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Highlights 
• Multi-objective optimisation (exergy, environment and economics) is performed on a 

thermocline tank. 

• Seven different solid filler materials are compared: machined and recycled ceramics or natural 

rocks. 

• TOPSIS method combined with Shannon entropy is used to select the best compromise 

solution in the Pareto set. 

• Ceramics from hard coal ashes were found to be better filler material. 

Abstract 
Thermocline thermal energy storage systems are promising alternatives for recovering waste heat lost 

by industry around the world. The aim of this work is to extend the methodology presented in previous 

work, by optimising an existing industrial packed-bed storage system on two geometric optimisation 

variables, considering exergy, environmental and economic aspects. Seven filler materials are 

compared for the same heat transfer fluid, to include discrete variables in the model. The multi-

objective optimisation problem is solved using the NSGA-II multi-objective genetic algorithm. For each 

filler material, a Pareto set is obtained. The non-dominated solutions within the union of the different 

Pareto sets are then selected, which give a new single set of optimised solutions. A multi-criteria 

decision-making method (TOPSIS) is then applied to obtain the optimal solution. To avoid any 

subjective choice from the decision-maker by determining the objective weights of each of the 

optimisation criteria, the Shannon entropy is used. The combination of TOPSIS and Shannon entropy 

led to the selection of a recycled ceramic obtained from hard coal ashes as the best filler. This solution 

has a stocky tank shape (2.4 m diameter, 2.1 m height) and a small particle diameter (7 mm). The 

exergy and environmental performance is improved compared to the reference storage. They reach 

98.0% (vs 95.6%) and 58 hab.year (vs 67 hab.year) respectively. The levelised cost of energy is close to 

that of the reference tank (3.35 vs 3.31 𝑐€/𝑘𝑊ℎ𝑡ℎ). 

Keywords: waste heat valorisation, life cycle assessment, exergy, life cycle costs analysis, multi-

objective optimisation, decision-making methods 

1 Introduction 
In industry, nearly 50% of the energy consumed worldwide is lost in the form of heat (Forman et al. 

,2016). In this sector, 38% of waste heat is at a temperature above 300°C and so requires high 

temperature solutions for high temperature recovery. In France, this amounts to 10 TWhth lost at over 

300°C (ADEME, 2018). A preliminary analysis of the European waste heat field shows that it amounts 

to 370.41 TWhth per year in industry (Panayiotou et al., 2017). In the US industrial sector, 75 TWhth/year 

is lost at 150°C (Johnson et al., 2008). In total, the US Department of Energy and the French Energy 
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Agency (Agence de l’environnement et de la maîtrise de l’énergie (ADEME)) estimate that 4,000 to 

15,000 TWhth per year could already be recovered worldwide (Plisson et al., 2017). For the deployment 

of efficient and energy-saving industrial systems, the use of storage devices, particularly thermal, is 

becoming a necessity. Indeed, these systems can store excess heat rejected by industries into the 

environment and release it later for delayed electricity or heat generation (Rahman et al., 2020) and 

thus, would limit energy consumption and greenhouse gas emissions. 

In this context, thermocline thermal storage has the potential to improve the energy efficiency of 

industrial processes. This sensible heat storage uses a single tank inside which the cold and hot fluids 

reside simultaneously. Compare to two-tank storage, space consumption can decrease by combining 

the two tanks into one (Fasquelle et al., 2018; Heath et al., 2010), and cost of the system can be 

reduced down to 35% (Brosseau et al., 2005). In a packed-bed TES, Heat Transfer Fluid (HTF) flows 

through a Thermal Energy Storage Material (TESM). During the charging step, cold fluid is extracted 

from the bottom of the tank and hot fluid is injected at the top. As a result, two quasi-isothermal zones 

(a hot one and a cold one) are separated by a large temperature gradient, called the thermocline zone. 

During the discharging step, the direction of the HTF is reversed. 

Due of the energy and ecological transition, the challenge lies in the implementation and operation of 

technically efficient systems, verifying a viable and environmentally friendly business model. In view 

of these different aspects, it is important to optimise TES on several criteria. For this purpose, a multi-

criteria optimisation should be performed. The use of multi-objective optimisation methods leads to a 

set of efficient solutions, called the Pareto set. The points in this set are not dominated by any other, 

i.e. one or more of the criteria is optimised (minimised or maximised) for these solutions. Multi-

objective optimisation methods can be grouped into two main families:  

- Deterministic methods transform a multi-objective problem into a single-objective one. Exact 

algorithms and specific heuristics are part of it, 

- Stochastic methods randomly explore the solutions space using probability transition rules. 

Among them are metaheuristic methods, including evolutionary algorithms consisting of 

genetic algorithms and particle swarm optimisation. 

Stochastic algorithms solve difficult optimisation problems and are easy to implement. They approach 

the global optimum very quickly. Genetic algorithms are  widely used for optimising energy systems 

that often involve a large number of degrees of freedom: commercial supermarket CO2 refrigeration 

system (Dai et al., 2022), PV-Diesel hybrid system for power production in remote area (Tsuanyo et al., 

2015), industrial robots in manufacturing industry (Zhang and Yan, 2021), TES tank in cogeneration 

systems (Wang et al., 2021). Genetic algorithms have been extended for solving multi-criteria 

optimisation problem. The Non-Dominated Genetic Algorithm (NSGA-II) (Deb et al., 2002) was 

employed to solve bi-optimisation problems on heavy-duty vehicles (environmental impacts and total 

cost of ownership through the life cycle eco-efficiency) (Wolff et al., 2021), on noise barrier tunnel 

(CO2 emissions and costs) (Kim and Kim, 2021), and on combined cooling and power generation system 

using geothermal system (exergoeconomics) (Ding et al., 2021).  

When the multi-objective algorithm is completed, a set of undominated solutions (Pareto front) is 

obtained. As the solutions in this set are close to each other, it is difficult to choose a solution that 

outperforms all others, and to rank them unquestionably from best to worst (Hwang and Yoon, 1981). 

Multi-criteria decision-making methods aim to select a single solution within the Pareto set, and to 

help decision-makers make a final decision. There are many decision-making methods: TOPSIS 

(Technique for Order of Preference by Similarity to Ideal Solution) (Hwang and Yoon, 1981), VIKOR 

(Vlse Kriterijumska Optimizacija I Kompromisno Resenje) (Opricovic, 1998), ELECTRE (Elimination Et 
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Choix Traduisant la REalité) (Maystre et al., 1994), PROMETHEE (Preference Ranking Organisation 

Method for Enrichment Evaluation) (Brans and Vincke, 1984), AHP (Analytical Hierarchical Program) 

(Saaty, 1980), LINMAP (Linear Programming Technique for Multidimensional Analysis) (Srinivasan and 

Shocker, 1973), SECA (Simultaneous Evaluation of Criteria and Alternatives) (Keshavarz-Ghorabaee et 

al., 2018), fuzzy methods (Zadeh, 1965, 1968)… TOPSIS method is one of the most used in the energy 

sector (Siksnelyte et al., 2018). This method ranks the Pareto solutions according to their priority. It 

selects the best compromise solution with the shortest Euclidian distance to the ideal solution and the 

farthest Euclidian distance to the nadir solution (Hwang and Yoon, 1981). 

