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Dynamics and computed torque control stability
of an under-actuated tendon-driven manipulator

Nicolas J.S. Testard, Christine Chevallereau, and Philippe Wenger

Nantes Université, Centrale Nantes, CNRS, LS2N, 44300 Nantes

Abstract. Tendon-driven manipulators have interesting properties such
as reduced inertia and a better behavior w.r.t. physical interactions
through the possible modulation of their stiffness. A 2-tendon-driven
manipulator inspired by the bird neck is studied in this paper. The ma-
nipulator is remotely actuated with two tendons and only one output
variable can be controlled. When applying a computed torque control,
we observe that the control of one joint is stable but the control of the
other joint is unstable. The goal of this paper is to provide a physical
interpretation of this behavior. Instability is explained through the study
of the dynamics in open-loop. Experiments are conducted that confirm
the aforementioned behavior.
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1 Introduction

New manipulators can be developed through bio-inspiration. Examples of robots
inspired by animals are elephant trunk arms [1], octopus’ robots [2] or bird-neck
manipulators [3]. Birds use their neck like humans use their arms. The bird neck
architecture makes it possible to perform fast and complicated motions. Unlike
the elephant trunk, the bird neck has a spine. Musculoskeletal systems can be
modeled with cables and springs that play the role of tendons and ligaments
and rigid bars that play the role of bones [4]. Actuation is done by varying the
length of the tendons. Bird neck inspired robots can be modelled as a stack
of anti-parallelogram joints (X-joints) that represents the motion between two
vertebrae and each joint is actuated through two tendons [5]. These robots are
thus fully-actuated and each joints can be controlled independently. However,
it has been observed in [6] that the use of under-actuated robots can increase
the size of the feasible workspace. Moreover, under-actuation allows the robot
to shape around obstacles [7]. A planar, under-actuated robot with 6 joints and
4 tendons was presented in [8]. Because of the under-actuation, however, its
control is challenging as dynamic control laws can be unstable, [8] proposes an
unusual control law in the operational space without proof of its stability. To
understand the difficulties of the control of such robots, this article studies the
dynamics of the simplest under-actuated manipulator made of X-joints. The
simplest manipulator is made of two X-joints and is actuated by two tendons.
The results are then extended to manipulators with more X-joints. We apply
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the computed torque control that linearizes the dynamic equation [9] to under-
actuated systems [10]. This control has been applied on other under-actuated
manipulators like the parallel robot of [11] or the cable-driven parallel robot of
[12]. As observed in [13] for under-actuated cable-driven parallel robots, it will
be seen that the computed torque control can be unstable. This instability can
be explained by the fact that an under-actuated system can be a non minimum
phase system [14] [15] depending on the studied control degree of freedom [16]
[17]. However, the source of instability of under-actuated manipulators control
has not been investigated further.

The purpose of this article is to explain the instability of the computed torque
control through the dynamic properties of the manipulator. The dynamics of
the system in open loop and the stability of the computed torque control for the
control of each joint is presented through experiments.

2 Presentation of the manipulator

The simplest manipulator is composed of 2 X-joints as shown in Fig. 1. Each
X-joint is composed of 4 bars, where b (resp. L) is the length of the top and base
bars (resp. of the diagonal bars). The top bar of the first joint is the bottom bar
of the second joint. The configuration of each joint i is defined by the angle αi

between the bottom bar and the top bar.

Fig. 1: Under-actuated tendon-driven manipulator

The resulting manipulator is actuated by 2 tendons, shown in blue and red
in 1. These tendons are pulled by remote motors through winches (not shown in
the figure). One tendon pulls the two joints on one side while the other tendon
pulls on the opposite side. Pulleys are used to route the tendons while reducing
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friction. We have added springs in parallel to the tendons in order that the robot
has a stable equilibrium configuration at rest. All springs are identical, so that
the equilibrium configuration at rest is [α1, α2] = [0, 0].

3 Manipulator dynamics

The manipulator dynamics can be expressed by [3]:

Mα(α)α̈+ c(α, α̇) + g(α) = Z(α)f − fr(α, α̇) (1)

where:

– α = [α1, α2]
⊤

– Mα(α) is the mass matrix of the manipulator,
– g(α) is the effect linked to the potential energy of the springs,
– c(α, α̇) are the Coriolis and centrifugal effects,

– Z(α) = − ∂l
∂α

⊤
, where l = [lL, lR]

⊤ are the tendons length, is the matrix
that links the tension in the tendons to the torques they produced around
the joint,

– f = [fL, fR]
⊤ is the vector tendon tensions,

– fr(α, α̇) is a viscous friction in the joints of the form

fv

(
2
(

∂ϕ
∂α

)2

+ 2
(

∂ψ
∂α

)2
)
α̇ where ϕ = [ϕ1, ϕ2]

⊤ and ψ = [ψ1, ψ2]
⊤ (see Fig.

