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Abstract—Shapelet-based techniques are widely utilized in time
series classification due to their combination of interpretability
and accuracy. However, these methods tend to be less scalable
than other state-of-the-art approaches. Because of this, we
propose RSAST as a shapeled-based technique that utilizes a
stratified technique and certain statistical criteria to randomly
select the shapelets. We conducted experiments on 128 datasets
from the UCR archive, showcasing the comparative accuracy of
RSAST against its baseline methods SAST and STC, as well
as other state-of-the-art techniques. Notably, the method we
propose, RSAST, preserve the accuracy and interpretability of
the baseline methods while reducing the computation time. For
example, with Earthquakes, one of the largest datasets from the
UCR archive, RSAST took 6 minutes and 36 seconds to complete
the training process, whereas SAST took 2 hours and 37 minutes.

Index Terms—Time series Classification, Shapelet, Scalability,
Interpretability, ANOVA, ACF, PACF

I. INTRODUCTION

Time series data is a type of data that is measured over
time. This type of data has applications in various tasks such
as time series anomaly detection, time series forecasting and
time series classification. In particular, this work is focus on
the time series classification task which contemplated various
methodologies such as STC, SAST, HIVE-COTE, ROCKET,
RDST among others. Notably, the Scalable and Accurate
Subsequence Transform (SAST) [1] stands out as one of the
most precise and interpretable techniques. So, our work aims
to study SAST approach and propose an improvement of the
method.

In the state-of-the-art there are many algorithms for time
series classification which uses different features for the
classification. Depending of the features the methods can be
categorized into eight groups [2]:

• Distance-based methods: In this category, entire time se-
ries are compared using distance measures in combination
with nearest neighbor (NN) classifiers. Examples of such
approaches include the Elastic Ensemble (EE) [3], which
involves an ensemble of 11 1-NN classifiers weighted
with a variety of elastic distance measures. Another
method is Proximity Forest (PF) [4], which utilizes the
same 11 distance functions as EE but with improved
accuracy and scalability..

• Feature-based methods: These methods involve extracting
features from the time series and using them in a clas-
sifier. Various feature extraction techniques can be em-
ployed, including statistical measures, frequency domain
analysis, and time-domain characteristics. For example,
Catch22 [5], one of these methods, utilizes 22 hctsa
features identified as the most discriminatory in a set.
These features encompass a broad spectrum, including
basic statistics of time series values, linear correlations,
and entropy. Similarly, TSFresh [6] was introduced as a
collection of approximately 800 features extracted from
time series.

• Interval-based methods: In these approaches, it is selected
one or more intervals within a time series rather than
using the entire sequence. Multiple intervals can be
chosen, and summary measures from these intervals are
then utilized as features for classification. One example of
this approach is TSF [7], which extracts three summary
statistics (mean, variance, and slope) from randomly
selected intervals. Similarly, RISE [8] generates random
intervals but employs spectral features instead.

• Shapelet-based methods: Algorithms in this category aim
to identify short patterns known as shapelets, which
define a class. These shapelets can appear anywhere in
the series and are not dependent on the phase. A class is
distinguished by the presence or absence of one or more
shapelets within the entire series. The baseline from this
methods in the literature it is STC [9] since is a pipeline
which searches the training data for shapelets, transforms
the time series and builds a classifier with the tranformed
data. Later RDST [10] uses randomly selecting shapelets
from the train data to transform the dataset and train a
classifier introducing the concept of dilated shapelets.

• the frequency of subseries repetition is more crucial than
their mere presence or absence. These methods involve
creating frequency counts of recurring patterns and de-
veloping classifiers based on the resulting histograms.
For instance, BOSS [11] utilizes sliding windows that are
transformed into words using SFA. This process generates
a feature vector by counting the occurrences of each word
across all windows.

• Convolution-based methods: These methods consist in



the application of convolution and pooling operations to
time series, transforming the original space into a new
dataset suitable for classification. The most representative
method in this category is the Random Convolutional
Kernel Transform (ROCKET) [12]. ROCKET generates
a large number of randomly parameterized convolutional
kernels, typically ranging from thousands to tens of thou-
sands, and uses them to transform the data. Also, there
are several variants of ROCKET, such as MiniROCKET
[13], which significantly accelerates ROCKET with no
substantial difference in accuracy.

• Deep learning-based methods: This category utilizes neu-
ral network structures for time series classification. Ex-
amples of methods in this category include the Residual
Network (ResNet) [14] and InceptionTime [15], each
employing distinct architectures for classification.

