICAL
MODELS
Any voluntary movement of the body segments is accom-
plished via the musculoskeletal system. The musculoskeletal
system is an intricate structure comprised of bones, muscles,
ligaments, and tendons. Thus, modeling a structure with such
complexity is not an easy task. However, even though the
musculoskeletal system is primarily responsible for the com-
plexity of human locomotion, it can be acceptable to repre-
sent human movements using analytical models that include
relevant assumptions about body joint associations and their
temporal dependencies. The human movements contained in
the seven datasets are then analyzed using analytical models
based on the Gesture Operational Model. GOM allows quan-
tifying human dexterity based on the learned parameters of
its assumptions. The code for the analysis done in this paper
is available in GitHub4

GOM represents human movements using a set of math-
ematical equations that incorporate assumptions about the
stochasticity of human movement and the mediations of
body joints. These assumptions allow the proper simula-
tion of human movements using the trained models and
explain the evolution of human motion descriptors across
time, enabling proactive use of this information. For instance,
in human-centered AI technologies, the physical embodi-
ment of humans is the central focus (human-robot collabo-
ration, risk monitoring, or dexterity analysis). Understanding
and capturing the dependencies between the movement of

3Benchmark website: https://doi.org/10.5281/zenodo.5356992
4Repository: https://github.com/olivas-bre/GOM.git

different joints is crucial not only for creating more realistic
human motion simulations but also for investigating how
diverse and intricate full-body human movements are per-
formed. Knowledge of the neurophysiological mechanisms
behind complicated dexterity and motor learning may be
gleaned from the models. Eventually, the use of such ana-
lytic models may enable the development of interdisciplinary
frameworks for the research of the process of learning and
skill acquisition while performing professional tasks in the
industrial or craft sectors. Additionally, they might facilitate
research into the key factors that lead to musculoskeletal
disorders in ergonomics.

A. THE GESTURE OPERATIONAL MODEL
GOM is a mathematical representation of whole-body human
movement that takes into account the spatial and temporal
dynamics of body joints. The mathematical representation is
comprised of a set of models, each of which models a distinct
joint motion descriptor using one-shot training with Kalman
filters [16]. The number of models in the equation system of
GOM is equal to the number of body joints defined in GOM,
multiplied by the number of dimensions the motion descrip-
tor of each joint (e.g., angle or position) is discomposed
(e.g., X, Y, and Z). For this work, the GOMwas trained using
motion descriptors from only 19 IMUs (out of 52 available in
the datasets) for the modeling. Discarding MoCap data from
the fingers and feet to simplify the human motion represen-
tation. Fig. 9 depicts the sensors’ placement, labeling, and
orientation. Human postures are expressed as 3D Euler joint
angles in order to generate poses with subjects of various
morphologies. Unlike joint positions, Euler joint angles are
unaffected by identity-specific body shape. Moreover, Euler
angles can be intuitively interpreted in the analytical model
and provide a more clear illustration of how human move-
ments are conducted.

Thus, 57 models compose the GOMs used in this paper
to analyze the full-body movements of every dataset.
The 57 models are created through state-space modeling,
where endogenous and exogenous data are included in the
second-order model of each motion descriptor. For example,
while modeling the angle trajectory of the body jointPt on the
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FIGURE 9. Location and Euler angle orientation of the sensors that
provide the XYZ joint angles included in GOM.

X -axis (Pxt ), whose movement is decomposed on XYZ axes
(Pxt , Pyt , and Pzt ) and has an association with j body parts.
The two previous values are integrated into the transition
model as shown in Eq. 1, where st corresponds to the state
variable at time t . Then, exogenous data (ut ) corresponding
to potential intra-joint associations (H2), inter-limb syner-
gies (H3), and intra-limb mediations (H4) are included in the
observation model as illustrated in Eq. 2.

st = Ast−1 =

[
α1 0
0 α2

] [
Px1,t−1

−Px1,t−2

]
(1)

Px1,t =
[
1 1

]
st + But

=
[
1 1

]
st + β1Py1,t−1 + β2Pz1,t−1

+ β3Px2,t−1 + · · · + βnPxj,t−1 (2)

Finally, by merging equations 1 and 2, the state-space repre-
sentation of the motion descriptor is obtained:

