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Abstract

This paper introduces RoCNet++, a point cloud registration method with

two main contributions, one concerning the design of a robust descriptor and

another concerning the estimation of the rigid transformation. First, to ro-

bustly capture the local geometric properties of the surface, i.e., each point is

characterised by all the triangles formed by itself and its nearest neighbours

in the 3D point cloud. The idea is to assist the learning of the descriptor by

introducing a priori information about interesting geometric properties such

as the invariance of triangle angles under rigid transformations. This local

triangle-based descriptor is integrated into the recently developed RoCNet

architecture for estimating the correspondences between source and target

point clouds. We then introduce the Farthest Sampling-guided Registration

(FSR), which relies on successive farthest point samplings to estimate the

global rigid transformation between 3D point clouds. The new proposed ar-

chitecture RoCNet++ has been evaluated in different configurations: clean,

noisy and partial data on both synthetic and real databases such as Model-

Net40, KITTI, and 3DMatch. RoCNet++ shows improved performances on
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these benchmark datasets in favourable and unfavourable conditions. Fur-

thermore, both the local triangle-based descriptor and the Farthest Sampling-

guided Registration (FSR) can be used in other registration algorithms.

Keywords: Point Cloud Learning, Registration, Geometric Descriptor,

Attention Mechanism, Pose Estimation

1. Introduction

3D point cloud registration is a fundamental step in many robotics and

computer vision tasks with applications in autonomous driving, visual ser-

voing, augmented reality and medical imaging.

Given two overlapping sets of unordered points, point cloud registration

aims to compute the rigid transformation that projects them onto each other.

This inevitably involves estimating the point-wise correspondences between

the two sets. Different methods attempt to solve this challenging step either

incrementally by minimising a predefined metric, as in standard algorithms

such as ICP [3] and RANSAC [5], or by estimating point cloud descriptors

followed by nearest neighbour search in the descriptor space, as in the fea-

ture learning methods PRNET [28] and SpinNet [1]. This type of method

aims to provide rigid transformation invariant features while dealing with

the disorder aspect of the point cloud and taking advantage of the local sur-

face properties. For example, PointNet [16] projects the input data into a

learned canonical space and uses a symmetric function to keep the output

invariant to the order of the input points. In the same spirit, the widely

used DGCNN [29] proposes to capture local properties between points by in-

troducing successive convolutional layers. They take as input graphs whose
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nodes are the K Nearest Neighbours (KNN) of each point. These graphs

are dynamically updated in each layer by searching for the new KNN in the

current feature space instead of the Cartesian coordinate space.

To learn the information on both local and global scales, most of the

recent methods feed the extracted features into a transformer module as in

DCP [27] and VRNet [37]. Different models build on the classical trans-

formers, adding richer geometric information such as the pairwise distances

and triplet angles encoded by GeoTransformer [18] and the surface normal

variations in RoCNet [23].

The features from the source point cloud are projected onto the target

point cloud to create a similarity matrix used in a matching module that finds

correspondences between the two point clouds. Sinkhorn algorithm [22] or

dual softmax [13] are often employed for this. Once correspondences have

been established, the transformation is usually computed through methods

like Singular Values Decomposition (SVD) as in MDGAT [21] or RANSAC

as in Predator [7]. Other methods predict point weights from the similarity

matrix and estimate the transformation using a soft SVD as done in [27]

or in SACF [30], where a skip-attention decoder is added to filter out false

matches.

In this paper, we introduce RoCNet++, an improvement on RoCNet [23],

with two main contributions. The first one is a local triangle-based feature

extractor that leverages the geometric properties of the point cloud, par-

ticularly the angle invariance of triangles under rigid transformation. This

involves aggregating the three angles of the triangles formed by each point

and its K nearest neighbours into a vector introduced into a simple Feed-
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Forward Neural Network (FFNN) to provide a highly discriminative repre-

sentation. This vector, combined with several high-level features well-known

in the literature, systematically improves their performances.

The second main contribution is the Farthest Sampling-guided Registra-

tion module, which estimates multiple rigid transformations given a set of

matched points by constructing multiple smaller subsets of points using a

sampling based on farthest point exploration. A rigid transformation is then

computed on each subset and the best one is selected according to the number

of inliers provided. Both contributions are evaluated on the point cloud reg-

istration problem using a well-established dataset, i.e., the ModelNet40 [28],

by integrating it into RoCNet [23], as shown in (Fig. 1). We also propose to

evaluate them on high-resolution point clouds by adopting the coarse-to-fine

matching strategy proposed by [18] on KITTI [6] and 3DMatch [35] datasets.

The various upgrades proposed showed significant impact making the

architecture more accurate in nearly all the performed experiments, scoring

impressive matching results on the clean data of ModelNet40 with over 99%

in three metrics: precision, accuracy and recall.

2. Related Work

2.1. 3D Point Cloud Descriptors

Hand-crafted 3D descriptors aim to capture local point cloud informa-

tion by incorporating various geometric characteristics such as distances,

angles, surface normals, and curvature. Authors in TPSH [14] have demon-

strated strong performance in terms of repeatability and robustness to noise

by employing trigonometric projections to encode both spatial and geometric
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feature statistics in histograms while maintaining high efficiency compared

to state-of-the-art methods. Learning-based methods emerged and became

widely used for different 3D analysis tasks. For instance, PointNet++ [17]

that improves PointNet [16] architecture, proposes a set of abstraction mod-

ules that capture multiple scales information by uniformly down-sampling

the input to obtain a set of centroids, grouping the points using the nearest

neighbours of each centroid and predicting a features vector based on a Point-

Net layer. LGR-Net [39] introduced a novel attention module that allows

combining local geometric attributes with the global point cloud topology

by weighting the contribution of the two to consider the local region shape

and thus ensures rotation-invariant features. Recent geometric registration

methods for both deformable scenes [13] and rigid scenes [18] adopted Kernel

Point Convolution (KP-Conv) [24] as a backbone taking advantage of its ef-

ficiency on large-scale data and its ability to simultaneously extract features

and down-sample the input point cloud.