1)

Gravity is neglected in this paper.
It is apparent from the expression of Z(α) that the left (resp. right) tendon

applies positive (resp. negative) torques on both joints since the derivatives of
its length is negative (resp. positive). To visualize the dynamics behaviour of the
robot, a simulation is made. Starting from a stable equilibrium configuration
α = [0, 0]⊤ associated to f = [10, 10]⊤N, a step of tension in the first tendons is
applied, and the force became f = [20, 10]⊤N.
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Fig. 2: Open loop simulation
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Figure 2 shows the joint evolution. The data are those of our prototype:
b = 0.05 m, L = 0.1 m; mass of the top (resp. diagonal) bars is 162 g (resp. 26
g); spring stiffness is 600 N/m. fv is taken as 0.02 N.m/(rad/s). This friction
dissipates the energy and allows the mechanism to reach a steady position after
a perturbation.

The robot starts from a stable equilibrium configuration α = [0, 0]⊤ and
moves towards a stable configuration α = [14.0◦, 12.4◦]⊤ after some oscillations
(see Fig. 2, left). At the beginning, however, we observe that α1 starts in the
opposite direction before converging towards the desired position (see Fig. 2,
right).

To study this initial opposite acceleration, we define:

B(α) = M−1
α (α)Z(α) (2)

that links the tension in the tendons to the acceleration they produce on the
joint.

Mα =

(
M11 M12

M12 M22

)
, Z =

(
Z1L Z1R

Z2L Z2R

)
, B =

(
B1L B1R

B2L B2R

)
, (3)

The computation of any static configuration with positive tension such that
g(α) = Z(α)f (Eq. (1)) leads to α1 ≈ α2 (note that α1 = α2 only if the
radius of the pulleys was neglected). In these configurations, thus, we can define
ZL = Z1L ≈ Z2L ≥ 0 and ZR = Z1R ≈ Z2R ≤ 0. The computation of the
components of matrix B with the above approximation is (for X equal to L or
R):

B1X ≈ (M22 −M12)ZX/det(Mα)

B2X ≈ (M11 −M12)ZX/det(Mα)
(4)

In the static equilibrium configurations, we also observe that M11 ≥ M12 ≥
M22. Thus, B1L and B2R are positive while B1R and B2L are negative. The
tendons produce an acceleration in the same direction as the torque for the
second joint, but the first joint will have an acceleration in the opposite direction.

This unusual phenomenon of the opposite initial acceleration is therefore due
to the particular actuation with tendons that pulls the joints on one side, as well
as to the inertia properties of the manipulator. It is a classical property of non
minimal phase systems.

4 Manipulator control

4.1 Computed torque control

The manipulator is controlled through two tendons. Since tendons can pull only,
one degree of freedom is used to ensure that the tendons remain always in tension.
Thus, only one degree of freedom can be controlled in the manipulator. This
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degree of freedom q can be one of the joints or the end-effector orientation
γ = α1 + α2 for example. The computed torque control based on the dynamics
of the manipulator is used to control it.

The equation (1) can be rewritten as:

α̈+M−1
α (α) (c(α, α̇) + g(α) + fr(α, α̇)) = B(α)f (5)

The dynamics of the controlled variable q = α1 (resp. q = α2, q = γ) is
obtained by projecting on the matrix J = [1, 0] (resp. J = [0, 1], J = [1, 1]):

q̈ + JM−1
α (α) (c(α, α̇) + g(α) + fr(α, α̇)) = JB(α)f (6)

Once the dynamics of one joint is expressed, a control of the the joint ac-
celeration is performed. For a desired motion of one joint qd, the close-loop
acceleration is chosen as:

w = q̈d + kp(q
d − q) + kd(q̇

d − q̇) + ki

∫
(qd − q)dt (7)

where kp, kd and ki are the constants of a PID correction.
Finally, the tendon tension providing the expected accelerations is:

f = (JB(α))
+
wc + λNJB (8)

where
wc = w + JM−1

α (α) (g(α) + c(α, α̇) + fr(α, α̇)) (9)

and NJB is the null space vector of JB and λ is scalar chosen such that the
tension in the tendons are minimal and greater than a desired minimal tension.

The scheme of the control law is presented Fig. 3.

qd

q̇d

q̈d

w = q̈ + kp(q
d − q)

+kd(q̇
d − q̇) + ki

∫
(qd − q)dt

wc = w + JM−1
α (α)

(c(α, α̇) + g(α) + fr(α, α̇))
f = (JiB(α))+ wc

+λNJB

Manipulator: (α, α̇, α̈)
q = Jα
q̇ = Jα̇

Computed torque control

Fig. 3: Computed torque control scheme

4.2 Control stability

We have observed in simulation that, for any manipulator configuration and any
desired trajectory, the control of α2 is stable while the control of α1 is unstable
with the computed torque control.
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It turns out that the dynamics of α1 actuated by the tendons is a non-
minimum phase system. To observe it, the transfer function of the linearized
dynamic system can be studied. The linearization around a static point α0 with
tension f0 of Eq. (1) gives:

Mα̈∗ +Dα̇∗ +Kα∗ = Z(α0)f∗ (10)

where α∗ = α − α0, f∗ = f − f0, M = Mα(α0), D =
∂fr

∂α̇
(α0, 0) and K =

∂(g − Zf)

∂α
(α0).