Px1,t = α1Px1,t−1 − α2Px1,t−2︸ ︷︷ ︸
H1

+ β1Py1,t−1 + β2Pz1,t−1︸ ︷︷ ︸
H2

+ β3Px2,t−1 + · · · + βnPxj,t−1︸ ︷︷ ︸
H3 or H4

(3)

The assumptions and structure of the models are further
detailed in [14]. The constant coefficients A and B of the
equation system are estimated using Maximum Likelihood
Estimation (MLE) via Kalman filtering. GOMs were trained
using a reference gesture of each class, which was determined
using the Dynamic Time Warping (DTW) algorithm. This
algorithm measures the similarity between two time series.
Then, the gesture repetition closest to all other gesture repeti-
tions of the same class was chosen for one-shot training using
an Intel Core i7-8750H CPU.

Next, Section IV-B discusses the simulation performance
of the trained GOMs for every gesture in the seven datasets.
Metrics and examples of poses generated are provided in
the appendix. These metrics are intended to be used as an
initial benchmark of the datasets for comparing the simula-
tion or generation performance of other methods that would
use the presented datasets. Later, Section IV-C presents the

dexterity analysis of professional gestures using trainedGOM
representations and how, based on these models, the most
significant motion descriptors are identified for modeling and
recognizing gestures from a professional task.

B. GENERATION OF FULL-BODY MOVEMENTS
In this section are presented the results of GOM for gen-
erating human professional poses. The trained GOM can
generate human professional poses by solving its equation
system, with each GOM’s model predicting one time step per
iteration.

In order to measure the capability of the models in
simulating the learned professional gestures, all gesture
repetitions were simulated using their respective trained
GOM. Then, the Root Mean Squared Error (RMSE) and
the Mean Absolute Error (MAE) were calculated for each
simulation:

RMSE =

√√√√ 1
T

T∑
t=1

(
Pt − P̂t

)2
(4)

MAE =
1
T

T∑
t=1

∣∣∣Pt − P̂t
∣∣∣ (5)

The real full-body posture corresponds to Pt , and P̂t is
the simulated movement using the trained GOM. The
average of the Theil’s inequality coefficients (U1) is also
included in the metrics, which coefficient is calculated as
follows:

U1 =

√
1
T

∑T
t=1

(
Pt − P̂t

)2
√

1
T

∑T
t=1 P

2
t +

√
1
T

∑T
t=1 P̂

2
t

(6)

For U1, the closer it is to zero, the greater the forecast
quality. Tables 9 to 13 in the appendix show the average
measures for each task’s gestures. Also, figures 13 to 15
illustrate examples of generated postures of a gesture and the
real posture sequence.

1) DISCUSSION ON MODEL SIMULATION
The results indicate that by solving the simultaneous equa-
tions that make up the GOM, it is possible to generate a
variety of human postures using Euler joint angles as motion
descriptors. GOM is tolerant of minor variations in human
movement and offsets between movements of the same class
resulting from varying recording conditions (different sub-
jects or different recording days). However, suppose their
performance is evaluated regarding their capability to forecast
full-body movements accurately. In that case, due to the
intra-class variability in some of the professional gestures,
there is an increase in the mean of the joint angle errors.
The reason is the potential differences between the reference
gesture used for the one-shot training of the models and the
testing gestures used for the simulation.

For the TVA dataset, the most difficult gestures to simulate
accurately were TVA1 and TVA2, which corresponded to
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gestures in which the operator can move more freely with
either the left or right hand to grasp circuit boards or cables.
On the other hand, TVA3 and TVA4 correspond to gestures
that were easier to replicate for the operator in each iteration,
as the circuit board and drilling were performed similarly in
each recorded iteration.

GOM provides the best simulation performance for APA,
TVP, and ERGD. These gestures and postures had the lowest
intra-class variability, given that they were executed in a more
controlled environment. In ERGD, for instance, subjects per-
formed various postures in a laboratory while receiving con-
stant instructions on how to execute them. However, as the
posture became more complex, such as kneeling with torso
and arm movements, the error increased as subjects’ move-
ments presented greater variation in how they performed
the indicated posture (foot and knee position or arms final
position). In the case of APA, the operators were recorded
assembling one airplane float, performing the same tasks
repeatedly for several hours with only larger variations in
APA2 where the operator grabbed the rivets and prepared
the pneumatic hammer. In TVP, operators performed the
same gestures with high variations only when wrapping the
televisions.