RepSurf [19] is a recent method proposing two variants of surface repre-

sentation for point clouds using the second derivative from the Taylor series

to describe the local geometry of each point. The first version utilizes features

such as the normal vector, surface position, and normalized coordinates in

triangles formed by points and their nearest neighbours. The second version

proposes to learn a projection of the geometric features thanks to a Multi-

Layers Perceptron (MLP) followed by a pooling operation. The method

outperforms most of the state-of-the-art algorithms in segmentation, clas-

sification and 3D detection but exhibits limited robustness with noisy and

disordered data. Triangle-NET [32] introduces various triangle-based func-
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tions to embed local structures by measuring edge lengths, interior angles,

and surface normals at each vertex. These geometric features are transformed

into a latent representation using graph aggregation. The method showed

interesting robustness to noise and scale-invariance properties.

2.2. Registration

2.2.1. Iterative Methods

As most of the iterative algorithms for point cloud registration, Iterative

Closest Point (ICP) [3] contains two main stages: point-wise matching and

transformation estimation. ICP iteratively refines the estimated pose by al-

ternately assigning points from the source cloud to their nearest neighbours

in the target cloud and computing transformations using an SVD [3]. Recent

variants of ICP, such as Go-ICP [33] and Fast ICP [36], have introduced tech-

niques to enhance convergence speed and robustness to outliers while drawing

inspiration from the original ICP. The main drawback of iterative methods

is their sensitivity to initialization as they may converge to local minima. To

handle this limitation, authors in [12] have proposed to fuse learned features

and geometric features that are updated by repositioning the input point

clouds by a transformation estimated at each iteration. RANSAC [5] is an-

other commonly used iterative algorithm. It estimates the transformation

by randomly selecting subsets of correspondences at each iteration, trans-

forming the source cloud, and identifying inliers within a specified distance

threshold. The global transformation is determined using the subset with

the highest number of inliers. The authors of WSDesc [11] employ differen-

tiable voxelization to capture the local geometry. A voxel grid encodes in

each voxel the probability of containing at least one point. Its orientation is
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defined by a local reference frame as its scale is learned by the network.

2.2.2. Learning-based Methods

Many registration methods are now based on learning. For example, R-

PointHop [9] extracts point descriptor invariant under rigid transformation

using different neighbourhood sizes, thanks to a local reference frame (LRF)

defined for the point by its nearest neighbours. The authors of WSDesc [11]

employ differentiable voxelization to capture the local geometry. A voxel grid

encodes in each voxel the probability of containing at least one point. Its

orientation is defined by the LRF and its scale is learned by the network. The

method shows very interesting results on geometric registration benchmarks,

however, the point-to-voxel operation may lead to significant computation

costs for dense point clouds. DCP [27] and RTE [38] propose to use fea-

tures which are extracted with DGCNN [29] and enhanced using attention

mechanisms. A softmax applied to the dot product of these features leads to

the matching that is introduced in a differentiable soft SVD [15] to predict

the transformation. More recently, VRNet [37] which is built in the same

spirit, uses a correction-walk module to construct Rectified virtual Corre-

sponding Points (RCPs) having the shape of the source and the same pose

as the target. Although it demonstrated impressive results on ModelNet40,

experiments showed the method encountered more difficulties in very low

overlap and symmetric cases. Early 2023, RoCNet [23] introduces a surface

normal variations encoding transformer based on sinusoidal functions [25].

This encoding is fed to a transformer which also takes as input point-wise

features extracted with DGCNN. The matching is then solved as an optimal

transport problem using Sinkhorn [22] allowing RANSAC to estimate the
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transformation in a limited number of iterations. PRNet [28] learns jointly

keypoints detection, representation and matching and has been specifically

designed to manage occlusion partial-to-partial point cloud registration. Geo-

Transformer [18] detects superpoints and encodes their geometric structure

using pair-wise distances and triplet-wise angles. The matching is performed

by first searching the correspondence of super points before matching finer-

resolution dense points. The rigid transformation is then estimated in a

local-to-global fashion.

3. Proposed Method

The registration method described in this article introduces two major

improvements to the RoCNet [23] architecture, the first by adding a de-

scriptor based on triangles invariance properties and the second one on the

estimation of the rigid transformation between the point clouds using Far-

thest Sampling-Guided registration. An overview of RoCNet++ is depicted

in Figure 1.

3.1. Background: the RoCNet Algorithm

The prior method RoCNet [23] relies on the following three main modules.

First, given two point clouds to register X ⊂ R3×M and Y ⊂ R3×N , the

method utilizes the graph convolution based DGCNN [29] to extract high

dimensional features ΦX ⊂ Rd×M and ΦY ⊂ Rd×N for each point from the

two point clouds.