However, in most multi-criteria decision-making methods such as TOPSIS, a weight is assigned to each 

criterion, usually subjectively. Decision-makers rank the criteria according to their importance and 

depending on the subjective weighting method used, the weights are determined. The weight 

allocation can be influenced by decision-makers’ preference. This subjective choice may provide a 

different solution depending on the weights chosen by decision maker, as observed in sensitivity 

analysis (Li et al., 2013; Olson, 2004). In order to improve the measurement of uncertainty in the 

allocation of weights, it is essential to eliminate the influence of subjective factors. In the objective 

weighting methods, criteria weights are determined by mathematical models, without any 

consideration of decision-makers. For this purpose, various methods have been developed : Shannon 

entropy (Huang 2008), standard deviation (Deng, Yeh, and Willis 2000), mean weight (Deng et al. 

2000), CRiteria Importance Through Intercriteria Correlation (CRITIC) (Diakoulaki et al., 1995), 

centralised weights (Solymosi and Dombi, 1986), statistical variance procedure (Rao and Patel 2010). 

Shannon entropy is one of the most used methods for determining weights in an objective way (Deng 

et al., 2000; Jing et al., 2018; H.-C. Liu et al., 2019a; X. Liu et al., 2019b; Zhao et al., 2020). This method 

quantifies the uncertainties of the information source, through a discrete probability distribution 

(Shannon, 1948). The standard deviation method uses the standard deviations of the criteria to 

determine their weights. The mean weight considers all criteria to be of equal importance. The CRITIC 

method is based on the standard deviation to which a linear correlation is applied. The centralised 

weights method uses centralised distribution to assign weights to each criterion. The closer the 

solutions are to each other for a criterion, the higher the weight of that criterion relative to the others. 

The statistical variance procedure uses statistical variance of information. Hybrid methods can also be 

employed. These methods employ the subjective preference of a decision-maker and apply 

mathematical models to determine weights. For example, Dos Santos et al. (dos Santos et al., 2019) 

used a hybrid Entropy-TOPSIS with fuzzy sets. The fuzzy approach is combined with Shannon entropy 

to determine the best green supplier for the Brazilian furniture industry. Saeidi et al. (Saeidi et al., 

2022) proposed to combine SWARA and Pythagorean fuzzy sets to rank the criteria before applying 

TOPSIS to find the best sustainable human resource management in factories in Ecuador. Tu et al. (Tu 

et al., 2021) performed a hybrid method integrating hesitant fuzzy linguistic term sets and, decision-

making trial and evaluation laboratory (DEMATEL) to determine weights. VIKOR method is then applied 

to rank the regional coordination of water resources in North China. 

In a previous paper (Le Roux et al., 2022b), the importance of combining exergy, environmental and 

economic aspects was demonstrated to create eco-designed systems. The geometry of an industrial 

high-temperature thermocline TES, named Eco-Stock®, was successfully optimised according to its 

exergy efficiency, environmental footprint and cost. However, the optimisation and selection 

procedures were restricted to a single filler material. This study aimed to extend this primary work for 

several filler materials. In addition, the methodology developed was using the TOPSIS method with 

subjective weights, considered equal to each other. As explained above, the choice of criteria weights 

is crucial in multi-criteria decision-making methods. To avoid expert opinion and improve the decision-
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making process, objective weights should be employed. This will be done by weighting the three 

criteria according to their Shannon entropy. Therefore, the objectives of this study are threefold:  

• to compare seven TESM: two machined ceramics (MC), three ceramics obtained from waste, 

and two natural rocks, Through these objectives, the tri-criteria optimisation performed in (Le 

Roux et al., 2022b) is improved through the use of Shannon entropy and the comparison of 

alternative filler materials. 

• to improve the optimisation process by building a single Pareto front encompassing several 

filler materials, 

• to improve the decision-making process, by using non-subjective weights based on Shannon 

entropy. 

The article is organised as follows. In the first part (section 2), the description of the system is 

presented. The methodology developed in (Le Roux et al., 2022b) is briefly outlined and then extended 

to several filler materials. The decision-making process is also improved through the weighting process 

based on Shannon entropy. The overall structure of the optimisation problem is finally given. The 

results are analysed in the third part (section 3). Multi-criteria optimisations are analysed, and the best 

tank geometry and filler material are simultaneously selected. Then, the trade-off configuration is 

compared to the reference industrial thermocline storage. The last part concludes (section 4). 

2 Material and method 

2.1 Problem definition 
A three-objective optimisation of an existing industrial high-temperature thermocline tank, called Eco-

Stock® (Touzo et al., 2020), is carried out. This storage, developed and commercialised by Eco-Tech 

Ceram (Eco-Tech Ceram, 2023), recovers waste up to 600°C with an air/bauxite packed-bed and stores 

1567 𝑘𝑊ℎ𝑡ℎ/𝑐𝑦𝑐𝑙𝑒. Its specifications are reported in Table 1. 

Table 1: Specifications of the industrial thermocline tank Eco-Stock® 

Design parameters of the tank Values 
Geometric 
parameters 

Values 

Maximum theoretical energy capacity 𝑄𝑡ℎ 1010 J 
External shape factor 

𝐹𝑒 = 𝐷𝑡/𝐿𝑡 
0.6228 Porosity 𝜀 40% 

Targeted charging or discharging time 𝑡𝑐 or 𝑡𝑑𝑠 7.05 hours 

Operating temperatures: hot 𝑇𝐻 and low 𝑇𝐿 600 and 20°C 
Internal shape factor 

𝐹𝑖 = 𝐷𝑠/𝐷𝑡 
0.0156 Fluid (HTF) Air 

Solid (TESM) Bauxite 

 

This work aims to find the best tank geometry, the best particle size and the best TESM of this industrial 

thermocline TES according to three criteria: maximising exergy efficiency, minimising environmental 

impacts and minimising Levelised Cost Of Energy (LCOE).  

One of the objectives is to compare seven filler materials appearing interesting for an energy storage 

application: two commonly used machined ceramics (MC) (bauxite and alumina), three ceramics 

obtained from waste (ceramics from fly ashes (CFA), ceramics from hard coal ashes (CHCA) and cofalit), 

and two natural rocks (basalt and quartzite). The thermophysical properties, ecological footprint and 

costs of each filler are presented in Table 2 at the average operating temperature (310°C). The 

effusivity (𝜖 = √𝜆 ∙ 𝜌 ∙ 𝑐), which characterises the rate at which a material can absorb heat, was 

determined. Despite better effusivities, the cost of MC was 30 to 53 times higher than that of recycled 
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ceramics or natural rocks. The environmental impact of these fillers was 85% and 100% greater than 

that of ceramics from waste and natural rocks respectively. Therefore, the environmental footprint 

and cost of the TES device could be lower for fillers derived from waste or natural rocks than for MC. 

This question motivated this research is aiming to select the best geometry of the TES tank associated 

to the best filler material among the seven presented in Table 2. 