The gestures recorded in industrial settings were easier to
simulate since they primarily involved manipulating objects
with their hands, in contrast to the gestures performed, for
instance, by the craftsmen and farmers, who had to employ
their entire bodies to perform their work properly.

The fact that the reference and simulated gestures were
executed on different looms may have contributed to the
errors in SLW (reference on a large loom and simulated on a
medium-size loom). Consequently, pedal height and position
variations may have caused larger errors in the movement
simulation. Likewise, in the motion simulations of GLB,
the skilled glassblower progressively adjusted his posture,
even for the same repetitive activity, in order to appropriately
shape the molten glass. Consequently, the training gestures
for each class of the GLB dataset did not adequately represent
all gestures from the same class (high intraclass variance),
resulting in a drop in simulation accuracy. The most chal-
lenging gestures to simulate were those involved in mastic
cultivation, as MSC involves gestures in which the farmer
moves while kneeling. In the other six datasets, subjects
performed the majority of their tasks while standing. The
farmer did not keep the same position of the legs while
performing the same gestures; he repositioned the legs while
kneeling to improve balance in order to reach the tree or
objects.

C. GOM-BASED DEXTERITY ANALYSIS OF EXPERT
MOVEMENT
A statistical analysis is performed on the learned GOM rep-
resentations to determine the significance of the models’
assumptions in relation to the professional gesture. The sig-
nificant assumptions (motion descriptors) and their learned
coefficients are then used to describe the cooperation of

the joints to perform the gesture. In addition, by analyzing
the p-values of each assumption, the most important motion
descriptors for modeling and recognizing human movements
from a professional task are found. In many applications of
human movement analysis, it is neither feasible nor practi-
cal to use full-body MoCap suits. Therefore, to enable the
adoption of less intrusive technologies, such as smartphones
and smartwatches, a procedure for finding the minimal set of
motion descriptors to measure using GOM is also detailed in
this paper.

1) STATISTICAL ANALYSIS AND INTERPRETATION OF THE
MODELS
The statistical analysis of three trained motion represen-
tations is provided next. To facilitate the visualization of
the gesture modeled, a figure with the posture sequence is
provided for each example, along with color annotations to
highlight the equations’ assumptions. GOM’s representations
are designed to include four assumptions: time-dependent
transitions, intra-joint association, inter-limb synergies, and
serial and non-serial intra-limb mediations. Each assump-
tion consists of a specific set of parametrized variables
(in this case, joint angles) that depict a particular relation-
ship between body joints or a temporal dependency. The
notion is to use these parametrized assumptions to describe
body dexterity. By examining the computed coefficients and
their statistical significance (significant if the p-value is
less than 0.05), it can be gleaned how relevant these are
according to the gesture modeled and the predicted joint
angles.

The first example illustrates the equation for the joint angle
sequence RAyt (right arm on the Y-axis) when performing the
gesture TVA1: (grab a circuit board from a container, shown
in Fig. 10):

RAyt = (1.010)RAyt−1︸ ︷︷ ︸
p = 0.001

+ (−0.076)RAyt−2︸ ︷︷ ︸
p = 0.188

+ (0.720)RAxt−1︸ ︷︷ ︸
p = 0.003

+ (1.214)RAzt−1︸ ︷︷ ︸
p < 0.001

+ (−0.324)LAyt−1︸ ︷︷ ︸
p < 0.001

+ (6.123)RSH1yt−1︸ ︷︷ ︸
p < 0.001

+ · · · + (0.555)RFAyt−1︸ ︷︷ ︸
p = 0.009

(7)

The p-values < 0.05 suggest a dependency between the
prior value of the dependent variable but not between the
value two time steps before. This can imply that the speed of
change of the gesture is moderate. If both previous values are
significant, this indicates a slow speed movement if neither
is a faster one. The movement of the joint RA exhibits an
intra-joint association along the X, Y, and Z axes. Inter-limb
synergy with LAy (left arm) indicates that LAy follows syner-
gistically RAy when performing the gesture. The movement
on RSH1y (right shoulder) and RFAy (right forearm) result

40086 VOLUME 11, 2023



B. E. Olivas-Padilla et al.: Motion Capture Benchmark of Real Industrial Tasks and Traditional Crafts

FIGURE 10. Illustration of the gesture performed in TVA1, where the operator grabs from a container a circuit board. The
color annotations are based on the assumptions colored in (7). Colored joints indicate potential dependencies with other
motion descriptors incorporated in the model: The orange indicates the transitioning assumption of RAy ; green reflects the
intra-joint association with RAx and RAz ; blue highlights the inter-limb synergies with LAy ; purple is the serial intra-limb
mediations with RSH2y and red the non-serial intra-limb mediations with RFAy . The picture of the recording can also be
visualized in Fig. 1a.