Second, a transformer is used to update features by applying successive

self-attention and cross-attention mechanisms thanks to the classical equa-
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Figure 1: Overview of the RoCNet++ pipeline.

tions, respectively:

ΦX
i =

∑
j=1

αij(Φ
X
j W

v) (1)

ΦX
i =

∑
j=1

αij(Φ
Y
j W

v) (2)

where Wv ∈ Rd×d is the learned projection matrix for values, ΦX
j and ΦY

j

represent the feature vectors of the jth point from the point cloud X and

Y in that order. In the case of self-attention, αij coefficients are computed

according to 3:

αij = softmax
j

Å
(ΦX

i W
s
Q)(Φ

X
j W

s
K + nX

i,jW
s
R)

T

√
d

ã
(3)

where Ws
Q, W

s
K and Ws

R ∈ Rd×d are the projection parameters for queries,

keys and normal-based embedding nX
i,j, d is the dimension of the features

ΦX
i . For cross-attention aggregation, αij are computed by:

αij = softmax
j

Å
(ΦX

i W
c
Q)(Φ

Y
j W

c
K)

T

√
d

ã
(4)
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where Wc
Q and Wc

K represent the projection parameters for queries and

keys. The self-attention mechanism uses a surface normals encoder inspired

by the frequency embedding introduced in [25]. The main motivation of

the authors is to design a robust descriptor that captures the connections

between points while being invariant to 3D transformations. Every couple of

points xi and xj are linked with a vector gxi,xj
embedding the variation of

their normal orientation ni and nj by sinusoidal functions whose frequency

explicitly depends on the vector indices as shown in the following:g2p
xi,xj

= sin
Ä

∠(ni,nj)

τ×100002p/d

ä
g2p+1
xi,xj

= cos
Ä

∠(ni,nj)

τ×100002p/d

ä (5)

where p corresponds to the current value index of gxi,xj
, τ is a normalisation

coefficient and d the dimension of the descriptor. A learned projectionWs
N ∈

Rd×d is applied to get a final embedding nX
i,j = gxi,xj

Ws
N .

Let us call fX
i and fY

j the final output features for the points xi ∈ X

and yj ∈ Y , respectively. Their cross projection gives the similarity matrix

S ∈ RM×N . As reported in [21], a matching module relying on the Sinkhorn

algorithm [22] estimates point-wise correspondences by incrementally nor-

malizing S thanks to the iterations detailed in (6) and (6)

Iteration n : S′
i,j = Si,j − log

∑
j exp(Si,j)

Iteration n+ 1 : Si,j = S′
i,j − log

∑
i exp(S

′
i,j) (6)

The final matrix will be called S̃. A mutual top score searching along the

two dimensions of S̃ is used to find the hard correspondences between points

which are used as input for a RANSAC [5] that estimates the rigid transfor-

mation within 500 iterations.
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3.2. Local Triangle-based Descriptor

The main idea developed in this work and illustrated in Figure 2, is to

take advantage of the invariance of triangle angles when subjected to rigid

transformations. Thus, whatever transformation is applied to a point cloud,

the triangles formed by 3 points before and after the transformation will have

exactly the same angles.

Figure 2: Triangle-based descriptor illustration for the point xi

Considering a point xi and its K nearest neighbours, the set of triples

defined from these K + 1 points and containing xi allows to construct Nt

triangles that capture the local surface structure. A discriminative and rigid

transformation invariant embedding of the point xi is formed by the three

interior angles of each triangle θn = (αn, βn, γn) with n ≤ Nt, thereby creating

the feature vector Θ̂i = {θ1, ...,θn, ...,θNt} ∈ RNt×3.

If the interior angles of the triangles remain invariant under rigid trans-

formations, they are also sensitive to noise and the smaller the triangles, the

more sensitive they are. For each xi, we have therefore decided to weight the

contribution of each triangle by its area using a softmax :

Wi = softmax
n

Å
1

2

∥∥xi − xn1
i

∥∥∥∥xi − xn2
i

∥∥ sin (αn)

ã
, n ∈ [1, Nt] (7)
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where xn1
i , xn2

i , xi are the three vertices of the nth triangle and αn is the

angle at vertex xi.

The updated feature vector Θ̃i ∈ RNt×3 is obtained with:

Θ̃i = W̄iΘ̂i (8)

where W̄i ∈ RNt×3 is obtained by reshaping Wi ∈ RNt in order to get the

same weight for the three angles of the same triangle W̄i = [Wi,Wi,Wi].

Finally, aiming for better robustness, we predict a high-dimensional de-

scriptor Θi ∈ Rd/2 by feeding Θ̃i to an FFNN which applies 1D convolutions,

batch normalisation and ReLU function to the input.

We divide the dimension of the DGCNN [29] descriptor ΦX ⊂ Rd×M used

in the baseline method RoCNet [23] by two (Φ̄X ⊂ R d
2
×M) and concatenate

it with the proposed triangle based descriptor, such that the dimension of

the whole descriptor remains d:

ΦX ←− [Φ̄
X
,ΘX ] (9)

ΦY ←− [Φ̄
Y
,ΘY ] (10)

ΦX and ΦY are subsequently introduced in the self-attention and cross-

attention mechanisms detailed in (1), (2), (3) and (4) as in the baseline

method RoCNet.

3.3. Farthest Sampling-guided Registration (FSR)

The second contribution we propose takes place at the end of the process

when the rigid transformation is estimated from the matching points.