Table 2: Thermophysical properties (at 310°C), environmental footprint per ton and costs per ton of filler materials  

Properties 
Thermophysical properties 

Environmental 
impact 

Cost 

𝜌𝑠 
(kg.m-3) 

𝑐𝑠 
(J.kg-1.K-1) 

𝜆𝑠 
(W.m-1.K-1) 

𝜖𝑠 
(kJ.m-2.K-1.s-1/2) 

LCAs 
(ca.year.ton-1) 

𝐶𝑠 
(€.kg-1) 

MC – Bauxite 3005 1076 4.0 3.59 0.92 0.9 

MC – Alumina 3670 1023 21.0 8.88 0.95 1.6 

Recycled 
ceramic – CFA 

2600 1000 1.8 2.16 0.12 0.03 

Recycled 
ceramic – CHCA 

2200 1050 1.0 1.52 0.12 0.03 

Recycled 
ceramic – Cofalit 

3120 1025 1.8 2.37 0.23 0.03 

Natural rock – 
Basalt 

2900 900 2.0 2.29 0.01 0.03 

Natural rock – 
Quartzite 

2500 830 5.7 3.44 0.00 0.03 

 

2.2 Multi-criteria optimisation: single filler material case 
Modelling and optimisation procedures have been detailed in (Le Roux et al., 2021; Le Roux et al., 
2022b) for a single material. They are shortly reminded in this sub-section. 

2.2.1 Physical model 
The dynamic model consists of solving the transient mass, energy and entropy balances applied to a 
representative elementary volume, composed of fluid and solid (Rebouillat et al.,2019). It is a one-
dimensional (radial gradients are neglected) two-phase model. It models separately the HTF (eq (1)) 
and the filler material (eq (2)). 

𝜀. (𝜌. 𝑐)𝑓 . (
𝜕𝑇𝑓

𝜕𝑡
+ 𝑢.

𝜕𝑇𝑓

𝜕𝑧
) =

𝜕

𝜕𝑧
. (𝜆𝑒𝑓𝑓,𝑓 .

𝜕𝑇𝑓

𝜕𝑧
) +  ℎ. 𝑎𝑠𝑓 . (𝑇𝑠 − 𝑇𝑓) + 𝑈. 𝑎𝑓𝑤 . (𝑇∞ − 𝑇𝑓) (1) 

(1 − 𝜀). (𝜌. 𝑐)𝑠.
𝜕𝑇𝑠

𝜕𝑡
=

𝜕

𝜕𝑧
. (𝜆𝑒𝑓𝑓,𝑠.

𝜕𝑇𝑠

𝜕𝑧
) + ℎ. 𝑎𝑠𝑓 . (𝑇𝑓 − 𝑇𝑠) (2) 

With 𝑎𝑠𝑓: specific area between solid and fluid (m2.m-3), 𝑎𝑓𝑤: specific area between fluid and external 

wall (m2.m-3), 𝑐 : heat capacity (J.kg-1.K-1), ℎ: heat transfer coefficient (W.K-1), 𝑢: interstitial velocity of 

the fluid (m.s-1), and 𝑈: overall heat loss coefficient between the fluid and the outside (W.m-2.K-1). The 

subscripts 𝑓 and 𝑠 denote respectively the fluid and the solid phases. The thermophysical properties 

of fluid and solid, assumed constant, are evaluated at the average operating temperature. 

The boundary conditions are an imposed temperature at the fluid inlet. A zero second derivative 

condition is applied to the temperature at the tank outlet for the fluid and the solid. These equations 

are discretised by a first order centred formulation in space and first order discretisation in time.  
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The physical model computes the exergy efficiency of the TES. This indicator compares the thermal 
exergy extracted from the TES by the HTF during the discharging step and the thermal exergy supplied 
to the TES by the HTF during the charging step. 

𝜂𝑒𝑥 =
− ∫ �̇� ∙ 𝛥𝑒𝑥

𝑡𝑑𝑠

0 
∙ 𝑑𝑡

∫ �̇� ∙ 𝛥𝑒𝑥
𝑡𝑐

0 
∙ 𝑑𝑡

 (3) 

Where 𝑡𝑑𝑠 and 𝑡𝑐 are respectively the duration of the discharging and charging processes, �̇� the HTF 

mass flow rate and 𝛥𝑒𝑥 the specific exergy changes experienced by the HTF when passing through the 

storage tank, considering temperature change and pressure drop. 

For a given HTF/TESM pair, this model evaluates the energy behaviour and performance of the 
thermocline tank according to five design parameters and two dimensionless variables (external and 
internal shape factors) (Table 1), characterising the tank geometry and the filler particle size (Rebouillat 
et al., 2019). This dynamic model was validated using experimental data provided by the manufacturer 
(Rebouillat et al., 2019). 
 

2.2.2 Life Cycle Assessment 
LCA, a normalised method (ISO 14040 (International Organization for Standardization, 2020)), is 

carried out from “cradle-to-grave” to determine environmental impacts. The International reference 

Life Cycle Data system (ILCD) 2016 mid-point method is used to calculate the LCA indicators using 

EcoInvent v3.7.1 database (Ecoinvent, 2023) and OpenLCA v1.10 software (OpenLCA, 2023). The 

analysis of the reference TES is based on Lalau’s works (Lalau et al., 2016, 2021). The TESM elaboration 

is based on (Lalau et al., 2021; Le Roux et al., 2022a). In order to fairly compare the environmental 

benefits of a system to the reference case, the same service is specified. The functional unit is defined 

as follows: 

Provide a discharged thermal energy equal to that of the reference tank (𝑸𝒅𝒔
∗ = (𝑸𝒅𝒔)𝑬𝑺 =

𝟏𝟓𝟔𝟕 𝒌𝑾𝒉𝒕𝒉/𝒄𝒚𝒄𝒍𝒆), during its lifespan (25 years) considering 2 cycles a day and 15 days off a year 

for maintenance. 

Where 𝑄𝑑𝑠
∗  is the real discharge thermal energy computed by the physical model and (𝑄𝑑𝑠)𝐸𝑆 the 

discharge thermal energy of the reference tank, Eco-Stock®. 

Four environmental indicators, each representing a general impact category, are selected from 

previous LCA of CSP plants and TES (Burkhardt et al., 2011; Heath et al., 2010; Lalau et al., 2016): 

- Cumulative Energy Demand (CED) in 𝑀𝐽𝑒𝑞, related to energy impact category, 

- Global Warming Potential (GWP) in 𝑘𝑔𝐶𝑂2_𝑒𝑞, related to climate change impact category, 

- Abiotic Depletion Potential of mineral, fossil and renewable resources (ADP) in 𝑘𝑔 𝑆𝑏𝑒𝑞, 

related to resource depletion impact category, 

- Particulate matter (PM) in 𝑘𝑔 𝑃𝑀2.5𝑒𝑞, related to human health impact category. 

These four indicators are normalised according to European standards (ADEME, 2023; Institute for 

Environment and Sustainability (Joint Research Centre) et al., 2014). They are expressed in terms of 

European capita annual impact (ca.year). The sum of these normalised indicators defines the 

environmental optimisation criterion. 