• Hybrid approaches: These approaches involve combining
algorithms from two or more of the previously mentioned
approaches into a single classifier. These methods aim
to leverage the strengths of different techniques for im-
proved performance. For example, HIVE-COTE [16] is
a heterogeneous ensemble containing five modules, each
from a different representation. Another example is TS-
CHIEF, which is a homogeneous ensemble where hybrid
features are embedded in tree nodes.

Despite the high accuracy of state-of-the-art time series clas-
sification algorithms, they often suffer from computationally
intensive calculations or lack interpretability of the results.
Because of this, our work will focus on shapelet approaches,
which offer interpretability and accuracy.

The Scalable and Accurate Subsequence Transform (SAST)
[1] method was proposed as a method based on shapelets and
builded upon STC [9]. SAST reduces the search space for
shapelets by selecting only a few instances per class from the
dataset, resulting in a complexity of O(nm3) +O(classifier).

So, in order to increase the scalability of SAST, we propose
a novel approach called Random SAST (RSAST). RSAST
avoids the use of a searching algorithm by employing a strati-
fied sampling technique to select candidate shapelets. By doing
so, RSAST significantly reduces the computational burden
while maintaining competitive accuracy and interpretability.

Mainly, RSAST utilizes fundamental statistical concepts
such as ANOVA, Autocorrelation Function (ACF), and Partial
Autocorrelation Function (PACF). So, the ANOVA test enables
a more accurate selection of starting points for the shapelets,
while ACF and PACF assist in identifying the most relevant
lengths for these subsequences.

The Analysis of Variance (ANOVA) assesses variability
within and between classes using a statistical test known as
the F-test, allowing for a comparison of mean similarities.
Depending on the number of classes being analyzed, various
ANOVA variations can be employed [17]. Notably, RSAST
predominantly utilizes one-factor ANOVA, as many time se-
ries classification tasks typically involve considering just one
factor or class for classification. Also for RSAST it is assumed

the independence, normality, and homogeneity of variances of
the values.

Although there are alternative methods for ANOVA to
compare the similarity of groups, such as the Kruskal-Wallis
test, Mood’s median test, or even information gain, [9]
demonstrated that there are no significant differences in accu-
racy when choosing between these alternatives. Consequently,
RSAST only considers ANOVA to compare values across time
series.

Thus, the contributions of our work can be summarized as
follows:

• Utilizing a stratified sampling strategy for subsequences
selection, as in SAST, but taking into account certain
statistical criteria such as ANOVA, ACF and PACF.

• Providing an open-source implementation of RSAST,
based on the SAST model. This implementation signif-
icantly reduces training time compared to SAST. For
example, when applied to the Earthquakes dataset, which
is one of the largest datasets from the UCR archive, SAST
took 2 hours and 37 minutes for model training with an
accuracy of 0.68, whereas RSAST completed the training
process in only 6 minutes and 36 seconds with 0.72 of
accuracy.

The subsequent sections of our work will delve into the
background and related work to the topic (Section II). Also,
we will provide a detailed explanation of the method (Section
III), and showcase the experimental results obtained using
RSAST (Section IV). By presenting these sections, we aim
to demonstrate the effectiveness and advantages of RSAST in
time series classification tasks.

II. BACKGROUND AND RELATED WORKS

A. Definitions
In this section, we provide an overview of the key concepts

used to describe RSAST methodology.
1) Time Series Classification: It is a task in machine

learning that involves predicting the class or category
of a time series dataset.

2) Time Series: A time series (TS) is a sequence of data
points collected over time, where each data point is
associated with a specific timestamp. TS can be used
within a instance pair {x, y}, where x is the TS with
m observations (x1, x2, ..., xm), and y is a discrete
class variable with |c| possible values. The list of n
cases with associated class labels can be represented as
T = (X, y) = ((x1, y1), (x2, y2), ..., (xn, yn)).

3) Classifier: refers to a function or mapping that operates
on the input space and assigns a probability distribution
over the possible class variable values.

4) Shapelets: shapelets are subsequences, denoted as S =
{s1, ..., sl} with length l, that can effectively differen-
tiate between different classes or categories in a time
series dataset [18].

5) Autocorrelation Function (ACF): is a tool used to
measure the similarity between a time series and a
delayed version of itself [19].



6) Partial Autocorrelation Function (PACF): similar to
ACF, is a measure of the correlation between a time
series and a lagged version of itself, after removing the
effects of all the shorter lags [20].