Inspired by RANSAC [5] and the local-to-global registration proposed

by [18], we design a Farthest Sampling-guided Registration (FSR) module
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Figure 3: Farthest Sampling-guided Registration overview

that combines the advantages of both methods. Given the set of corre-

spondences CX→Y between the two input point clouds, Ns subsets C̄Xi→Yi
,

i ≤ Ns are created using the farthest point sampling algorithm proposed

in [4], which preserves the structure of the point cloud in each subset by

searching for the most dispersed points as possible, starting from a randomly

chosen initial point. A first subset is sampled and the operation is repeated

Ns times by removing the collected pairs from the original set of correspon-

dences at each iteration to get Ns different sets of Np points as far apart as

possible. The cross-variance matrix Hi of each subset C̄Xi→Yi
is then com-

puted and decomposed to singular values with Hi = UiΣiV
T
i to obtain the

rigid transformation as usually:

Ri = ViU
T
1 and ti = −RiXi +Yi (11)

where Xi and Yi are input and target point cloud for the subset C̄Xi→Yi
, Ri

and ti are the rotation matrix and the translation vector fromXi toYi. Using

all subsets of matching points, different rotation matrices {R1, ...,Ri, ...,RNs}

and translation vectors {t1, ..., ti, ..., tNs} are obtained. As in [18], FSR

chooses the final transformation as the one which provides the maximum
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number of inliers from the initial set of correspondences CX→Y:

RX→Y, tX→Y = argmax
i

|CX→Y|∑
n=1

JRixn + ti − yn < τK (12)

where xn and yn are a pair of matching points from CX→Y, Ri, ti are the

rotation and the translation estimated for the ith subset of points, |CX→Y| is

the number of matched points and τ is a threshold for determining whether

a pair consisting of a transformed point from the source point cloud and its

estimated corresponding point from the target point cloud is an inlier or not.

Thus, FSR works similarly to RANSAC, except that the subsets used

are not selected randomly, but are chosen to have points that are as far

apart as possible, allowing a gain in efficiency by estimating an accurate

transformation in just a few iterations. The intuitive idea is that the further

apart the points are, the more robust the rigid transformation is estimated.

4. Experiments

The proposed architecture RoCNet++, with the addition of triangle-

based descriptor and FSR registration, is evaluated for the first time on

ModelNet40 [31] dataset. Secondly, we evaluate the added value of the new

architecture on the KITTI database [6] and 3DMatch indoor scenes [35].

Since the feature extraction by DGCNN and the normal encoding transformer

is encountering an out-of-memory issue due to excessive GPU consumption,

we adopt the coarse-to-fine matching strategy proposed in GeoTransformer

[18] on which we incorporate our descriptor by dividing the output dimen-

sion of the KP-Conv backbone used in the original paper and concatenating

its predicted feature with those extracted by our triangle-based descriptor.

14



Specifically, we begin by collecting a low-resolution point set from each input

point cloud, resulting in sets of superpoints X̂ ⊂ R3×M̂ and Ŷ ⊂ R3×N̂ . We

also gather higher-resolution sets (half the input resolution) to create dense

points, X̃ ⊂ R3×M̃ and Ỹ ⊂ R3×Ñ . Next, we extract combined features

from KP-Conv and the triangle-based descriptors for the superpoints before

feeding them into the normal encoding attention mechanism. We denote the

final features for the superpoints x̂i ∈ X̂ and ŷj ∈ Ŷ as f̂X
i and f̂Y

j , re-

spectively. To establish correspondences between superpoints, we compute

a score matrix Ŝ ⊂ RM̂×N̂ using the formula ŝi,j = exp
Ä
−|f̂X

i − f̂Y
j |22
ä
.

Finally, we construct the set of superpoint correspondences CX̂→Ŷ by select-

ing the top-k scores from Ŝ. Once the superpoints paired, local patches PX
i

and P Y
j are built around each x̂i ∈ X̂ and ŷi ∈ Ŷ by assigning each dense

point from X̃ and Ỹ to its nearest neighbor from X̂ and Ŷ respectively.

Inside each local patch, the dense point features f̃X
i and f̃Y

j are used to

run an optimal transport algorithm as in (6) and get a partial assignment

matrix S̃. A mutual top selection on the obtained matrix gives us the dense

correspondences CX̃→Ỹ. For a fair comparison, we repeat the same experi-

ments as reported [23] and [18] on ModelNet40, KITTI [6] and 3DMatch [35]

datasets. The performances are extracted from [37], [11] and [9] except Geo-

Transformer [18] for which we use the official model implementation.

On ModelNet40, four measures will be presented as usually done in the

related literature: the Root Mean Squared Error (RMSE) and the Mean

Absolute Error (MAE) for translation and rotation. We use the Registration

Recall (RR), the Relative Rotation Error (RTE) and the Relative Translation

Error (RTE) metrics on KITTI and 3DMatch as reported in [18].
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4.1. Datasets

4.1.1. ModelNet40 [31]

The synthetic ModelNet40 benchmark contains man-made point clouds

representing 40 different classes split into 9,843 point clouds for training and

2,468 point clouds for testing. As in [28], 1024 points are sampled on each

object and then transformed by applying a random rotation between 0 and 45

degrees around each axe and translating it along each direction by a random

distance between [−0.5, 0.5] to create a target point cloud. A partial overlap

is synthesized by sampling the 768 nearest neighbours of a random point in

each point cloud. Finally, the 3D coordinates of each point are perturbed by

adding a clipped Gaussian noise with a range of [0.05, 0.05], a zero mean and

a variance of σ = 0.01.

4.1.2. KITTI odometry dataset [6]

It is composed of 22 sequences of point clouds obtained with a Velodyne

HDL64 LiDAR. Ground truth poses are provided using GPS/INS system for

the sequences 00 to 10 followed by an ICP [3] refinement and consider point

cloud pairs that are at least 10 meters away for testing and downsampling

them with a voxel size of 30 cm to obtain approximately 20k points per point

cloud. We follow [18] to use the first six sequences for training, the seventh

and eighth for validation and the last three sequences for evaluation.