2.2.3 Life Cycle Cost Assessment 
The economic model computes three indicators: Life Cycle Costs (LCC), Net Present Value (NPV) and 

LCOE. The first one represents the total amount of costs involved over the lifespan of the system 

(Azoumah, Tossa, and Dake 2020). The NPV is equal to the sum of the annual cash flows discounted to 
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the equivalent value at the start date of the project (Aussel et al., 2018). The LCOE is the selling price 

that cancels the NPV. In other words, it is the minimum energy selling price that ensures profitability. 

It can be expressed as a function of the LCC (Aussel et al., 2018) and the annual heat production 𝐻 (in 

𝑘𝑊ℎ𝑡ℎ/𝑦𝑒𝑎𝑟): 

𝐿𝐶𝑂𝐸 =
𝐿𝐶𝐶

𝑈𝑆𝑓(𝑁, 𝑖∗). 𝐻
 (4) 

Where 𝑈𝑆𝑓 is the Uniform Series factor. This factor adds up the annual revenues and discounts them 

over the lifespan (N years) of the system, using the discount rate and the inflation rate. The 𝐿𝐶𝐶 

includes capital (or investment), maintenance, operation, replacement and dismantling costs, and 

residual value. All costs are detailed in (Le Roux et al., 2022b). According to the functional unit 

previously defined for carrying out the LCA, the annual heat production is constant over the lifespan 

of the TES and worth 1 096 𝑀𝑊ℎ𝑡ℎ/𝑦𝑒𝑎𝑟. Thus, minimising the LCOE means maximising the NPV and 

minimising the LCC. Table 3 depicts the different economic parameters considered in this LCCA. 

Table 3: Economic and energy parameters of the LCCA 

Parameters Value 

Economic 

Interest rate (% per year) 10 

Inflation rate (% per year) 3 

Real interest rate 𝑖∗ (% per year) 6.8 

Uniform Series factor 𝑈𝑆𝑓  11.87 

Lifespan of the TES 𝑁 (years) 25 

Energy Heat selling price 𝑃𝑡ℎ (𝑐€/𝑘𝑊ℎ𝑡ℎ) 6.02 (France) 

 

2.2.4 Optimisation algorithm 
The optimal values of both shape factors are determined by minimising the objective function 𝒇𝒐𝒃𝒋, 

which includes the three criteria (𝜂𝑒𝑥, 𝐿𝐶𝐴 and 𝐿𝐶𝑂𝐸): 

{

𝑓𝑜𝑏𝑗(1) = 1 − 𝜂𝑒𝑥 = 𝑁𝑒𝑥

𝑓𝑜𝑏𝑗(2) = 𝐿𝐶𝐴                   

𝑓𝑜𝑏𝑗(3) = 𝐿𝐶𝑂𝐸                

 

 

(5) 

submitted to the constraint defined by the LCA. For each TESM, the optimisation problem then writes: 

𝑀𝑖𝑛(𝒇𝒐𝒃𝒋) 𝑤𝑖𝑡ℎ (𝑄𝑑𝑠)∗ = (𝑄𝑑𝑠)𝐸𝑆     (6) 

 

Two determinist algorithms has been tested and compared: Particle Swarm Optimisation (PSO) and 

Genetic Algorithm (GA). For similar computation times, similar solutions were obtained for both 

algorithms. Since GA is well documented and widely used for energy systems, it was chosen to perform 

this multi-objective optimisation. Multi-criteria GA, based on the Non-Dominated Sorting Genetic 

Algorithm II (NSGA-II) method (Deb et al., 2002), available in Matlab® is used to solve this problem. 

Default parameters provided in Matlab® scripts are kept (Table 4). Varying the population size from 25 

to 200 individuals, the number of generations from 100 to 1000 and the crossover and mutation 

probabilities of ± 0.1, similar results were obtained.  
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Table 4: Tuning parameters and settings for multi-criteria genetic algorithm 

Parameters Value 

Population size 50 

Number of generations 400 

Initialisation mode Random 

Selection process Tournament (size of 4) 

Crossover probability 0.8 

Mutation probability 0.2 

Mutation distribution index 20 

 

2.3 Multi-criteria optimisation: several filler materials case 
The multi-objective optimisation consists of determining not only the best tank geometry, but also the 

best filler material to be implemented in the TES device among the seven TESM presented in Table 2. 

To select  the best compromise solution,  from the Pareto set obtained three successive steps are 

applied: 

- Step 1: Optimising the geometry for each single material, as described in (Le Roux, et al. 

2022b) This initial step provides seven Pareto sets.  

- Step 2: Building a single Pareto set encompassing the seven materials. From the union of the 

seven Pareto sets obtained previously, only the non-dominated solutions are retained, 

defining a single Pareto set. 

- Step 3: Application of the decision-making method. TOPSIS method with weights deduced 

from Shannon entropy is finally applied.  

The step 3 combines two methods to determine the most desirable solution among those retained in 

the single Pareto set. “Technique for Order Preference by Similarity to Ideal Solution” (TOPSIS) (Hwang 

and Yoon, 1981) method is one of the simplest and of the most widely used methods in the energy 

sector. It is used for the selection step and ranks the different solutions from best to worst. The 

weighting step is derived from Shannon entropy (Shannon, 1948) to avoid subjective choices by the 

decision maker. Like TOPSIS, it is one of the most widely used methods and was therefore chosen for 

this study.  

2.3.1 Step 1: Combination of the seven Pareto sets 
Figure 1 shows the three-dimensional (3D) Pareto sets obtained by the multi-objective GA for bauxite 

(circles), alumina (plus signs), CFA (diamonds), CHCA (stars), cofalit (triangles), basalt (crosses) and 

quartzite (pentagons). The same marking code will be used in the following sections. Each Pareto set 

obtained with the multi-objective GA of Matlab® includes 18 optimal solutions among the initially 

generated population of 50 individuals.  
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Figure 1: 3D Pareto sets of exergy/LCA/LCOE optimisations with genetic algorithm for seven fillers 

Machined ceramics (bauxite and alumina) have the worst environmental and economic performance. 

Recycled ceramics and natural rocks have the smallest ecological footprint and the lowest LCOE. As for 

the exergy efficiency (1 − 𝑁𝑒𝑥), it is similar for all the TESM (between 96.1 and 98.0%). 

2.3.2 Step 2: Selection of non-dominated solutions 
All the Pareto sets, bounded by the single-criterion optimisations, are combined and only the non-

dominated solutions are shown in Figure 2. The resulting Pareto set contains 32 solutions. Only 

solutions with waste material or basalt appear. Therefore, machined ceramics are not interesting for 

industrial application in a thermocline TES. The ideal (𝐼) and nadir (𝑁) global solutions are marked in 

this figure. 