in a serial intra-limb mediation. This outcome makes sense,
given that most of this arm movement primarily depends on
shoulder motions (raising the arm). In addition, if viewing
Fig. 1a, the operator must lift the shoulder and bend the
forearm to reach the circuit board from the container. The
bending of the forearm may explain the statistical signifi-
cance of RFAy.
The second example is the equation for the joint angle

of the neck on the X-axis (Nxt ) while performing APA3 (hold
the bucking bar, shown in Fig. 11):

Nxt = (1.020)Nxt−1︸ ︷︷ ︸
p < 0.001

+ (0.355)Nxt−2︸ ︷︷ ︸
p < 0.024

+ (−1.220)Nyt−1︸ ︷︷ ︸
p < 0.001

+ (−0.470)Nzt−1︸ ︷︷ ︸
p < 0.001

+ (−0.018) SP3xt−1︸ ︷︷ ︸
p < 0.001

+ (−0.010) SP2xt−1︸ ︷︷ ︸
p = 0.002

+ · · · + (0.010)Hxt−1︸ ︷︷ ︸
p = 0.84

(8)

An intra-joint association with Ny and Nz is revealed in (8),
as well as a serial intra-limb mediation with SP3 (upper
spine). SP2 (middle spine) exhibits non-serial intra-limb
mediation, but H (hips) does not. Holding a bucking bar
to counteract a rivet requires bending forward and slightly
twisting the upper torso (as illustrated in figures 11 and 2c),
moving along the X-axis and Y-axis of the spine. This move-
ment is reflected in (8), as the joint angles from SP2 and SP3
on the X andY axes are statistically significant and relevant to
the motion of Nx. However, the lack of mediation with H can
indicate that the operator tries to maintain his hips static, most
likely to keep balance while bending. In addition, the subject
had to rotate the neck to see where to position the bucking
bar; thus, this is consistent with the intra-joint association
indicated by the p-values of Ny and Nz. At last, the gesture
is performed at a low pace as both transition assumptions are
significant.

The last example is an equation learned with the gesture
GLB4 (shape the decanter curves with a block, as depicted

in Fig. 12), and represents the joint angle on the X-axis
of the left shoulder (LSH2xt ). More precisely, this equation
simulates the movement of the left clavicle:

LSH2xt = (1.877)LSH2xt−1︸ ︷︷ ︸
p < 0.001

+ (−0.913)LSH2xt−2︸ ︷︷ ︸
p < 0.001

+ (0.292)LSH2yt−1︸ ︷︷ ︸
p = 0.002

+ (0.252)LSH2zt−1︸ ︷︷ ︸
p = 0.004

+ (0.145)RSH2xt−1︸ ︷︷ ︸
p = 0.014

+ (0.36)LAxt−1︸ ︷︷ ︸
p = 0.004

+ · · · + (0.016)LFAxt−1︸ ︷︷ ︸
p = 0.030

+ (−0.543)SP3xt−1︸ ︷︷ ︸
p = 0.049

(9)

The statistical analysis of (9) reveals a temporal depen-
dence (slow movement); intra-joint association (LSH2y and
LSH2z); inter-limb synergy with the right shoulder; serial
intra-limb mediation with the left arm (LAx), and non-serial
mediation with the left forearm (LFAx). SP3 is considered
marginally significant, as this study uses a p-value threshold
of 0.05 to determine significance.

To shape the decanter correctly, both arms must work
together during this gesture. This is evident by the presence
of an inter-limb synergy in (9). Accordingly, the joint angles
of the right shoulder contribute to the response of the left
shoulder, as the glassblower forms the decanter’s curves
with the right arm while rolling the blowpipe with the left.
Furthermore, the expert mostly maintains the torso straight
during this gesture, as seen in figures 13 and 5a. Yet, when he
rotates the blowpipe forward, there is a slight tilt of the torso
to maintain grip on the blowpipe; this could indicate a high
p-value for SP3, but not as high to not be significant for the
left shoulder movement.

