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Abstract—The high prevalence of work-related musculoskeletal
disorders (WMSDs) could be addressed by optimizing Human-
Robot Collaboration (HRC) frameworks. In this context, this
paper proposes a methodology for ergonomically effective task
delegation and HRC for manufacturing applications based on
two hypotheses. The first hypothesis states that it is possible to
rapidly quantify ergonomically professional tasks using motion
data from a few wearable sensors and then delegate the high-
risk tasks to a collaborative robot. The second hypothesis is
that, compared to typical HRC frameworks involving physical
interaction, the ergonomics and safety of an HRC scenario can be
enhanced by combining gesture recognition and pose estimation.
These remove unnecessary motions that could expose operators
to ergonomic risks, decrease the amount of physical effort, and
make the robot aware and responsive to the presence and gestures
of the operators. The methodology is evaluated by optimizing
the HRC scenario of a television manufacturing process, yet
it is described how it can be reconfigured for other industrial
scenarios. The effect of the temporal and spatial adaptation on the
operator’s range of motion was analyzed through three separate
experiments. The effectiveness of HRC is measured through the
standard key performance indicators (KPIs); however, to evaluate
the collaboration and required physical demand, two KPIs are
proposed in this paper. These are the rate of spatial adaptation
and the rate of reduction in the operator’s motion. The results
demonstrated that the methodology enhanced the ergonomics and
efficiency of the production process. First, the robot was delegated
two tasks identified as the most ergonomically dangerous for
human operators. Then the optimized HRC achieved an average
rate of spatial adaptation of 29.37% and a decrease in operator
movement of 28.8% across 14 subjects compared to HRC
frameworks that do not include spatial and temporal adaptation.

Index Terms—Human-Robot Collaboration, Wearable sensors,
Ergonomics, Gesture recognition, Pose estimation, Assembly.
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I. INTRODUCTION

Industry 4.0 has resulted in a rise in research in the
field of Human-Robot Collaboration (HRC). Robotic agents
are therefore being integrated into the work routine, not to
take the position of human operators but to assist them in
accomplishing complicated and physically demanding tasks.
However, it is critical to consider ergonomic factors to de-
sign HRC installations properly and prevent operators from
developing work-related musculoskeletal disorders (WMSDs).
Thus, current approaches for task delegation and collaboration
between operators and robots must be improved by considering
ergonomics to maximize operators’ comfort and production
efficiency in industrial co-production cells. With this in mind,
a methodology for ergonomically effective task delegation
and HRC is proposed in this paper. This methodology is
founded on two hypotheses. The first hypothesis (H1) is that
by utilizing a reduced amount of motion capture (MoCap) data
from wearable inertial sensors, operators’ movements can be
accurately measured, allowing for a more thorough ergonomic
analysis of their actions and facilitating task delegation when
implementing HRC frameworks. The ability to record accurate
measurements for ergonomic analysis is essential as it provides
quantitative measures of operators’ performance. The second
hypothesis (H2) is that gesture recognition used for temporal
adaptation and pose estimation for spatial adaptation enable
a more natural and ergonomic HRC. The reason is that only
motions that are convenient for the operators are performed,
avoiding unnecessary movements that may expose human
operators to ergonomic risks. Gesture recognition is one of the
methods used to achieve contactless communication between a
robot and a human operator. It can be defined as the process of
transforming movements into a form that a machine can easily
interpret. On the other hand, spatial adaptation is the process
through which the robot adjusts its movements according to



the anthropometric characteristics of each operator. Including
human pose estimation enriches the robot’s perception and
enables its spatial adaptation in the HRC. Thus, the robot
can assist operators in reducing their range of motion and
physical effort necessary to fulfill their professional duties. Fig.
1 illustrates the 2-step methodology proposed in this paper for
ergonomically optimizing an industrial HRC scenario. First,
wearable inertial sensors are used to conduct an in-depth
analysis and ergonomic evaluation of professional tasks for
task delegation. The proposed HRC then employs an RGB
camera in egocentric vision and a frontal RGB-D camera for
real-time gesture recognition and pose estimation, respectively.
The methodology is evaluated based on its application to
an actual television (TV) manufacturing process. Following,
Section II discusses state of the art in ergonomic analysis using
MoCap data and HRC frameworks. Section III explains the
methodology for ergonomically evaluating professional tasks
and the results obtained. Next, Section IV details the HRC
framework and the calculated KPIs. Finally, Section V presents
the conclusion and future work.