   

Figure 2: 3D Pareto set of non-dominated solutions for the seven filler material tested 
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2.3.3 Step 3: Decision-making method TOPSIS combined with Shannon entropy 
The next steps are to determine the trade-off solution in the Pareto optimal set (Figure 2). The criteria 

are first linearly normalised (Shih et al., 2007) according to eq (A.3) :  

�̃�𝑒𝑥,𝑖 =
𝑁𝑒𝑥,𝑖

∑ 𝑁𝑒𝑥,𝑖
32
𝑖=1

=
𝜂𝑒𝑥,𝑖

∑ 𝜂𝑒𝑥,𝑖
32
𝑖=1

 

𝐿𝐶�̃�𝑖 =
𝐿𝐶𝐴𝑖

∑ 𝐿𝐶𝐴𝑖
32
𝑖=1

 

𝐿𝐶𝑂�̃�𝑖 =
𝐿𝐶𝑂𝐸𝑖

∑ 𝐿𝐶𝑂𝐸𝑖
32
𝑖=1

 

 

(7) 

This normalisation method gives the three sets �̃�𝑒𝑥,𝑖, 𝐿𝐶�̃�𝑖 and 𝐿𝐶𝑂�̃�𝑖 the properties of a probability 

(∑ �̃�𝑒𝑥,𝑖
32
𝑖=1 = 1, ∑ 𝐿𝐶�̃�𝑖

32
𝑖=1 = 1 and ∑ 𝐿𝐶𝑂�̃�𝑖

32
𝑖=1 = 1) with the same mean value equal to 1/32. 

Therefore, the Shannon entropy associated with each set of normalised criteria can be calculated 

(Appendix A.1), according to eqs (A.2) : 

𝑆𝑒𝑥 = −
1

ln 32
∙ ∑ �̃�𝑒𝑥,𝑖 ∙ �̃�𝑒𝑥,𝑖

32

𝑖=1

= 0.9937 

𝑆𝐿𝐶𝐴 = −
1

ln 32
∙ ∑ 𝐿𝐶�̃�𝑖 ∙ ln 𝐿𝐶�̃�𝑖

32

𝑖=1

= 0.9980 

𝑆𝐿𝐶𝑂𝐸 = −
1

ln 32
∙ ∑ 𝐿𝐶𝑂�̃�𝑖 ∙ ln 𝐿𝐶𝑂�̃�𝑖

32

𝑖=1

= 0.9997 

 

(8) 

The value of the Shannon entropy gives an account of the magnitude of the variation specific to each 

criterion. According to the definition (eq (8)), note that if all the values of a same criterion 𝑐𝑖 are 

identical, the normalised values would be �̃�𝑖 = 1/32 for all solutions, which would lead to 𝑆𝑐 = 1. This 

value corresponds to the maximum Shannon entropy, since it is relative to a uniform distribution (all 

solution 𝑐𝑖 are equiprobable, their probability of occurrence being equal to 1/32). A value less than 1 

means that the set of solutions is distributed over a certain interval, as shown in Figure 3.  

 

Figure 3: Optimal normalised non-dominated solutions compared to an equiprobable solution �̃�𝑖 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (colour black 
for criterion 𝑐𝑖 , green for exergy criterion, red for LCA criterion and purple for LCOE criterion) 

An entropy value moving away from unity reflects a widening of the range of variation of the criterion. 

In this example, 𝑆𝑒𝑥 < 𝑆𝐿𝐶𝐴. < 𝑆𝐿𝐶𝑂𝐸. The weights are then calculated according to the Shannon 
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entropy, giving preference to the most dispersed criterion. Consequently, the exergy weight should be 

higher than those of the LCA and LCOE criteria, as the following calculations show (eq (A.1)): 

𝜔𝑒𝑥 =
1 − 𝑆𝑒𝑥

3 − 𝑆𝑒𝑥 − 𝑆𝐿𝐶𝐴 − 𝑆𝐿𝐶𝑂𝐸
= 0.733 

𝜔𝐴𝐶𝑉 =
1 − 𝑆𝐴𝐶𝑉

3 − 𝑆𝑒𝑥 − 𝑆𝐿𝐶𝐴 − 𝑆𝐿𝐶𝑂𝐸
= 0.228 

𝜔𝐿𝐶𝑂𝐸 =
1 − 𝑆𝐿𝐶𝑂𝐸

3 − 𝑆𝑒𝑥 − 𝑆𝐿𝐶𝐴 − 𝑆𝐿𝐶𝑂𝐸
= 0.039 

 

(9) 

The weight resulting from the Shannon entropy give much less weight to the economic criterion. 

Indeed, the linearly normalised solutions are grouped around an average value (1/32 = 0.031 in Figure 

3) for the LCOE. On the other hand, the exergy weight is greater than 0.7. The Shannon entropy gives 

less weight to criteria whose solutions are clustered around its mean value. In the case of virtual 

criterion 𝑐 in Figure 3, the weight should be null as 𝑆𝑐 = 1. 

The weights resulting from the Shannon entropy are then applied to the normalised solutions: 

�̂�𝑒𝑥,𝑖 = 𝜔𝑒𝑥 ∙ �̃�𝑒𝑥,𝑖,  𝐿𝐶�̂�𝑖 = 𝜔𝐴𝐶𝑉 ∙ 𝐿𝐶�̃�𝑖,   𝐿𝐶𝑂�̂�𝑖 = 𝜔𝐿𝐶𝑂𝐸 ∙ 𝐿𝐶𝑂�̃�𝑖 

and lead to the normalised and weighted Pareto front in Figure 4. The ideal 𝐼 and nadir 𝑁 solutions are 

respectively of coordinates (�̂�𝑒𝑥,𝑚𝑖𝑛, 𝐿𝐶�̂�𝑚𝑖𝑛 , 𝐿𝐶𝑂�̂�𝑚𝑖𝑛) et (�̂�𝑒𝑥,𝑚𝑎𝑥, 𝐿𝐶�̂�𝑚𝑎𝑥, 𝐿𝐶𝑂�̂�𝑚𝑎𝑥). The TOPSIS 

method can now be applied. This method selects the optimal solution with the farthest distance from 

the nadir point 𝑁 and the shortest distance from the ideal point 𝐼 (Hwang and Yoon, 1981). The 

selected solution 𝑆 is the one with the lowest ratio 
𝑆𝑁

𝑆𝐼+𝑆𝑁
, 𝐼 and 𝑁 being respectively the ideal 

(�̂�𝑒𝑥,𝑚𝑖𝑛, 𝐿𝐶�̂�𝑚𝑖𝑛, 𝐿𝐶𝑂�̂�𝑚𝑖𝑛) and nadir solutions (�̂�𝑒𝑥,𝑚𝑎𝑥, 𝐿𝐶�̂�𝑚𝑎𝑥 , 𝐿𝐶𝑂�̂�𝑚𝑎𝑥) (Figure 4). This 

solution as the best compromise is located on the left of the CHCA Pareto set (𝜂𝑒𝑥 = 0.980; 𝐿𝐶𝐴 =

57.7 𝑐𝑎. 𝑦𝑒𝑎𝑟; 𝐿𝐶𝑂𝐸 = 3.35 𝑐€/𝑘𝑊ℎ𝑡ℎ). This solution has one of the best exergy efficiency while the 

LCOE is one of the worst. 