7) Analysis of variance (ANOVA): is a statistical method
used to analyze the difference between the means of
two or more groups. It is used to determine if there is a
significant difference between the means of two or more
groups based on the variation in the data [17].

B. Shapelet Approaches

As previously mentioned, time series classification (TSC)
methods can be categorized into different categories, each with
methods varying in their levels of accuracy, complexity, and
interpretability [2].

Shapelets methods focus on finding subseries that allows
distinguishing the different classes of time series. The process
involves sliding these subseries across the time series and cal-
culating the distance between the subseries and the segments
of the time series.

The initial shapelet approach in the literature emerged
with the work by [18]. This procedure introduced embed-
ded shapelets within a decision tree classifier, showcasing
the potential of employing shape-based features to enhance
classification performance for time series data.

Following this, subsequent studies have been dedicated to
two primary aspects: refining the accuracy of the original
shapelet algorithm and addressing the inherent computational
complexity associated with shapelet methods.

One improvement of accuracy is proposed with Shapelet
Tranform [9], STC takes a multi-step approach to enhance
accuracy in time series classification. Firstly, it conducts
an exhaustive search for shapelets within the training data.
Then, it transforms the time series into distance-based vectors,
enabling the selection of the most distinguishable shapelets
among classes using the information gain criterion. Then, with
the selected shapelets, the algorithm constructs a classifier
using the transformed series data.

Recently, some changes were introduced for STC [21]
like a randomised search of shapelets with a search time
as parameter, a binary shapelets evaluation against all other
classes, and the use of Rotation Forest instead of HESCA
classifier [2].

The Scalable and Accurate Subsequence Transform (SAST)
aims to improve the complexity of STC by reducing the
number of patterns to be assessed [1], and as a consequence,
making the model faster to train. To accomplish this, SAST
reduces the number of shapelet candidates by selecting ran-
domly k instances per class. Furthermore, it does not select the
top best shapelets beforehand, as in STC, instead all shapelets
are used to transform the data.

Moreover, in Fast Shapelets (FS) [22], it was introduced
an enhanced version of the decision tree shapelet approach
proposed in the original algorithm [18]. This approach focuses
on accelerating shapelet discovery. Instead of performing an

exhaustive search at every node, FS utilizes symbolic ag-
gregate approximation (SAX) to discretize and approximate
shapelets. SAX is a technique that transforms time series into
strings, reducing their dimensionality using piecewise aggre-
gate approximation (PAA) and discretizing them into bins
based on equal probability areas of the normal distribution.

Similarly in Learned Shapelets (LS) [23], it is introduced
the use of a heuristic gradient descent shapelet search approach
instead of the traditional enumeration strategy. Unlike FS and
STC, LS is not constrained to identifying shapelets solely from
subseries within the training data.

Another shapelet approach is the Generalised Random
Shapelet Forest or RSF [24]. This method consists of a
bagging-based tree ensemble that aims to improve compu-
tational efficiency and predictive accuracy. At each node of
a different tree, r univariate shapelets are selected from the
training data. Each shapelet has a random length within
some predefined upper and lower bounds. Multiple trees are
ensembled, so new instances are predicted by a majority vote
on the trees’ predictions.

Also, the Multiple Representation Sequence Learner
(MrSEQL) [25], is another ensemble classifier which is based
on SEQL classifier [26]. MrSEQL looks for the existence
or non-existence of a shapelet within the data. However,
instead of employing a distance-based technique to quantify
this presence or absence, MrSEQL converts the subseries into
symbolic words. Subsequently, these words are generated via
two symbolic representations—SAX for the time domain and
SFA for the frequency domain. A collection of distinctive
words is chosen using Sequence Learner (SEQL). The training
procedure culminates in a logistic regression model, yielding
a set of important subsequences determined by the model’s
weights.

Lastly, a recent advancement in phase-independent ap-
proaches has been introduced with the Random Dilated
Shapelet Transform or RDST [10]. This algorithm integrates
various convolution techniques. RDST employs dilation with
shapelets, which means that some spaces are defined between
time points. Hence, a shapelet with dilation d is compared to
time points d steps apart when computing distances between
shapelet and time series. The method also uses two features
in addition to distance, it uses the position of the minimum
distance, and it measures the frequency of occurrences of
the shapelet, based on a distance threshold. Consequently,
the transformed data comprises 3k features (for k shapelets)
subsequently employed in a classifier.