II. STATE OF THE ART

The activities performed by operators in the industrial sector
are becoming more challenging and complex in order to meet
market demands within certain time limits, job specifications,
and budget constraints. Operators must go beyond their natu-
ral physical limitations to undertake repetitive jobs for long
periods to complete the required tasks. Being subjected to
such constant physical strain leads to WMSDs. Ergonomists
have developed a variety of methods for evaluating work-
related tasks. The methods based their analysis on theoretical
knowledge of human physical limitations and abilities indi-
cated by known standards (e.g., ISO 11226:2000 and EN 1005-
4). Popular methods are the Rapid Upper Limb Assessment
(RULA) [1], Rapid Entire Body Assessment (REBA) [2], and
European Assembly Worksheet (EAWS) [3]. To implement
these methodologies, the ergonomist observes an operator
executing the task under evaluation and annotates various body
part postures on a worksheet to estimate an score. Yet, because
these approaches rely on the ergonomist’s perception and
experience, scoring can be subjective and have inter-variability.
Previous studies have used biomechanical simulations to com-
pute ergonomic metrics (posture, physical effort, and energy
spent) [4], [5]. Nevertheless, adopting these analyses in in-
dustrial applications that demand rapid reconfigurability has
been hindered due to several factors [5], [6], [7]. These
include requiring specialized and costly equipment, frequent
calibration procedures, limited capture volumes, and substan-
tial installation and operational expenses. Thus, there is still
a need for methodologies that employ MoCap technologies
that are practical to implement in real-world settings and can
accurately estimate the ergonomic risk of any representative
set of manipulation actions performed in industry.

Collaborative robots are becoming increasingly common
as an automated solution for making workplaces more er-
gonomic, cost-effective, and flexible. As a result, early re-

search focused on creating HRC frameworks that physically
couple humans and robots. For example, some applications
are for co-carrying [8], [9] and co-manipulation [10]. How-
ever, most existing real-time HRC frameworks are developed
around the concept of human avoidance to assure safety,
i.e., preventing unintentional accidents between humans and
robots [11], [12]. A study that directly addressed human
ergonomic demands was done by Bestick et al. [13], who
investigated the most convenient robot configurations when
giving over an object to a human operator through offline
biomechanical simulations. A priori assumptions were made
regarding the cost function based on the distance of human
joints from the neutral position. Lorenzini et al. [14] and
Kim et al. [15] used overloading joint torque as a cost in the
offline simulation to optimize the human body configuration
in co-carrying and co-manipulation activities based on the
human body stability, task, and workspace conditions. Now,
the primary focus of ergonomics research lies in incorporat-
ing and applying evaluation methods effectively within work
environments without requiring offline biomechanical analysis
in laboratory settings. Therefore, it is crucial to explore the
potential use of user-friendly MoCap technologies that are
comfortable and do not disrupt daily work activities. Also,
future research should concentrate on designing methods for
distributing roles in HRC frameworks and others that facilitate
online planning and adjustment of robot movements. This
online planning and robot adaptation can be evaluated based
on Key Performance Indicators (KPIs) that consider ergonomic
risk factors. Previous research provided metrics that primarily
assessed the productivity of collaborative robots [16], [17]. For
instance, neglect tolerance (NT), concerned with how long
a human can ignore a robot, has been used to measure the
robot’s effectiveness in interacting with its operators. Another
standard indicator is the interaction effort (IE) which denotes
the time necessary to engage with the robot. The combination
of NT and IE produces the robot attention demand (RAD), a
dimensionless metric that quantifies the level of focus that
the robot requires from the operator. Finally, there is also
the measurement of the efficiency of the robot (ER), which
involves the time it takes for the robot to move in relation
to the total time of the whole routine. Consequently, to
measure the job quality of operators in HRC frameworks
online, rather than just their productivity performance, new
KPIs that consider human factors must be developed.