  

Figure 4: 3D normalised and weighted Pareto set of non-dominated solutions for the seven filler material tested and 
selection of the best compromise solution with TOPSIS 
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2.4 Overall structure of the multi-criteria optimisation of thermocline storage 
The links between the physical, environmental and economic models and the decision-making 

methods are shown in Figure 5. The three models, the optimisation algorithm and the decision-making 

method TOPSIS have been detailed in (Le Roux et al., 2021; Le Roux et al., 2022b). To improve the 

selection of the best compromise solution, the Shannon entropy is combined with TOPSIS method. In 

TOPSIS method, a subjective weight is assigned to each criterion which is a problem. The Shannon 

entropy allows us to get rid of this subjective choice. For a HTF/TESM pair, Pareto set is obtained using 

the Matlab® multi-objective GA. The seven Pareto sets related to the seven HTF/TESM pairs studied 

are then combined. From this new set, a single Pareto set is constructed, consisting only of non-

dominated solutions. TOPSIS combined with weight based on Shannon entropy (TOPSIS/Shannon) is 

then applied to select the best geometry for all the HTF/TESM pairs. The selected solution presents 

the best trade-off between geometry, particle size and filler material. 

  

Figure 5: Overall structure of the multi-criteria optimisation with the inputs and outputs of each model 

The objectives of this study are threefold. In a first step, seven filler materials are compared in the Eco-

Stock® thermocline storage according to the three criteria: MC (bauxite, alumina), recycled ceramics 

(CFA, CHCA, cofalit) and natural rocks (basalt, quartzite) (Figure 1). In a second step, the seven Pareto 

fronts obtained are combined to form a single Pareto set by eliminating the dominated solutions 

(Figure 2). In this way, the geometry tank, the particle size and the filler material will be optimised at 

the same time. Finally, the Shannon entropy is used to improve the process of selecting the best trade-

off solution. With this method the weight of each criterion is determined in an objective way 

(paragraph 2.3.3). Then, TOPSIS is applied with these weights (Figure 4). 

3 Results and Discussions 
This part was divided into two sections. Firstly, the performance and the geometry of the optimal 

solution selected in section 2.3 were studied. The optimisation variables of the non-dominated 

solutions selected from the seven Pareto sets obtained were investigated. Then, the performance of 

the optimised Eco-Stock® tank and the reference tank were compared. 

3.1 Optimisation variables of the non-dominated solutions 
As shown in section 2.3.3, MC and quartzite are rejected from the global Pareto set. MC are less 

attractive, particularly because of their high cost and high environmental impact. Quartzite has a low 

volumetric heat capacity 𝜌𝑐𝑝 which does not allow it to be interesting in thermocline storage. The 

same ranking was done only on the thermophysical properties, environmental impact and cost of the 

fillers (Table 2) in Appendix A.2.  
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The non-dominated solutions shown in Figure 4 for the three optimisation criteria are presented in 

Figure 6 as a function of the two geometric optimisation variables (shape factors). The external shape 

factors (ratio diameter/length) ranged from 0.7 to 2.1, indicating an evolution of the storage geometry 

from tapered to square to stocky. The stocky tank shape was obtained when the exergy efficiency was 

high, while the tapered tank shape was preferred for low environmental impact and low costs, as 

explained in (Le Roux et al., 2021; Le Roux et al., 2022b). The internal shape factors ranged from 0.0023 

to 0.0058. This indicated that the particle diameters remain small for each optimised solution, with 

less than 1 cm. It seems that the tapered the tank geometry, the larger the particle diameters. In 

addition, the non-dominated selected solutions with basalt had larger internal shape factors than 

those with CHCA, then cofalit and finally CFA. As a result, the smaller particle sizes were obtained for 

the solutions with CFA. The selected trade-off solution had an external shape factor of 1.11 and an 

internal shape factor of 0.003. This leads to a square shape with a small particle diameter. 

 

Figure 6: Shape factors of non-dominated solutions for the seven filler material tested 

3.2 Comparison of the optimal solution and the Eco-Stock® reference tank 
In this section, the selected solution was compared to the Eco-Stock® reference storage. The 

dimensions of the two TES are shown in Figure 7a. The green and blue colours refer respectively to the 

Eco-Stock® and the CHCA selected solution. Remind that both tanks provide the same thermal energy 

during one discharged step. The same colour codes will be used in the following section. The CHCA 

solution had a stocky shape whereas the Eco-Stock® was tapered. The particle size of the optimised 

tank was reduced compared to that of the reference tank. As for the storage volume, it was 25% higher 

for the optimised storage (9.3 vs 8.9 m3). This is because the thermophysical properties of CHCA are 

poorer than those of bauxite, in particular the volumetric heat capacity 𝜌𝑐𝑝 which is 26% lower (Table 

2). 
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Figure 7: Comparison of the tank dimensions and particle size (a), temperature limit profiles of Eco-Stock® and CHCA 
selected solution (b) 

The exergy, environmental and economic performance was then compared between these two 

storage systems. The temperature limit profiles of the periodic stationary behaviour are illustrated on 

Figure 7b as a function of their normalised length obtained for the reference tank and the CHCA 

solution. The temperature limit profiles of the optimised solution were steeper than those obtained 

for the Eco-Stock®. As a result, the stratification was better and the thermocline zone was thinner for 

the CHCA solution than for the reference tank. The boundaries of the temperature limit profiles 

represent the active zone of the storage. Due to better stratification, it was larger for the optimised 

solution (76.1%) and smaller for the Eco-Stock® (56.8%). The reference tank uses bauxite as filler 

material while a recycled ceramic (CHCA) is preferred for the optimised selected solution. Despite 

higher exergy utilisation rate, the volume of the optimised tank was greater than the reference TES for 

the same amount of delivered exergy (Figure 7a). Indeed, the product (𝜌𝑐𝑝) is higher for bauxite (Table 

2), indicating that bauxite can store more energy than CHCA. 

The ecological footprint by life cycle phases and environmental indicators was compared for both 

configurations (reference and CHCA tanks) in Figure 8. The total environmental impact of the system 

was reduced by 13% for the optimised solution. The GWP, ADP and PM indicators were reduced 

respectively by 37, 10 and 25%. The use of recycled ceramic, such as CHCA, decreased the ecological 

impact of the elaboration of the filler (Table 2). The transport and end-of-life phases were also reduced 

by 20% thanks to the use of filler obtained from waste. Nevertheless, the environmental impact of 

these phases was very low. The use phase was 6 ca.year greater in the case of the optimised solution. 

This is due to the pressure drops, which were more than twice as high in this configuration due to the 

increased tank volume. As a result, the energy consumed by the fan was 119% higher. Despite the 

increase in the ecological impact of the use phase, the reduced impact of the TESM elaboration allowed 

the environmental footprint of the selected solution to be reduced by 9 ca.year compared to the Eco-

Stock® reference. 
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Figure 8: Comparison of LCA normalised indicators by phases of the life cycle for the Eco-Stock® and the CHCA selected 
solution 

Figure 9 illustrates the three economic indicators for the reference tank and the CHCA selected 

solution. The economic performance of the CHCA solution was not as good as those of the Eco-Stock®. 

The small decrease in LCC and LCOE (1% reduction) resulted in a 5k€ reduction in NPV. The low cost of 

recycled ceramics allowed to limit the cost of TESM by 10k€ compared to machined ceramics such as 

bauxite. Despite this reduction, the increase in the pressure drop of the system led to an increase in 

the fan cost by 12k€. As a result, the LCOE of the CHCA selected solution reached 3.4 c€/kWhth, which 

was 44% lower than the natural gas price in France. 