4.1.3. 3DMatch indoor scenes dataset [35]

To evaluate our method under challenging conditions with low-overlapping

point clouds, we assess the matching and transformation estimation pro-

duced by RoCNet++ on the indoor scenes dataset 3DMatch. This dataset
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comprises 62 scenes, with 46 used for training, 8 for validation, and 8 for

testing purposes. We adopt the same down-sampling procedure as in prior

works [7; 18], where each input point cloud is down-sampled using a voxel

size of 2.5 cm.

4.2. Implementation Details

The method is implemented with PyTorch on a Nvidia Tesla V100-32G

GPU. On ModelNet40, the network was trained with Adam optimizer [10] for

30 epochs on clean data and for 100 epochs on noisy data with a learning rate

of 10−4. The number of neighbours used for local triangle-based descriptor

estimation is set to K = 12, leading to 66 triangles. The output dimension

of DGCNN and the triangle-based descriptor is set to 64, producing a final

concatenated descriptor with 128 dimensions. The farthest point sampling

is operating Ns = 5 times during testing, with Np = 100 points in each

subset. The method is trained and supervised for feature extraction using

the ground truth correspondences, while the transformation estimation bloc

is parameter-free. For ModelNet40, the network is trained with a batch size

of 4 examples using the gap loss [21] defined by:

LGap =

M∑
i=1

log

(
N+1∑
n=1

[max((− log S̃i,̄i + log S̃i,n + α), 0)] + 1

)

+

N∑
j=1

log

(
M+1∑
n=1

[max((− log S̃j,j̄ + log S̃n,j + α), 0)] + 1

)
(13)

where α is a positive scalar set to 0.5, S̃i,̄i and S̃j,j̄ are the scores for the

ground truth true matches of the points xi and yj, respectively.

In the context of KITII and 3DMatch, we trained the model for 100 and

30 epochs respectively with a batch size set to 1 using Adam optimizer [10].

We used the overlap-aware circle superpoint matching loss denoted as Lop, as

reported in [18]. To elaborate, for each superpoint patch PX
i originating from

the source point cloud, we conducted a search to find its positive sample Q+
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and negative sample Q− within the target point cloud. This search involved

considering all patches with an overlap greater than 10% with PX
i for positive

samples and all patches with no overlap for negative samples.

Li
op =

1

|P|

|P|∑
i=1

log

1 + ∑
p+

j ∈Q+

e
√

(ri,j)θ
+
i,j(di,j−∆+) ·

∑
p−

k ∈Q−

eθ
−
i,k(∆

−−dk,i)

 (14)

where ri,j and di,j are the overlap ratio and the distance in the superpoint

features space between x̂i and ŷj respectively, ∆+ and ∆− are positive and

negative samples margins set to 0.1 and 1.4 respectively. Finally, θ+i,j =

γ(dj,i −∆+) and θ−i,j = γ(∆− − dk,i) represent the weights for each sample.

In the case of the dense points matching loss, a set of ground truth su-

perpoint correspondences CGT
X̂→Ŷ

is first picked. For each couple k of these

correspondences, a subset of correspondencesMk is collected from the ground

truth dense correspondences CGT
X̃→Ỹ

to compute the negative log-likelihood

loss.

Lk
d = −

∑
(x,y)∈Mk

log s̃kx,y −
∑
x∈Ii

log s̃kx,mk+1
−
∑
y∈Jk

log s̃ink+1,y
(15)

where Ii and Ji are the sets of dense points from the source and the target

point clouds, respectively without any matching in the ground truth. The

overall loss is the mean of the two previous losses. In the evaluation phase,

FSR is performed for Ns = 10 iterations for both 250 and 500 correspon-

dences, when Ns = 20 in all other cases. The sample size Np is determined

by dividing the number of correspondences by Ns. The refinement process

from [2] is performed on the transformation estimated by FSR for 5 iterations

on these two datasets.
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4.3. Results on ModelNet40

4.3.1. ModelNet40 clean point clouds

Table 1 presents the registration performances on clean data from Mod-

elNet40 with full and partial overlapping point clouds, respectively. RoC-

Net++ achieves the best performance with significant improvements in each

one of the four metrics evaluating the rigid transformation, reducing the

translation and rotation errors with a factor greater than 50% in most of

the metrics compared to the second-best method. An example of performed

registrations is depicted in Figure 4.

Table 1: Performances of RoCNet++ trained on all classes with clean point clouds on

ModelNet40.

full overlap partial overlap

rotation translation rotation translationMethod

RMSE (↓) MAE(↓) RMSE(↓) MAE(↓) RMSE(↓) MAE(↓) RMSE(↓) MAE(↓)

ICP [3] 12.28 4.613 0.04774 0.00228 33.683 25.045 0.293 0.2500

DCP-V2 [27] 1.090 0.752 0.00172 0.00117 6.709 4.448 0.027 0.0200

PRNET [28] 1.722 0.665 0.00637 0.00465 3.199 1.454 0.016 0.0100

R-PointHop [9] 0.340 0.240 0.00037 0.00029 1.660 0.350 0.014 0.0008

VRNet [37] 0.091 0.012 0.00029 0.00005 0.982 0.496 0.006 0.0039

WSDesc [11] - - - - 1.187 0.975 0.008 0.0070

GeoTransf [18] 0.232 0.075 0.00173 0.00063 0.327 0.118 0.002 0.0009

RoCNet [23] 0.082 0.011 0.00047 0.00008 0.412 0.133 0.002 0.0002

RoCNet++ 0.028 0.003 0.00022 0.00002 0.035 0.061 0.0003 0.00006

4.3.2. ModelNet40 unseen categories

To access the generalisation performances of RoCNet++, errors on unseen

categories are estimated and reported in Table 2. RoCNet++ outperforms

other methods in translation estimation (equality with VRNet [37] in MAE
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Figure 4: Illustration of some examples of performed registrations on ModelNet40 using

RoCNet++ in case of clean data and full overlap versus the ground truth registrations.

and for the RMSE in rotations estimation. RoCNet [23] and VRNet [37]

slightly overtake the proposed method in rotation for the MAE measure.