As shown in these previous examples, GOM can provide
quantitive information that is not directly observable about
how the experts perform the modeled gesture and allow inter-
pretation of how the joints collaborate to perform specific
joint motion trajectories in order to perform the intended task.
Calculating the significance of the assumptions highlighted
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FIGURE 11. Illustration of the gesture performed in APA3, where the operator places the bucking bar to counteract the incoming rivet. The
color annotations are based on the assumptions colored in (8). Colored joints indicate potential dependencies with other motion
descriptors incorporated in the model: The orange indicates the transitioning assumption of Nx ; green reflects the intra-joint association
with Ny and Nz ; purple is the serial intra-limb mediations with SP3x and red the non-serial intra-limb mediations with SP2x and Hx . The
picture of the recording can also be visualized in Fig. 2c.

FIGURE 12. Illustration of the gesture performed in GLB4, where the expert glassblower shapes the decanter curve with a block and
simultaneously rotates the blowpipe back and forward. The color annotations are based on the assumptions colored in (9). Colored joints
indicate potential dependencies with other motion descriptors incorporated in the model: The orange indicates the transitioning
assumption of LSH2x ; green reflects the intra-joint association with LSH2y and LSH2z ; blue highlights the inter-limb synergies with
RSH2x ; purple is the serial intra-limb mediations with LAx and red the non-serial intra-limb mediations with LFAx and SP3x . The picture
of the recording is shown in Fig. 5a.

the joints that are critical in the gesture and their influence
on the movement of other joints. This information can later
be utilized to test skill acquisition strategies. For example,
a novice can learn to make precise gestures by minimizing
the variability of their motion representations compared to
those of professional artisans or operators. Moreover, for
ergonomics, the proposed motion representation would allow
analysts to comprehend how the full-body moves when doing
ergonomically dangerous movements versus safe movements
and to design work environments and tasks that are less likely
to result in injury or discomfort. A direction would be to
identify which joints have the highest impact while executing
risky movements, and that should be monitored to reduce the
ergonomic risk of the professional task.

2) SELECTION OF MOST SIGNIFICANT MOTION
DESCRIPTORS PER DATASET
For selecting the essential inertial sensors to use for the
gesture recognition of each professional task, the number
of times a motion descriptor (assumption) is statistically
significant for all equations that comprise GOM is counted.
Then, different combinations of descriptors considered most
frequently significant for measuring the arm, spine, and legs
were utilized for training in an all-shots approach. Because
a single inertial sensor gives three joint angles, all of the
sensor’s joint angles were used for recognition if at least one
was among the joint angles that were more often significant
in all gestures of a dataset.

For the recognition of human gestures utilizing different
sensor combinations, Hidden Markov Models (HMM) were
trained using a 10-fold cross-validation. In order to properly
train the HMM, a gesture vocabulary containing the gestures
with the most iterations was specified for each dataset. The
total number of gesture classes for TVA, APA, and ERGD
were four, three, and 28, respectively. The TVP, GLB, and
MSC gesture vocabularies contained only gestures with at
least seven repetitions. Therefore, their respective gesture
vocabularies included five, seven, and six classes of ges-
tures. Regarding SLW, the gesture vocabulary consisted of
only three classes of silk weaving on a loom. Despite the
differences in loom size, the gestures used to weave on a
small, medium, and large loom are similar. Therefore, they
were combined into three classes for the gesture recognition
problem.

The ergodic and left-to-right HMM topologies, along with
a different number of hidden states, were evaluated to deter-
mine the best settings for the gesture vocabulary defined in
each dataset. The performance metrics utilized were accuracy
and F1-score, the last being the harmonic mean of precision
and recall. Left-to-right HMM topology produced the best
results for all recognition problems. Concerning the number
of hidden states, it was defined for the HMMs of TVA and
ERGDwith seven states, TVPwith six states, APA, GLB, and
MSWwith eight states, and SLWwith three states. The sensor
configurations that obtained the best recognition results with
each dataset’s gestures are presented in Table 8, along with
the highest recognition accuracy and F1-score achieved.
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TABLE 8. Recognition performance with each configuration of sensors.

In Table 8, it can be observed that using MoCap data just
from the selected sensors yielded a performance that was
comparable to or better than that obtained using all MoCap
data from the 52 inertial sensors. In the case of TVA and
TVP, just three sensors were selected based on the trained
models of GOM, which represents 5.76% of the MoCap data
acquired and causes only a minor loss in accuracy and F1-
score. With APA and ERGD, only 13.46% and 9.61% of the
MoCap data were selected and utilized to achieve a higher
recognition performance than the other two configurations of
sensors.