To summarize, practical and rapidly reconfigurable frame-
works with real-time data processing capabilities are necessary
to handle the industry’s ergonomics challenges while ensuring
productivity. This paper presents a methodology for creating
an ergonomic and reconfigurable HRC framework, following
up on the authors’ prior work while developing natural HRC
[18] and analyzing postural risk factors [19].

III. AUTOMATIC ERGONOMIC EVALUATION

This section describes the task delegation approach in which
real professional tasks are automatically evaluated using a
minimal set of inertial sensors.



Fig. 1: Pipeline for ergonomically optimizing industrial co-production cells with HRC.

A. Motion capturing of the television assembly scenario

For the initial study and recording of tasks performed on
a TV production line, the BioMed bundle motion capture
system from Nansense Inc. (Baranger Studios, Los Angeles,
CA, USA) was used. This system consisted of a full-body
suit composed of 52 IMUs strategically placed throughout
the body and hands. At a rate of 90 frames per second, the
IMUs were used to calculate the Euler joint angles of body
segments on the articulated spine chain, shoulders, limbs, and
fingertips. Wearable sensors were chosen for the ergonomic
evaluation because they provide more precise measurements
of the operators’ posture than optical MoCap systems such as
RGB cameras.

Two healthy adults, one male and one female, wore the
IMU-based suit during the MoCap recording session. The
recording took place on a real production line over the course
of an eight-hour shift, with the operators placing circuit cards
into the frame of TVs. The entire assembly procedure can be
broken down into four main tasks, each illustrated in Fig. 2.
The first task is grabbing a circuit card from a container (T1);
the second is taking a wire from a second container (T2); the
third involves connecting the card and wire and placing them
on the TV frame (T3); the fourth task corresponds to drilling
the cards on the TV frame (T4). The whole assembly was
recorded 108 times. Following the recordings, the MoCap data
was pre-processed offline before analysis. Low pass filtering
with a Butterworth filter with a cut-off frequency of 5hz was
used to reduce noise, and the common zero velocity update
algorithm was used to eliminate drift that occurred in some
iterations by electromagnetic interference. When the algorithm
detects a period of zero or near-zero velocity, it updates the
orientation and position of the subject to reduce accumulated
errors. The full details of the processing of the recordings are
given in [20].

B. Modeling of motion primitives for ergonomic evaluation

An automatic posture evaluation system was built to iden-
tify potentially hazardous postures in professional tasks. The
system is comprised of Hidden Markov Models (HMMs) that
learned to recognize motion primitives. The motion primitives
consist of small sequences of postures with varying ergonomic

(a) T1 (b) T2

(c) T3 (d) T4

Fig. 2: Professional tasks for TV assembly.

risk levels, according to EAWS evaluation. Based on the de-
tected motion, an ergonomic score is computed. For generating
the dataset with the motion primitives, MoCap recordings
were made in a laboratory. The neutral environment sessions
involved ten healthy individuals, three females and seven
males. None of them suffered from any musculoskeletal injury.
The protocol contained 28 different motion primitives, each
recorded three times. The motions can be classified into three
broad categories: those performed standing, those performed
while seated in a chair, and those performed while kneeling.
The small movements (≈ 4 seconds) progressed from com-
fortable to increasingly uncomfortable postures (raising arms,
bending forward, rotating the torso). Each motion has assigned
an EAWS risk score, ranging from 0.5 to 26.5. The higher the
ergonomic risk score, the greater the risk. In prior research of
these motion primitives, their spatiotemporal dynamics were
analyzed using a Gestural Operational Model (GOM) [19].
As a result, it was discovered that high recognition accuracy
can be achieved with only five inertial sensors. These sensors
are positioned on the lumbar spine, the left upper arm, the
right shoulder, the right upper leg, and the left forearm.
Consequently, the proposed system for evaluating professional
tasks only requires measurements from these five sensors.

C. Automatic postural evaluation of professional tasks

To conduct the ergonomic evaluation, the recordings of the
professional tasks are segmented into short windows of similar
duration to the motion primitives and then provided to the



TABLE I: Summary statistics of the EAWS scores.