 

Figure 9: Comparison of economic indicators for the Eco-Stock® and the CHCA selected solution 

The exergy and environmental performance was improved by using the optimised solution instead of 

the Eco-Stock®. Indeed, the exergy efficiency was slightly higher, with an increase of 2.5% compared 

to the reference tank. The environmental impacts were reduced by 13% due to the very low impact of 

CHCA compared to bauxite. The economic performance was slightly better with a 1% reduction. 

Despite the larger tank volume for the optimised solution, the TESM cost was negligible because CHCA 

are cheaper than bauxite. However, the CHCA solution used more pumping energy than the Eco-

Stock®. Fan and operational costs were higher. These differences compensated each other, resulting 

in a close LCOE for the Eco-Stock® and the optimised solution: between 3.3 and 3.4 c€/𝑘𝑊ℎ𝑡ℎ. Note 

that the Eco-Stock® was initially designed on an economic criterion. The main results of both tanks are 

given in Table 5.  
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Table 5: Dimensions and performance of the reference tank and the CHCA optimised solution selected by TOPSIS/Shannon 

 Ref. tank Optimised solution 

HTF/TESM Air/Bauxite Air/CHCA 

𝐷𝑡 (𝑚) 1.92 2.36 

𝐿𝑡  (𝑚) 3.08 2.12 

𝐷𝑠 (𝑚𝑚) 29.9 7.0 

𝜂𝑒𝑥 95.6% 98.0% 

𝐿𝐶𝐴 𝑡𝑜𝑡. (𝑐𝑎. 𝑦𝑒𝑎𝑟) 67 58 

𝐿𝐶𝑂𝐸 (𝑐€/𝑘𝑊ℎ𝑡ℎ) 3.3 3.4 

 

4 Conclusion 
Multi-objective optimisation is performed on an industrial thermocline TES according to exergy, 

environmental and economic criteria. A one-dimensional two-phase model is applied to compute the 

exergy efficiency. The environmental footprint is determined by LCA and each TES system provide the 

same discharge exergy over its lifetime. The LCOE is calculated by LCCA. Seven different solid fillers are 

compared: machined ceramics (bauxite and alumina), recycled ceramics obtained from waste (CFA, 

CHCA and cofalit) and natural rocks (basalt and quartzite). This study seeks to find the optimal 

geometry of the thermocline tank, through two dimensionless variables, for a given HTF and filler 

material. The Matlab® multi-objective GA is used to solve the problem. A Pareto set of optimised 

solutions is obtained for each filler material tested. The seven 3D Pareto sets are combined to form a 

single Pareto set with non-dominated solutions. In order to select a compromise solution from this set, 

the TOPSIS method is combined with Shannon entropy to avoid subjective choice of the weights. The 

conclusions are summarised as follows: 

1. The Shannon entropy favours the most dispersed criterion. Consequently, the impact of the 

exergy criterion is reinforced in this study with the highest weight associated with this 

criterion.  

2. The application of the TOPSIS method leads to select the CHCA as the best compromise filler 

material tested in thermocline TES application. This result differs from the ranking of the same 

filler on their properties (Appendix A.2). As a result, it is important to consider the process in 

order to properly classify the filler materials. 

3. This optimised solution has a square shape, whereas the Eco-Stock® is tapered. The particle 

diameter is significantly smaller for the CHCA selected solution, which leads to a better exergy 

efficiency. The storage volume of the optimised solution is a quarter larger due to the lower 

volumetric heat capacity of CHCA compared to bauxite. Despite this increase and so the energy 

consumed by the fan, the ecological footprint of the optimised storage is smaller than the Eco-

Stock®. Indeed, the use of a material obtained from waste enables the ecological footprint of 

the TESM elaboration to be limited, which compensates the increased impact of the use phase 

of the system. As for the economic indicators, they are similar between both storages. The 

CHCA selected thermocline TES is very interesting from an exergy, environmental and 

economic point of view for heat storage. This confirms that materials derived from waste are 

very interesting to use as fillers for a heat storage application. 

The methodology developed could be used by Eco-Tech Ceram to provide the best configuration of 

Eco-Stock® for the site operation. Future studies will focus on improving the existing methodology 

through an uncertainty study. In addition, the methodology will be implemented on other thermocline 

storage systems. A packed-bed storage system designed for the Andasol CSP plant in Spain (Fasquelle 
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et al., 2018) could be optimised in the same way, in order to apply the presented methodology to a 

solar application. In order to study the influence of operating temperatures, the storage of a tower 

CSP plant can also be optimised. The methodology could also be extended to an entire CSP plant, or to 

other energy applications. 

Nomenclature 

𝑎 Specific area (𝑚2 ∙ 𝑚−3) 

𝑐 Heat capacity (𝐽 ∙ 𝑘𝑔−1 ∙ 𝐾−1) 

𝐷 Diameter (𝑚) 

𝑒𝑥 Specific exergy (𝐽 ∙ 𝑘𝑔−1) 

𝐹𝑒 External shape factor (−) 

𝐹𝑖 Internal shape factor (−) 

𝐻 Annual heat production (𝑘𝑊ℎ𝑡ℎ/
𝑦𝑒𝑎𝑟) 

ℎ Heat transfer coefficient (𝐽 ∙ 𝑘𝑔−1) 

𝑖 Interest or discount rate (% / 𝑦𝑒𝑎𝑟) 

𝐿 Length (𝑚) 

𝐿𝐶𝐴 LCA criterion (𝑐𝑎. 𝑦𝑒𝑎𝑟) 

𝐿𝐶𝐶 Life Cycle Cost (€) 

𝐿𝐶𝑂𝐸 Levelised Cost Of Energy criterion 
(𝑐€/𝑘𝑊ℎ𝑡ℎ) 

�̇� Mass flow (𝑘𝑔 ∙ 𝑠−1) 

𝑁 Lifetime of the system (𝑦𝑒𝑎𝑟) 

𝑁𝑒𝑥  Number of exergy destruction (−) 

𝑃 Energy price (€/𝑘𝑊ℎ𝑡ℎ) 

𝑄 Energy capacity (𝐽)  

𝑆 Shannon entropy (−)  

𝑇 Temperature (𝐾) 

𝑡 Time (𝑠) 

𝑢 Interstitial velocity of the fluid, i.e. 
Darcy velocity (𝑚 ∙ 𝑠−1) 

𝑈 Overall heat loss coefficient between 
the fluid and the outside (𝑊 ∙ 𝑚−2 ∙ 𝐾−1) 

𝑈𝑆𝑓 Uniform Series factor (−) 

 

Greek symbols 

∆ Variation (−) 

𝜀 Porosity (−) 

𝜂 Efficiency (−) 

𝜆 Thermal conductivity (𝑊 ∙ 𝑚−1 ∙ 𝐾−1) 

𝜇 Dynamic viscosity (𝑃𝑎 ∙ 𝑠) 

𝜌 Density (𝑘𝑔 ∙ 𝑚−3) 

𝜏𝑢 Utilisation rate (−) 

𝜔 Weighting factor (−) 

 