Table 2: Performances of RoCNet++ trained on half the classes with clean and full overlap

point clouds on ModelNet40.

Method RMSE(R)(↓) MAE(R)(↓) RMSE(t)(↓) MAE(t)(↓)

ICP [3] 12.707 5.075 0.04853 0.00235

DCP-V2 [27] 3.256 2.102 0.00631 0.00462

PRNET [28] 3.060 1.326 0.01009 0.00759

R-PointHop [9] 0.340 0.250 0.00039 0.00030

VRNet [37] 0.209 0.028 0.00078 0.00009

GeoTransf [18] 0.253 0.067 0.00173 0.00100

RoCNet [23] 0.235 0.026 0.00180 0.00020

RoCNet++ 0.132 0.031 0.00023 0.00009

4.3.3. ModelNet40 noisy data

To evaluate the robustness of the proposed method, we conducted two

experiments on noisy point clouds. The results on full point clouds reported

in Table 3 shows that RoCNet++ outperforms most of the recent state-of-

the-art methods even in the presence of noise since the method is the best in
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MAE(R) and MAE(t) while being the second best in the two other metrics

where GeoTransformer [18] outperforms the other methods in rotation errors

while R-PointHop [9] has the best performance in translation RMSE. Other-

wise, the same Table shows that RoCNet++ is the best method in the case

of noisy and partial overlapping input, thanks to its superiority in three over

four metrics MAE(R), RMSE(t) and MAE(t) while being outperformed by

only GeoTransformer [18] in RMSE(R).

Table 3: Performances of RoCNet++ trained on all classes of ModelNet40 with noisy

data.

full overlap partial overlap

rotation translation rotation translationMethod

RMSE(↓) MAE(↓) RMSE(↓) MAE(↓) RMSE(↓) MAE(↓) RMSE(↓) MAE(↓)

ICP [3] 11.971 4.497 0.04832 0.00433 33.067 25.564 0.294 0.250

DCP-V2 [27] 8.417 5.685 0.03183 0.02337 6.883 4.534 0.028 0.021

PRNET [28] 3.218 1.446 0.11178 0.00837 4.323 2.051 0.017 0.012

R-PointHop [9] 2.780 0.980 0.00087 0.00375 - - - -

VRNet [37] 2.558 1.016 0.00570 0.00289 3.615 1.637 0.010 0.006

WSDesc [11] - - - - 3.500 0.759 0.006 0.004

GeoTransf [18] 0.692 0.267 0.00519 0.00200 0.915 0.386 0.007 0.003

RoCNet [23] 1.920 0.555 0.00260 0.00180 1.810 0.620 0.004 0.003

RoCNet++ 1.004 0.249 0.00133 0.00092 1.278 0.318 0.002 0.001

4.4. KITTI Odometry Dataset

As discussed in Sec. 4, the large number of points contained in the

KITTI dataset can lead to memory issues due to the combination of the

Transformer and DGCNN. To tackle this problem, we adopted the approach

presented in [18] using superpoints which consist of two steps. The first

step is to match the superpoints extracted by KP-Conv. Secondly, dense

correspondences are performed by creating local subsets of points for the
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paired superpoints. This process involves collecting neighbouring points for

each superpoint. To generate feature vectors for each point, we concatenate

the proposed triangle descriptor with the KP-Conv features. In this scenario,

we apply the Transformer with normal variation encoding as reported in [23]

at the superpoints level.

Table 4: Registration performances on KITTI. The transformation is estimated using all

the putative correspondences.

Method RTE(cm)(↓) RRE(deg)(↓) RR(%)(↑)

Predator [7] 6.8 0.27 90.6

FMR [8] ∼66 1.49 90.6

SpinNet [1] 9.9 0.47 99.1

CoFiNet [34] 8.2 0.41 99.8

GeoTransformer [18] 6.8 0.25 99.8

Ours 7.3 0.23 99.8

Table 4 shows that our descriptor equals the state-of-the-art performance

in Registration Recall (RR) and improves precision in Relative Rotation Er-

ror (RRE) while achieving the second-best performance in Relative Transla-

tion Error (RTE). In addition to this, we propose to compare the registra-

tion errors obtained using FSR, FGR [40], SVD, and RANSAC with different

numbers of sampled correspondences by collecting 250, 500, 1000, 2500 and

5000 best similarity scores. The results reported in Table 5 show that FSR

outperforms the other methods in rotation and translation, except in the case

of 2500 samples where it ranks second (in translation) behind RANSAC. It

can be highlighted that FSR surpasses RANSAC-50k, regardless of the num-

ber of samples. It can even outperform FGR in processing time (t) when

using fewer than 1,000 samples. Some performed registrations are depicted
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in Figure 5.

Table 5: Registration performances on KITTI using different pose estimators (RTE (cm),

RRE (degrees), and t(ms).