Dangerous - 26.5 Tasks
EAWS scores

Mean σ Mode
EAWS T1 16.02 2.65 17.50
scoring T2 15.02 3.43 16.00

T3 10.76 3.68 8.50
Safe - 0.5 T4 11.50 3.19 12.50

automatic evaluation system. The resulting likelihoods indicate
the detected motion primitive. All motion primitives identified
throughout each activity are annotated and utilized to calculate
each task’s mode and average ergonomic score. The score
is determined using EAWS’s score calculations [3], and the
statistics are used to decide which tasks expose operators to
the higher risk.

D. Results and discussion of the ergonomic evaluation

Before segmenting professional tasks into motion primi-
tives, the 28 HMMs were trained using a left-right topology
with seven internal states that yielded the maximum recogni-
tion performance. Their performance was evaluated using the
all-shots approach and achieved an overall F-score of 95.03%,
precision 94.97%, and recall 95.30%. The assembly tasks
were then evaluated with the automatic evaluation system,
resulting in the EAWS scores illustrated in Table I. Table I
contains the mean, standard deviation, and mode of the scores
calculated for each task.

According to these results, the majority of iterations of
tasks T1 and T2 can be classified as medium-risk motions,
while iterations of tasks T3 and T4 are classified as low-
risk motions. For T1, the motion primitives detected most
frequently resembled motions in which the elbows are raised
above shoulder level while the torso is laterally bent. These
results are expected as operators must rotate and laterally
bend their torsos to retrieve a circuit card from a container.
Due to the container’s location, operators must also raise
their arms above shoulder level, as illustrated in Fig. 2(a).
The motion primitives detected for T2 corresponded more to
motions where there is both bending and rotation of the torso
and stretching of the arms. These results match T2, where the
operators bend to pick up a wire from a container and then
connect it to the card. The motion primitives detected for T3
and T4 were primarily torso rotations and working with arms
bent around 90◦. These motion primitives are visible in Fig
2(c) and 2(d). In these tasks, operators were only required to
slightly rotate their torso due to the constant movement of
the TV frame caused by the conveyor belt, but they did not
need to stretch their arms or strongly bend forward to reach
the TV frame. Since T1 and T2 involve assuming awkward
postures such as rotating the torso while bending forward
or raising the arms above shoulder level, they represent a
major ergonomic risk than T3 and T4. EAWS recommends
that, if possible, tasks with moderate risk must be redesigned;
otherwise, the risk must be controlled through other means.
Therefore, it is proposed to delegate T1 and T2 to the robot and

leave T3 and T4 to the operators. These results were compared
to those calculated by the factory’s ergonomist, who manually
calculated the ergonomic risk of each task using the Rapid
Entire Body Assessment (REBA) worksheet [2]. According to
the results of this study, this postural evaluation categorized
T1 and T2 as medium-risk tasks with a REBA score of 7,
which suggests redesigning the task to improve ergonomics.
On the other hand, T3 and T4 were given a score of 2, meaning
movements of low risk.

Consequently, the proposed task delegation approach that
automatically detects postural risk factors utilizing a reduced
set of inertial sensors was validated for this workplace sce-
nario. This analysis can be applied to other professional
tasks for rapid reconfigurability, just as it was done with TV
assembly tasks. First, the professional tasks to be evaluated
need to be recorded with the designated inertial sensors and
placed according to the standards of the International Society
of Biomechanics (ISB). Next, calculate the Euler angles of
each body part measured by each sensor. Then, segment the
data of the tasks into four-second windows, ideally with a
two-second overlap to cover the entire task. Finally, apply
the automatic postural evaluation to the segmented tasks,
which would indicate the motion primitives detected and
the estimated EAWS score. Depending on the nature of the
identified high-risk tasks, it is determined whether they should
be delegated to a collaborative robot or the production cell
should be redesigned. Additionally, the proposed approach for
task delegation can serve for high-frequency monitoring of
the operators, providing human ergonomists with quantitative
measures of the workers’ performance and postural risk de-
tected during the shift.