This equation can be expressed in the Laplace domain [18]:

(Ms2 +Ds+K)A∗ = Z(α0)F ∗ (11)

where s is the Laplace variable, A∗ (resp. F ∗) is associated to α∗ (resp. f∗)
in the Laplace domain. The transfer function between the Laplace variable Q∗
associated to q and F ∗ is therefore H(s) = J(Ms2 + Ds + K)−1Z(α0). Each
term of H(s), which describes the evolution of q in open-loop for a tension f , is a
fraction of polynomials. The roots of the numerator are the zeros of the transfer
function while the roots of the denominator are the poles.

For any robot configuration associated to positive tendon tensions and fric-
tion, we have found that the zeros of the transfer functions between α1 and f
have a positive real part. Instead, the zeros of the transfer functions between α2

or γ and f have all a negative real part.
When the computed torque control is applied on the system, these zeros

become poles. Thus, the control of α1 has poles with a positive real part in the
transfer function of the control law, making the control unstable. In contrast,
the control of α2 and γ is stable since all the poles have a negative real part.

5 Experiments

This phenomenon is similar to results in continuum robotics like a flexible bar
actuated by a rotational joint: in [19], for example, there is an uncontrolled degree
of freedom which is due to the flexibility of the bar. However, the instability met
in our system is not cause by flexibility. Indeed, we still meet the same instability
when the springs are removed.

Experiments have been carried out on the prototype of Fig. 4. Encoders
measure the angle ψ1 for the first joint and the angle ϕ2 of the second joint such
that the angles α can be computed. The tendons are wounded around winches.

A first open-loop experiment is presented in Fig. 5. A step of tension from
f = [10, 10]⊤N to f = [20, 10]⊤N is imposed in the tendons.

At the beginning, α1 goes in the opposite direction as in the simulation of
Fig. 2. The rest of the motion is similar to the simulation Fig. 2. The oscillations
are different because the friction has not been well identified and is different from
the one used in simulation (non-linear dry friction was not taken into account).
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Fig. 4: Prototype
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Fig. 5: Joint angles evolution of the open loop experiments

Figures 6 and 7 show a control of α2 and α1 with the computed torque control
where a minimal tension of 10 N is imposed. We observe in Fig. 6 that there is
a good tracking of α2 trajectory while α1 is left uncontrolled.

In Fig. 7, instead, the control of α1 is unstable. Indeed, α1 first is moving
toward the desired value and then diverges in the opposite direction. Saturation
in the tendons tension were applied to limit the motion and to avoid tendon
rupture. As explained in Section 4.2, the opposite acceleration in α1 at the be-
ginning is the cause of this divergence. Indeed, a positive acceleration is desired
in this motion and the use of matrix B by the computed torque control pro-
duces tension in the tendons associated to a negative torque (the right tendon
is pulling, generating an initial positive acceleration of α1). The corresponding
static equilibrium for a negative torque being a negative angle, the manipulator
goes in the opposite direction. The term αd

1 − α1 in the PID correction of w1
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Fig. 6: Joint angles and tension evolution for the control of α2
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Fig. 7: Joint angles and tension evolution for the control of α1
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Fig. 8: Joint angles, γ and tension evolution for the control of γ

increases the positive desired acceleration, which makes the robot diverge until
tendon tensions reach their limits.

Figure 8 shows the control of γ, which turns out to be stable. It can be
explained by the fact that for any static configuration of the manipulator,
|B2X | > |B1X |. Thus, the second joint has a greater absolute acceleration than
the first joint and the acceleration of γ is in the same direction as the produced
torque.
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6 Generalization to several joints

The same study can be conducted on manipulators with a higher number of
joints and still actuated through two tendons pulling on both sides of the joints.
For manipulators with 3, 4, 5 and 6 joints, we have analyzed the stability like
in Section 4.2. It turns out that only the control of the last joint is stable while
the control all the other joints is unstable. The control of γ is also stable, which
would indicate that the part of the last joint is preponderant as compared to
the others in the control stability, or that there is a compensation between the
unstable joints. These results have been confirmed by simulation but are not
illustrated here for lack of space.

7 Conclusion

An under-actuated manipulator with two degrees of freedom and its dynamics
have been presented. Between two static configurations after a perturbation in
the tendon tensions, the two joints have opposite accelerations. The first joint
goes first in the opposite direction instead of directly converging to its static
position like the second joint. Because of this, the control of the first joint angle
is unstable with the computed torque control. Indeed, the tensions producing
an acceleration of α1 in one direction correspond to a static position of α1 in
the opposite direction. This phenomenon is similar to the one observed in some
continuum robots. The difference with these robots is that this phenomenon
is due to the actuation and the inertia properties of the manipulator and not
to flexibilities. More generally, for manipulators with two tendons and several
joints, only the last joint can be stabilized with the computed torque control
scheme.

The stability of the computed torque control can be studied for other con-
trolled variables such as the position of the end-effector. The dynamic study
and application of the computed torque control can also be conducted on under-
actuated manipulators with more tendons.
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