#samples 5000 2500 1000 500 250

Error RTE(↓) RRE(↓) t(ms) RTE(↓) RRE(↓) t(ms) RTE(↓) RRE(↓) t(ms) RTE(↓) RRE(↓) t(ms) RTE(↓) RRE(↓) t(ms)

RSAC5k 8.3 0.31 95 8.3 0.30 88 8.4 0.30 50 8.8 0.33 39 8.8 0.33 24

RSAC10k 8.1 0.29 185 7.8 0.30 171 8.3 0.29 98 8.7 0.31 77 9.0 0.33 48

RSAC50k 7.6 0.27 906 7.8 0.27 838 8.1 0.30 548 8.6 0.31 548 8.9 0.33 234

FGR 9.4 0.38 56 9.4 0.38 55 8.4 0.35 53 8.8 0.36 52 9.4 0.40 51

SVD 13.1 0.39 11 12.7 0.38 11 11.1 0.36 11 11.1 0.38 11 11.4 0.42 11

FSR (ours) 7.3 0.27 171 7.4 0.28 143 7.6 0.28 50 7.9 0.29 37 8.2 0.30 27
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Figure 5: Illustration of some performed registrations on KITTI.

4.5. 3DMatch Indoor Scenes Dataset

We evaluate the performance of correspondence prediction using the same

metrics employed in in [18] and [7], i.e., Inlier Ratio (IR), which calculates

the ratio of matched points with a distance smaller than τ1 = 10 cm under

the ground truth transformation; Feature Matching Recall (FMR), which

represents the ratio of point cloud pairs with an IR above 5%. To assess the
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precision of the estimated transformation, we use three metrics: Registration

Recall (RR); Relative Translation Error (RTE); and Relative Rotation Error

(RRE).

Table 6: Matching recall performances on 3DMatch versus number of correspondences.

# samples 5000 2500 1000 500 250

Feature Match Recall (%)(↑)

SpinNet [1] 97.6 97.2 96.8 95.5 94.3

Predator [7] 96.6 96.6 96.5 96.3 96.5

YOHO [26] 98.2 97.6 97.5 97.7 96.0

CoFiNet [34] 98.1 98.3 98.1 98.2 98.3

GeoTransformer [18] 97.9 97.9 97.9 97.9 97.6

Ours 98.2 98.2 98.2 98.2 98.0

Table 6 displays the FMR results obtained using different sampled cor-

respondence sizes, where we select the top-k scores from the complete set of

paired points, similar to the approach in [18]. RoCNet++ surpasses Geo-

transformer [18] and is second among all the methods and all cases. It

matches the best scores when using 5000 and 500 points while performing

best with 1000 sampled points and second with 2500 and 250 points. This

suggests that RoCNet++ excels in challenging cases, consistently achieving

a minimum of 5% inliers across a broader range of test examples. Inlier Ra-

tio results are presented in Table 7 demonstrating that RoCNet++ produces

accurate correspondences, as it consistently ranks second, following Geo-

transformer [18], except for the sampling of 1000 points, where it achieves

the highest scores.

For the registration results, Table 8 demonstrates the efficiency of FSR,

which achieves the highest registration recall with fewer sampled correspon-

dences (i.e., 250 and 500), while ranking as the second fastest method, just
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behind SVD. However, for larger sets of correspondences (i.e., 1000, 2500,

and 5000), FSR is outperformed only by RANSAC-50k, which is approxi-

mately four times slower than our method. Finally, Table 9 shows that in

terms of RRE and RTE, RoCNet++ achieves results comparable to Geo-

transformer [18], which is the best method across all metrics. RoCNet++ is

narrowly outperformed by CoFiNet [34] in RR.

Table 7: Inlier Ratio results on 3DMatch versus number of correspondences.

#samples 5000 2500 1000 500 250

Inlier Ratio (%)(↑)

SpinNet [1] 47.5 44.7 39.4 33.9 27.6

Predator [7] 58.0 58.4 57.1 54.1 49.3

YOHO [26] 64.4 60.7 55.7 46.4 41.2

CoFiNet [34] 49.8 51.2 51.9 52.2 52.2

GeoTransformer [18] 71.9 75.2 76.0 82.2 85.1

Ours 68.2 68.2 79.4 77.9 80.8

Table 8: Comparison of different pose estimators with our pipeline on 3DMatch

# samples
5000 2500 1000 500 250

RR(↑) t(ms)(↓) RR(↑) t(ms)(↓) RR(↑) t(ms)(↓) RR(↑) t(ms)(↓) RR(↑) t(ms)(↓)

SVD 77.6 7 77.6 7 77.6 7 79.1 5 79.2 5

FGR 85.1 107 84.5 101 85.3 101 86.4 096 85.9 089

RANSAC-50k 90.2 560 90.4 550 90.2 506 89.6 339 88.9 235

FSR (ours) 89.1 150 88.8 140 88.8 133 89.8 086 88.9 086

Table 9: Registration errors obtained on 3DMatch using all the correspondences. RRE is

in degrees, RTE is in centimeters and RR is in %

Method RR(↑) RRE(↓) RTE(↓)

Predator [7] 89.0 2.029 0.064

CoFiNet [34] 89.3 2.011 0.062

Geotransf. [18] 91.5 1.625 0.053

Ours 89.1 1.660 0.053
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Figure 6: Illustration of some examples of performed registrations on 3DMatch

5. ABLATION STUDY

In this ablation study, we show the improvements provided by the in-

troduction of the triangle-based descriptor, by the weighting of the triangles

and, finally, by the FSR method introduced.