IV. OPTIMIZATION OF WORK-SPACE SCENARIO

Based on the results of the automatic ergonomic evaluation,
this section describes the integration of a collaborative robot
into the manufacturing process. To improve the interaction
of the collaborative robot and the operator and reduce the
operator’s range of motion, gesture recognition and pose
estimation modules were included. Three experiments were
conducted using the TV assembly scenario to evaluate the
proposed HRC framework using standard KPIs and two new
KPIs proposed in this paper.

A. Gesture recognition with 3DCNNs

According to the task delegation results, the assembling
routine is first divided into sub-tasks performed by the robot or
operators. 3D Convolutional Neural Networks (3DCNNs) are
used for the gesture recognition module in real-time, which
establishes a gestural communication between the operator
and the robot. As proven in recent research [18], gesture
recognition decreases production time in a real-life industrial
scenario and ensures workers use ergonomic postures.

3DCNNs were chosen since they are an end-to-end method
that can get as input RGB images without the prior extraction
of features like the case is for other methods, such as the
Hidden-Markov models. These networks were trained using



(a) G1:Start (b) G2: Green card
functioning

(c) G3:Place green
card

(d) G4: Screw green
card

(e) G5: Screw gold
card

(f) G6: End

(g) G7: Waiting (h) G8: Gold card
functioning

(i) G9: Place gold
card

(j) G10: Green card
not functioning

(k) G11:Gold card
not functioning

Fig. 3: Command gestures of the gesture recognition module.

a dataset consisting of command gestures adapted for TV
assembly and recorded with an RGB camera in an egocentric
view. The challenge with using egocentric data for recognition
is that the head and hands move in parallel but do not always
follow each other. Even if the hands are a significant part
of this module, they can be prominent within the frame but
can also be partly or even totally out of the main view.
Nevertheless, the added value of an egocentric perspective
is that the network will provide gesture recognition results
independent of the users’ anthropometric characteristics and
position in the environment.

To train the proposed network, a dataset was first created
from this particular HRC scenario, consisting of RGB images
recorded with a GoPro Black, placed with a headband on
the head of the human operator. The recording was made
at an 848x480 resolution and 20 frames per second. Con-
cerning the architecture of the 3DCNNs, it consisted of 6
convolution layers, with max-pooling and batch normalization
in between. The Adam optimizer was used with a learning
rate of 0.000001. To facilitate the real-time HRC, a sliding
window of 5 frames was used, as it was the one that gave the
best results among those of 10, 15, and 20 frames. For the
creation of the TV-assembly dataset, a group of 14 operators,
four females and ten males, were recorded performing six
gestures and five postures. Thus, there are 11 classes in total,
each corresponding to a unique command for the collaborative
robot, presented in Fig. 3. The objects involved are a TV
frame and two circuit cards: the power supply (PSU-gold card)
and the mainboard (chassis-green card). These gestures were
adapted for TV assembly, but they can be customized for other
scenarios by modifying the actions performed by the robot.

B. HRC for television manufacturing

For the proposed HRC scenario, the UR3 robotic arm
(Universal Robots, Odense, Denmark)is used. The external

parts that are used for grasping and releasing the circuit
cards are from ROBOTIQ (gripper: 2F-140 & force torque
sensor: FT-300-S). The Robot Operating System (ROS) is used
to control the robotic arm. Through a UDP communication
protocol, the robotic arm receives real-time ID messages
from the gesture recognition module. In the new routine, the
operator performs the start gesture (G1) to notify the robot
that the assembly routine starts. Next, the robot approaches
the card container, retrieves the initial green card, and hands
it to the operator in the pre-defined handover position. By
pressing the Force sensor, the operator releases the card and
verifies its functionality. If the card is functional, the operator
performs G2 and places it on the TV frame (G3), while the
robotic agent moves toward the card box to retrieve the gold
card. If the green card is not functional, the operator executes
G10 to notify the robot, which then brings a replacement green
card. When the robotic arm delivers a functional card, the
operator performs G2 and then places and screws the card on
the TV frame (G3 and G4). This procedure is repeated until
both the green and gold cards are placed on the TV frame.
Then, the human operator executes G11 to signal the routine’s
completion. Safety regulations for collaborative robotics are
followed according to standards (ISO 10218 and TS 15066).
The gesture recognition module is also designed with dual-
level control to ensure the operator’s safety in the HRC
scenario. More precisely, the robot receives the ID of the rec-
ognized gesture only after it has been correctly recognized for
20 consecutive time frames. This may raise concerns about any
latency observed during the TV assembly process. However,
it was observed that the time interval between capturing a
frame and its correct recognition was between 0 and 0.08 ms,
indicating no significant latency. The second level of control
was performed within ROS, where the robot accepted only
gestural IDs that corresponded to the assembly workflow as
defined by the routine. As a result, if an unintended incident
occurs, the operator retains full control as the robotic arm
strictly adheres to the routine.