Although highly accurate RDST has deficiency in inter-
pretability since the shapelets found could exhibits dilation,
which is not natural for domain expert. An example of the
lack of interpretability can be seen training the model with
Coffee dataset from the UCR archive. Here, the first shapelet,
according to a feature importance analysis, has a dilation of
13, the second most important shapelet has a dilation of 12
and the third shapelet has a dilation of 15 (see Fig. 1). As
a consequence, when these shapelets are plotted on random
instances from each class of the training set (see Fig. 2), it



is observed that they do not seem to match perfectly with
the time series, as it is the case of other methods like STC,
SAST and RSAST. In consequence, it is not clear the distinct
pattern which enables the differentiation of classes of the
RDST approach.

Fig. 1: Shapelets for RDST using Coffee dataset.

Besides, in RDST, the features are categorized into 3 types:
the presence or absence of the shapelet (min), the position
(arg min) and the frequency (SO). So, for the interpretation
of the method, it is necessary to take into account the feature
type as part of the analysis of the results. For instance, for
Coffee dataset (see Fig. 2), the 3 most important shapelet are
argmin type, indicating that their importance is determined
by the location of the shapelets. For more details of RDST
method it is suggested to read [10].

Fig. 2: Top 3 shapelets, on TS, learned by RDST on Coffee
dataset.

C. SOTA Approaches

There are some state-of-the-art methods, that focus on
combining different types of features in order to achieve
highest accuracy.

One of these main techniques that achieve the highest
accuracy is a convolutional approach, called ROCKET, which
stands for Random Convolutional Kernel Transform [12]. This
method generates an extensive assortment of convolutional
kernels with randomized parameters. These kernels are then
utilized to transform the data through convolution and pooling
operations like max pooling (identifying the maximum value)
and the proportion of positive values (PPV). The results gives
two features which are concatenated for all kernels. Thus, for
k kernels, the transformed data has 2k features. These feature
vectors are harnessed to train a Ridge Classifier, incorporating
cross-validation to determine the L2-regularization parameter
α. In scenarios involving larger datasets, a logistic regression
classifier is proposed as an alternative.

Another accurate method is the Hierarchical Vote Collec-
tive of Transformation Ensembles (HIVE-COTE) [16]. This
ensemble consists of five distinct modules, each capturing
different features. These modules encompass the EE from
distance-based representations, TSF from interval-based meth-
ods, BOSS from dictionary-based approaches, STC from
shapelet-based methods, and a spectral method called RISE.
Cross-validation Accuracy Weighted Probabilistic Ensemble
(CAWPE) [27] is used to ensemble the results of the five
modules.

HIVE-COTE demonstrated enhanced scalability in the
HIVE-COTE v1.0 (HC1) [28], incorporating several advance-
ments. HC1 introduced four modules, with cBOSS [29] replac-
ing BOSS. The updated randomised version of STC [21] with
a Rotation Forest classifier and a default one-hour shapelet
search. Usability improvements were made to TSF and RISE.
Notably, this version omitted the computationally intensive EE
algorithm, resulting in improved efficiency without sacrificing
accuracy.

Similarly HC1 was improved through HIVE-COTE v2.0
(HC2) [30]. In HC2, only STC is retained from the prior
version, while the remaining modules undergo transformation.
The substitution of modules is prominent. TDE supplants
cBOSS, serving as the chosen dictionary classifier. Instead of
TSF and RISE, the DrCIF method is introduced to handle the
interval and frequency representations. Additionally, HC2 in-
troduces Arsenal method, an ensemble of ROCKET classifiers.

Another notably accurate hybrid approach is The Time Se-
ries Combination of Heterogeneous and Integrated Embedding
Forest (TS-CHIEF) [31]. This is a homogeneous ensemble of
methods which means that hybrid features are embedded in
tree nodes rather than separated in modules. In TS-CHIEF,
each tree node evaluates a certain number of splitting criteria.
Notably, for dictionary-based splits, the criteria are rooted in
the BOSS method, while distance-based splits rely on EE, and
interval-based splits draw from RISE. TS-CHIEF is distinct in
its design to avoid the resource-intensive processing associated
with HIVE-COTE.

III. RSAST METHOD

Although SAST demonstrated to be more efficient than STC
there exist still a high complexity in the method attributed



to its search space for subsequences (see Sect. III-B). Thus,
we propose an improvement on SAST called Random SAST
(RSAST). Through RSAST we propose randomly selecting
the shapelets, taking into account certain statistical criteria.
This is done by randomly selecting the starting point (t0)
of the subsequence from (k) randomly chosen time series
(Ti) for each class. Moreover, the length of the shapelet is
defined using the autocorrelation function (ACF) and partial
autocorrelation function (PACF) of the time series (Ti) instead
of using a pre-defined length list (l).