5.1. Triangle-based Descriptor Ablation

Table 10, presents the matching performance of RoCNet++ in compari-

son to another version where the descriptor is replaced by FPFH [20]. Ad-

ditionally, we provide an analysis of RoCNet++ without the triangle-based

descriptor and a version that combines FPFH and triangles. This analysis

allows highlighting the impact of the triangles and its ease of incorporation

into other descriptors. This analysis demonstrates that the use of triangles

can clearly improve performances in both clean and noisy data. For example,

the three metrics precision, accuracy and recall exceed the 99% in clean data.
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Table 10: Matching performances on ModelNet40 with partial overlap (P: Precision, A:

Accuracy, R: Recall)

clean data noisy data
Descriptor

P(↑) A(↑) R(↑) P(↑) A(↑) R(↑)

FPFH 92.1 84.6 88.3 72.1 71.0 71.2

FPFH + Triangles 99.3 98.6 98.9 82.6 81.8 81.5

DGCNN 98.0 97.2 97.6 85.8 85.9 85.5

DGCNN+Triangles (ours) 99.9 99.8 99.8 89.4 89.4 89.2

5.2. Triangle Weighting Ablation

For a better understanding of the motivation behind the use of different

weights for every single triangle, we provide a comparison between RoC-

Net++ and the modified version on which the softmax is removed to let

the same contribution for all triangles in the predicted descriptor. Table 11

highlights the important role played by the area weighting of the triangles in

the presence of noise since the performance in all the matching metrics is im-

proved. It is worth noting that in the case of clean data, the use of softmax

has no huge impact on the matching performances which are already very

high.

Table 11: Matching performances on ModelNet40 with partial overlapping input, where

RoCNet++(†) is a version of the method without weighting of triangles.

clean data noisy data
Method

P(↑) A(↑) R(↑) P(↑) A(↑) R(↑)

RoCNet++(†) 99.9 99.7 99.7 86.0 85.9 85.5

RoCNet++ 99.9 99.8 99.8 89.4 89.4 89.2
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5.3. Influence of the Number of Triangles in the Descriptor

In this experiment, we study the influence of the number of K nearest

neighbours used to construct the triangle-based descriptor. Let us notice that

the number of neighbours imposes the number of triangles that isK(K−1)/2.

The analysis demonstrates that the best model for matching challenges is

obtained for K = 12. We therefore kept this configuration throughout our

studies.

5.4. Farthest Sampling-guided Registration (FSR) ablation

Finally, to validate the FSR algorithm effectiveness, we compare the regis-

tration results obtained using RANSAC, SVD and FSR for the same trained

model on clean and noisy point clouds. Table 12 shows that FSR guaran-

tees the best compromise for both cases: while RANSAC provides the best

results on clean data but is less efficient in the presence of noise, SVD be-

haves oppositely, being efficient on noisy data but having surprising limits

on clean data. The proposed Farthest Sampling-guided Registration (FSR)

allows good performances in both cases by providing at least the second-best

score in each metric.

Table 12: Registration performances on ModelNet40 using RANSAC with 500 iterations,

SVD and our FSR on partial overlapping data.

clean data noisy data

rotation translation rotation translationMethod

RMSE (R)(↓) MAE(R)(↓) RMSE(t)(↓) MAE(t)(↓) RMSE(R)(↓) MAE(R)(↓) RMSE(t)(↓) MAE(t)(↓)

RANSAC <0.001 <0.001 0.0001 0.00002 1.513 0.633 0.004 0.003

SVD 3.068 0.100 0.001 0.0001 1.268 0.349 0.002 0.001

FSR (ours) 0.035 0.061 0.0003 0.00006 1.278 0.318 0.002 0.001
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6. Conclusion and Future Work

This paper discussed a new method for point cloud registration. The

proposed architecture is inspired by our recent RoCNet method, to which

we have made two significant improvements. The first contribution concerns

the setting up of a robust geometric descriptor encoding the 3D point as

triangles formed by the K nearest neighbours. The extracted features cor-

respond to the angles formed by each triangle, which are invariant to rigid

transformations. These angles combined with the surface normals form the

final descriptor. The second contribution of this paper refers to the estima-

tion of the rigid transformation. To improve the accuracy of the estimated

transformation, we introduced the Farthest Sampling-guided Registration

(FSR) which allows estimating several rigid transformations for each subset

of matched points obtained thanks to a furthest points sampling method.

Then, the global transformation is selected to be the one that yields the

highest number of inliers.

The developed method was assessed using three well-established datasets,

i.e., ModelNet40 (synthetic objects), KITTI (odometry), and 3DMatch (in-

door scenes). Different scenarios have been set up to evaluate the perfor-

mance of the method in the context of the state of the art: clean or noisy

data under different overlap ratios. For the ModelNet40 data, RoCNet++

outperformed all the state-of-the-art methods in the case of clean data and in

most cases of unfavourable conditions (e.g. noisy data). Finally, our method

also performed well for the KITTI dataset, which is known to be challenging,

improving 2 out of 3 metrics.

Although the proposed method has proved to be efficient for clean data,
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noisy data degrades performance significantly. It would be interesting to

work on a new variant of the descriptor able to be more robust to noise. For

instance, it would be interesting to replace the normals used in RocNet++

with EGI (Extended Gaussian Image), which have proved to be more robust

to noise than simple surface normals. One other limitation is the complexity

of handling large-scale databases such as 3DMatch due in particular to the use

of transformers in the architecture. To remedy this, we proposed to adopt a

coarse-to-fine matching strategy using a voxel-grid downsampling which may

lead to the same computation cost problem depending on the size of the input

point clouds. Hence, a significant reduction in the resolution of the point

cloud, if required to address this issue, can lead to performance degradation

as it may result in the loss of relevant local geometric information.

In future work, we plan to investigate new effective downsampling strate-

gies and extend our approach to cross-modality (e.g., 2D-3D) registration and

non-rigid correspondence estimation. Also, it would be interesting to con-

sider the triangle-based descriptor in other applications such as segmentation

and classification of points-clouds.
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