The introduction of the robotic arm and a gesture recog-
nition module requires only minor torso rotations from the
human operator. To facilitate natural collaboration and assist
the operator in performing only ergonomically safe motions,
a posture estimation module is added that enables the robot
to spatially adapt to the operator. The methodology for pose
estimation and spatial adaptation of the robot is described
in detail in an earlier publication by the authors at [18].
The spatial adaptation refers to the fact that the robotic
arm does not place the cards in a fixed position but rather
adapts to the operator’s anthropometric characteristics, thereby
improving the operator’s posture. An Intel-RealSense RGB-
D camera is utilized to capture the operator’s upper body
for pose estimation and the robot’s spatial adaptation. The X
and Y axes of the camera are first aligned with the X and
Z axes of the robot. Then, the operator’s skeleton and the
position and velocity of the operator’s wrists are extracted.
The spatial adaptation then consists of the robotic arm tracking
the operator’s hand to approach it with a card when requested



TABLE II: Standard KPIs measured for each experiment.

Experiments Neglect tolerance Interaction effort RAD Efficiency of the robot
1. Physical interaction 97.47 (σ: 4.60) 13.53 (σ: 2.80) 0.12 (σ: 0.001) 25.90*
2. Gesture recognition 60.14 (σ: 4.20) 21.90 (σ: 3.10) 0.27 (σ: 0.001) 34.90*
3. Gesture recognition and pose estimation 76.73 (σ: 2.40) 28.33 (σ: 3.20) 0.26 (σ: 0.001) 30.85 (σ: 0.30)

TABLE III: Proposed KPIs to measure the collaboration of the robot with each operator.

KPI Operator
1 2 3 4 5 6 7 8 9 10 11 12 13 14

SA (%) 39.10 33.30 21.10 27.50 30.40 31.90 27.10 31.80 13.40 33.90 43.50 32.10 18.70 27.40
RiOM (%) 31.40 33.10 24.40 27.10 32.10 27.30 24.50 26.80 37.40 20.60 45.90 20.80 21.30 24.50

by the operator and when the hand is motionless and in an
accessible position for the robot.

C. Key performance indicators

To evaluate the HRC framework, NT, IE, RAD, and ER
were calculated, which essentially assess the interaction be-
tween the robot and the operator as well as their productivity in
the HRC. This paper introduces two new KPIs to evaluate the
physical demand required of the operator in the HRC. The first
refers to the percentage of robot spatial adaptation (SA) by
adding pose estimation, and the second is for determining how
much effort from the operator is reduced due to the gesture
recognition module; this KPI is designated as the reduction
in the operator’s motion effort (RiOM ). The KPI of robot
spatial adaptation represents the ratio of the distance covered
by the robot without spatial adaptation to the distance covered
when the robot adjusts to the operator-specified position. The
following formula is used to determine this KPI, where SA is
the spatial adaptation percentage:

SA(%) =
∥AHP −WP∥ − ∥PHP −WP∥

∥PHP −WP∥
(1)

By measuring the position of the robot’s ending point, it is
obtained the waiting point WP , which is the robot’s position
when waiting for the instruction of the operator to provide
a circuit card. The adapted handover position AHP is the
position where the robot gives the circuit card according to the
operator’s hand, using pose estimation. Finally, the pre-defined
handover position PHP is the position the robot leaves the
circuit card without pose estimation, fixed for all operators.
Centimeters are used to measure distances. The higher the
rate of adaptation, the more effort the operator had to put in
to reach the circuit card during the HRC scenario when there
was no spatial adaptation of the robot.