The APA gestures were the most difficult to recognize,
requiring a greater number of sensors for effective recogni-
tion. This could be due to the fact that the gestures in this
vocabulary are more complex and prolonged. The most prob-
lematic gesture to model and recognize was APA2, which was
expected given that its execution varied the most among the
three classes (high intra-class variance). The operator did not
prepare the material identically for each repetition. In certain
repetitions, the operator was slower than usual because he
required more time to adjust the pneumatic hammer or to
prepare additional rivets. Furthermore, since only one air-
plane structure was built for this dataset, there is a substantial
intra-class variance. There were no repetitions in which the
pneumatic hammer was positioned in the same location more
than once.

Regarding recognizing gestures from traditional crafts, for
GLB and MSC, the selected sensors, consisting of 7.69% of
theMoCap data, yielded comparable results to those obtained
with data from all sensors. For SLW, 9.61% of the MoCap
data was selected for the recognition problem, resulting in a
performance drop of about 0.05 in both metrics with respect
to the configuration with all 52 sensors. The two-sensor con-
figuration’s poor performance for SLW could be attributed
to its difficulty in distinguishing movements related to the

shoulder (throwing of the shuttle) and the leg, as motion data
from the hips and left forearm only were insufficient.

V. CONCLUSION
This paper presented seven datasets: TVA, TVP, APA, ERGD,
SLW, GLB, and MSC. Most publicly available datasets
contain simulated movements performed in a laboratory
and related to everyday activities or sports. Therefore, new
datasets were created containing gestures performed in pro-
fessional tasks either from the industry or crafts workshops.
These were recordedwith actual operators and experts in their
real workplace scenarios using an inertial full-body suit of
52 sensors. The aim was to test human motion models with
these complex gestures and extract information regarding the
dexterity, skill, and know-how related to the adequate use of
tangible elements such as materials and tools. Each profes-
sional task was segmented by repetitions, and discontinuities

TABLE 9. Simulation performance for datasets TVA, TVP, and APA.
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FIGURE 13. Visual comparison of generated posture sequences for GLB4 and its ground-truth. The glassblower rotates the blowpipe with the left hand
while shaping the glass with the right (the recording of the glassblower is shown in Fig. 5a).

FIGURE 14. Visual comparison of generated posture sequences for TVP8 and its ground-truth. The operator places a television on the third
level of a pallet (picture of the recording in Fig. 1d).

FIGURE 15. Visual comparison of generated posture sequences for MSC5 and its ground-truth. The mastic farmer cuts the
root of a mastic tree with a small knife (picture of the recording in Fig. 6c).

were reduced to improve the modeling of the gestures in the
analysis done for this benchmark.

The presented human movement analysis comprised the
use of GOM to simulate the recorded professional tasks and
a body dexterity analysis based on the trained motion rep-
resentations. The purpose was to employ the trained motion
models to observe and quantify the manifestation of skill in

industrial operators and expert artisans. The parameters of
the train models provided information about how a person
moves in order to achieve a specific goal, such as assembling
a TV or making a specific piece of glass. In the future, mul-
tidisciplinary frameworks might be built to study how people
learn and get better at industrial or craft tasks by looking
at the trained analytical models of experts and beginners.
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TABLE 10. Simulation performance for the dataset ERGD.

TABLE 11. Simulation performance for the dataset SLW.

Furthermore, GOM could be used to investigate the biome-
chanical risk factors that lead towork-relatedmusculoskeletal
disorders by comparing motion representations from safe and
hazardous movements.

Finally, the minimum number of inertial sensors and their
location for capturing and accurately recognizing the gestures
of each recorded professional task is presented. As stated
before, employing a full-body MoCap suit in many human
movement analysis applications is neither feasible nor practi-
cable. Determining the minimal motion descriptors to mea-
sure allows for the adoption of less invasive technologies,
such as smartphones and smartwatches, that could also mea-
sure these motion descriptors.

TABLE 12. Simulation performance for the dataset GLB.

TABLE 13. Simulation performance for the dataset MSC.

APPENDIX
FORECASTING PERFORMANCE MEASURES FOR EACH
DATATASET
See Tables 9–13 and Figs. 13–15.
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