Subscripts and superscripts 

* Real 

∞ Outdoor or free condition 

     ̂ Normalised and weighted criterion 

     ̃ Normalised criterion 

c Charge 

ds Discharge  

ES Eco-Stock®  

eff Effective 

ex Exergy 

f Fluid 

fw fluid/wall 

H Hot 

L Low 

LCA LCA 

min Minimum 

max Maximum 

s Solid 

sf solid/fluid 

TESM Filler material 
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t Tank 

th Thermal 

 

Abbreviations 

ADP Abiotic Depletion Potential of mineral, 

fossil and renewable resources (𝑘𝑔 𝑆𝑏𝑒𝑞) 

CED Cumulative Energy Demand (𝑀𝐽𝑒𝑞) 

CFA Ceramic from Fly Ashes 

CSP Concentrating Solar Power 

GA Genetic Algorithm 

GWP Global Warming Potential (𝑘𝑔𝐶𝑂2𝑒𝑞
) 

HTF Heat Transfer Fluid 

ILCD International Reference Life Cycle 
Data system 

LCA Life Cycle Assessment  

LCC Life Cycle Costs (€) 

LCCA Life Cycle Cost Assessment 

LCOE Levelised Cost Of Energy (𝑐€/𝑘𝑊ℎ𝑡ℎ) 

MC Machined Ceramic (bauxite) 

NPV Net Present Value (€) 

NSGA-II Non-Dominated Sorting Genetic 
Algorithm II 

PM Particulate Matter (𝑘𝑔 𝑃𝑀2.5𝑒𝑞) 

PSO Particle Swarm Optimisation 

TES Thermal Energy Storage 

TESM Thermal Energy Storage Material 

TOPSIS Technique for Order Preference by 
Similarity to Ideal Solution  
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A. Appendix 

A.1. Shannon entropy 
Shannon entropy quantifies the uncertainties of the information source, through a discrete probability 

distribution (Shannon 1948). The greater the entropy of an optimisation criterion (eq (A.2)), the lower 

its weight will be (eq (A.1)) (Jing et al. 2018). This weight 𝜔𝑗 is determined for each criterion 𝑗 by: 

𝜔𝑗 =
1 − 𝑆𝑗

𝑜 − ∑ 𝑆𝑗
𝑜
𝑗=1

;    (𝑗 = 1, … , 𝑜);    𝑤𝑖𝑡ℎ ∑ 𝜔𝑗 = 1

𝑜

𝑗=1

 (A.1) 

where 𝑆𝑗 is the Shannon entropy of criterion 𝑗. It is expressed as: 

𝑆𝑗 = −
1

ln 𝑛
∙ ∑ �̃�𝑖𝑗 ∙ ln �̃�𝑖𝑗

𝑛

𝑖=1

   𝑤𝑖𝑡ℎ 1 ≤ 𝑗 ≤ 𝑜 (A.2)  

�̃�𝑖𝑗 =
𝑚𝑖𝑗

∑ 𝑚𝑖𝑗
𝑛
𝑖=1

 (A.3)  

A.2. Example: Selection of the best filler with TOPSIS/Shannon method 
To illustrate the TOPSIS method combined with Shannon entropy based weights, the seven filler 

materials are ranked considering three criteria: effusivity, environmental footprint and cost. From the 

values presented in Table 6, linear normalization is applied (eq (A.3)) and lead to the evaluation matrix 

presented in Table 6. 

Table 6: Evaluation matrix after normalisation (step 1) 

 
Step 1: linear Normalisation 

𝜖�̃� 𝐿𝐶�̃� 𝐶�̃� 
Bauxite 0.163 0.394 0.340 

Alumina 0.190 0.403 0.604 

CFA 0.131 0.052 0.011 

CHCA 0.117 0.050 0.011 

Cofalit 0.162 0.097 0.011 

Quartzite 0.132 0.002 0.011 

Basalt 0.105 0.001 0.011 

 

Then, the normalised criteria are objectively weighted with the Shannon entropy. The entropy of each 

criterion is calculated according to eq (A.2) and the weights are determined (eq (A.1)). Table 7 shows 

the terms 𝜖�̃�  ∙ ln 𝜖�̃�, 𝐿𝐶�̃�  ∙ ln 𝐿𝐶�̃� and 𝐶�̃�  ∙ ln 𝐶�̃�, the Shannon entropy and the weighting factor 

associated with each criterion. 

Table 7: Shannon entropy of solutions and evaluation matrix after weighting (step 2) 

 
Shannon entropy Step 2: Weighting 

𝜖�̃�  ∙ ln 𝜖�̃� 𝐿𝐶�̃�  ∙ ln 𝐿𝐶�̃� 𝐶�̃�  ∙ ln 𝐶�̃� 𝜖�̂� 𝐿𝐶�̂� 𝐶�̂� 
Bauxite -2.96 10-1 -3.67 10-1 -3.67 10-1 1.79 10-3 1.53 10-1 2.04 10-1 

Alumina -3.15 10-1 -3.66 10-1 -3.05 10-1 2.08 10-3 1.57 10-1 3.63 10-1 

CFA -2.67 10-1 -1.54 10-1 -5.07 10-2 1.44 10-3 2.03 10-2 6.80 10-3 

CHCA -2.51 10-1 -1.50 10-1 -5.07 10-2 1.28 10-3 1.94 10-2 6.80 10-3 

Cofalit -2.95 10-1 -2.26 10-1 -5.07 10-2 1.77 10-3 3.76 10-2 6.80 10-3 

Quartzite -2.67 10-1 -1.42 10-2 -5.07 10-2 1.44 10-3 9.07 10-4 6.80 10-3 
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Basalt -2.37 10-1 -9.03 10-3 -5.07 10-2 1.15 10-3 5.32 10-4 6.80 10-3 

Shannon entropy 9.90 10-1 6.61 10-1 4.75 10-1 

Weight 1.09 10-2 3.88 10-1 6.01 10-1 

 

With the matrices normalised and weighted, the TOPSIS method can now be applied. The ideal and 

nadir solutions are determined. The Euclidian distances of each solution from the ideal 𝑆𝐼 and nadir 

𝑆𝑁 solutions, as well as the ratio 𝑅 =
𝑆𝑁

𝑆𝑁+𝑆𝐼
 between the distances are calculated. Finally, the solutions 

are ranked in ascending order according to the value of the ratio 𝑅. Table 8 shows the values of the 

Euclidian distances, the ratio of distances and the ranking assigned to the solutions. Quartzite is 

selected with this decision-making method as the best compromise filler material based on its 

properties. The resulting ranking was as follows: quartzite, basalt, CHCA, CFA, cofalit, bauxite and 

alumina. Consequently, the natural rocks or the recycled ceramics with the cheapest cost and the 

smallest ecological footprint seem to be best alternative than MC. 

Table 8: Euclidian distances to ideal (SI, 2nd column) and nadir (SN, 3rd column) solutions, and ranking of solutions (4th and 
5th columns) 

Step 3: Decision-making method 𝑆𝐼 𝑆𝑁 𝑅 Ranking 

Bauxite 0.249 0.159 0.389 6 

Alumina 0.389 0.001 0.002 7 

CFA 0.020 0.381 0.951 4 

CHCA 0.019 0.382 0.953 3 

Cofalit 0.037 0.375 0.910 5 

Quartzite 0.001 0.389 0.998 1 

Basalt 0.001 0.389 0.998 2 
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