The second KPI quantifies the difference in operators’
motion before and after introducing gesture recognition. This
KPI is calculated as follows:

RiOM(%) =
∥MwoGR∥ − ∥MwGR∥

∥MwoGR∥
(2)

The position of the operator’s wrist is measured to calculate the
distance covered by the wrist while interacting with the robot.
MwoGR is the distance covered by the wrist when there
is no gesture recognition and the operator need to press the

robot’s force-torque sensor to continue the routine. MwGR
is the distance covered by the wrist when there is gesture
recognition and the operators only perform a gesture with their
hand to continue their routine. The higher the percentage of
reduction in distance, the greater the convenience for the user
in completing their routine with fewer physical movements.
Consequently, RiOM indicates the amount of effort reduced
by the operator as a result of gesture recognition.

D. Experimental results

In order to evaluate the HRC scenario in terms of col-
laboration and operator performance, 14 operators, who did
not participate in the creation of the training dataset, were
recorded performing the proposed routine in three separate
experiments. The 14 subjects consisted of seven males and
seven females, either right- or left-handed, ranging in height
from 1.60 to 1.90 meters.

The 3DCNNs were trained with the command gesture
dataset using the 80:20 approach for the gesture recognition
module. An F-score of 97.20% was achieved in recognizing
the 11 gestures after 40 epochs and 98.60% by using early-
stopping. For real-time recognition, the module presented a
delay of 0.8 seconds. The confusion matrix is illustrated in
Fig. 4, where it can be observed that the main false results
are among G4, which is the gesture where the human operator
screws the green card on top of the TV frame, and G7, where
the operator waits for the robot for the next card. The main
reason is the confusion caused by part of the frames from G4
where the operator had the hands down as in G7. When the al-
gorithm was deployed in real-time, for the collaboration of the
human operator with the robot, the challenge in the recognition
results was noticed between gestures G2 and G10, as well as
G8 and G11. The primary difficulty arises from the fact that the
TV frame contains edges that can be mistaken for the fingers
of the human operator. Additionally, it was observed that in
real-time scenarios, lightning conditions affect the recognition
results for the gestures mentioned above due to the reflection
of the light on the metallic TV frame. Nevertheless, despite
these difficulties, all 14 new subjects successfully completed
the collaboration procedure, indicating that the accuracy of
the gesture recognition module is sufficient even for users that
were not part of the training dataset.

The case of failed recognition was handled in two ways.
Firstly, the TV assembly routine consists of a specific se-



Fig. 4: Confusion matrix of the multi-class gesture recognition.

quence of gestures, and every class can be followed only
by one or two at most other classes. The collaborative robot
ignores recognition errors that do not follow the TV assembly
procedure. Second, suppose an incorrect gesture is identified
but is part of the normal assembly sequence. In that case, the
collaborative robot only considers recognition results of 100%
for 30 consecutive frames, which takes one second to compute.

Three experiments were conducted to assess the adaptation
of the robotic arm and the operator’s motion during each. In
the first experiment, gesture recognition and spatial adaptation
were disabled. Hence, operators were required to interrupt
their routine and inform the robotic arm of their current
action by pressing its force-torque sensor (vertically in order
to proceed to the next step or horizontally if the received card
is not functional). For the second experiment, only the gesture
recognition module was enabled, so the operators received the
circuit cards from a PHP . Finally, in the third experiment,
gesture recognition and spatial adaptation were enabled and
continuously provided information about the operators’ actions
to the robotic arm.

The KPIs NT, RAD, IE, and ER were calculated for each
experiment to evaluate the different HRC frameworks and
are given in Table II. However, for the proposed KPIs, SA
is primarily used to compare the first experiment (physical
interaction) with the third experiment (gesture recognition
and spatial adaptation with pose estimation), whereas RiOM
is used to compare the first experiment with the second
experiment (only gesture recognition). The measured SA and
RiOM for each operator are shown in Table III. Note that
the greater the percentage of SA, the more difficult it was
for the operator to receive the cards without spatial adaptation
enabled. This is because the PHP was not possible to be
convenient for every operator. For RiOM , the larger the
percentage, the better, as it indicates a greater reduction in
operator motion when gesture recognition is utilized.

(a) MwoGR: Press
robot to start

(b) MwGR: The robot
recognizes G7 to start

Fig. 5: TV assembly with and without gesture recognition.

E. Discussion

The four standard KPIs are designed to assess the ef-
fectiveness of the performance of a robot in an HRC sce-
nario. According to TableII, a larger value of NT indicates
that less information is being conveyed to the robot about
the operator’s actions and intentions, which is evident in
the experiment where only physical interaction takes place.
However, this limitation can be addressed by incorporating
gesture recognition and pose estimation modalities. RAD is
also displayed and reflects the robot’s ability to understand
and adapt to the operator. The implementation of gesture
recognition modality enhances the RAD because the operator
is able to interact with the robot not only explicitly but also
implicitly through the use of gestures. The efficiency of the
robot is determined by calculating the percentage of time
it spends in motion while executing a routine. In the first
and second experiments, the handover position is pre-defined,
and the duration of the motion of the robot remains constant
throughout the experiment; this is denoted by an asterisk (*)
in TableII. In this case, where the efficiency falls below 50
percent, it indicates that a single robotic arm can be utilized
to simultaneously handle two different product lines.

These standard metrics do not take into account the potential
benefits of different modalities of HRC at the operator’s
convenience. To address this gap, this paper proposes the
use of two new movement-based KPIs (SA and RiOM ). As
stated previously, collaborative robotics can improve opera-
tors’ working conditions and specifically contribute to pre-
venting WMSD. According to the results achieved using the
proposed HRC with gesture recognition and spatial adaptation,
Table III illustrated a consistent decrease in the physical effort
required of the operator. The spatial adaptation had the most
impact on subject 11, who required more physical effort than
the other subjects to reach the PHP . However, for subject 9,
the difference in effort between using the PHP or AHP was
the smallest, with a SA of 13.40%. Regarding RiOM , the
gesture recognition module helped reduce motion the greatest
for subject 9 and reduced motion by at least 20% for all
subjects. This reduction can be illustrated in Fig. 5, where
in Fig. 5(a), the operator was required to rotate his torso in
order to touch the robot’s sensor, which is located outside
the TV frame. In Fig. 5(b), the robot recognizes when the
operator has completed his task and can proceed to the next
action. The average rate of spatial adaptation and reduction in
operator motion was 29.37% and 28.37%, respectively, among
the 14 subjects.

These results proved hypothesis H2 as the collaborative



robot can adapt to human factors and aids in improving
ergonomics and efficiency, evidenced by the KPIs. Since the
collaborative robot would be assigned to the most dangerous
tasks, similar results could be expected for other assembly
processes. The operator would only need to perform command
gestures and safe tasks during the operation. The proposed
KPIs revealed motion variations across experiments, demon-
strating that they can be a relevant indicator to include in
the evaluation for measuring how physically demanding and
comfortable the installation is for the operators.

V. CONCLUSION AND FUTURE WORK

This paper presents a methodology for task delegation and
an HRC framework that maximize ergonomics and production
efficiency in a television co-production cell. For this work,
professional tasks performed on a television production line
were captured using a small set of wearable sensors. Then,
motion primitives with known ergonomic risks were detected
across the entire professional tasks to estimate the tasks’
ergonomic scores and identify the most dangerous ones. An
optimized HRC was then proposed, in which hazardous tasks
were delegated to the collaborative robot. The HRC scenario
was enhanced by applying gesture recognition for temporal
adaptation and pose estimation for spatial adaptation that
allowed the human operator to collaborate with the robot using
gestures while avoiding unnecessary movements that could
cause physical strain. Lastly, two novel KPIs are proposed
for measuring the physical demand required of operators
when collaborating with a robot. These can complement the
evaluation of HRC frameworks by considering not only the
production efficiency but also the ergonomics and job quality
of the operator.

Future research will focus on developing a frame-by-frame
risk prediction method. The system would be capable of
predicting future postures and their ergonomic risk. This type
of system may be advantageous for HRC for various reasons.
For example, the robot could provide preventive feedback to
operators or protect them from risks by actively assisting them
in adopting safer postures before and during a task.
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