A. Main Ideas RSAST

The method starts with the precomputation of a list of
weights which facilitates the selection of initial points for
subsequences. This makes that when a starting point (t0) is
randomly chosen from a time series the selection prioritize
the more relevant points according to this list of weights.

To compute the aforementioned list of weights, a one-way
ANOVA test is executed for each time value, denoted as Ti[j],
with j varying from 0 to m, and m the length of the time
series (refer to Algorithm 1). So the test detects distinctive
starting points that exhibit statistically significant differences
between classes, thereby prevents the selection of points that
are inherently similar.

Algorithm 1 CalculateWeights

Require: Dataset: D
1: classes← uniqClasses(D)
2: weights← []
3: n,m← size(D)
4: for i← 1 to m do
5: statsPerClass← ∅
6: for c in classes do
7: statsPerClass← statsPerClass ∪ {(Tc[i], c)}
8: end for
9: pV alue← ANOV A(statsPerClass)

10: weights[i]← 1− pV alue
11: end for
12: return weights

Then, analogous to the initial SAST algorithm, k instances
per class are drawn (without replacement) from the training
dataset. So, the autocorrelation function (ACF) and the Partial
Autocorrelation Function (PACF) are applied to each of these
selected instances.

The computation of PACF and ACF for each instance
yields to a set of highly correlated lagged time points. These
points are subsequently employed as potential lengths for the
shapelets, utilizing the significant values obtained from each
test. This approach leads to the exclusion of non-correlated
points within the time series, thereby eliminating the need to
exhaustively explore the complete range of potential lengths
within a time series (ranging from 3 to m).

Finally, with the shapelet length determined, and utilizing
the precalculated list of weights, a certain number of admis-

sible starting points are sampled (without replacement) from
each instance.

Thus, with these instances of reference, the possible lengths
for the subsequences, and some chosen starting points, it
is obtained a collection of relevant shapelet candidates (see
Algorithm 2).

Additionally, given the selection of a specific amount of
starting points (p), there is a upper limit, or maximum of
shapelets to obtain, since the total number depends on the
difference between the length of the time series and the length
of the possible shapelets. Thus, this difference must be less
than the required number of starting points (p > m − l + 1)
in order to select all the required p values. Otherwise, if the
difference is greater (p < m − l + 1), the set of possible
starting points, and therefore the total number of shapelets,
will be truncated.

Algorithm 2 generateRandomShapeletCandidates

Require: Dataset: D, Length list: L, Random Points: p,
Weights: W

1: S ← ∅
2: n,m← size(D)
3: for i← 1 to n do
4: rPoints← []
5: for l in L do
6: rPoints← randomlySelectPoints(Ti,W, p)
7: for j in rPoints do
8: S ← S ∪ selectSubsequence(Ti, j, l)
9: end for

10: end for
11: end for
12: return S

Once the subsequences have been generated, the followed
stages of the algorithm involves computing distances between
the shapelets and the time series. Thus, after the transfor-
mation is completed, a classifier is trained using the newly
transformed dataset.

After the training of the model a post hoc method can be
applied to interpret the results [32]. This allows to obtain
the most important features and therefore the most important
shapelets of the model. The analysis of importance identify
how much a feature is correlated to the target variable, so,
in a linear model, the absolute value of the weight will
distinguish the importance of a feature with respect to another
less important [33].

For a general understanding of the method, refer to Al-
gorithm 3, which presents a comprehensive overview of the
RSAST procedure. Additionally, Figure 3 provides an illustra-
tive summary of the RSAST method.

B. Search Space of Shapelet Approaches

The time taken by shapelet approaches, which make the ex-
traction of subsequences from the training dataset, is primarily
due to the exploration and evaluation of these subsequences.
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Fig. 3: Overview of RSAST method.

Algorithm 3 Random ScalableAndAccurateSubsequence-
Transform
Require: Dataset: D, Instances per Class: k, classifier to use:

C, Number of Starting Point: p
1: n,m← size(D)
2: W ← CalculateWeights(D)
3: Dc ← randomlySelectInstancesPerClass(D, k)
4: L← generateLenghtListACF (Dc)
5: L← L ∪ generateLenghtListPACF (Dc)
6: S ← generateRandomShapeletCandidates(Dc, L, p,W )
7: Df ← ∅
8: for i← 1 to n do
9: xi ← []

10: for j ← 1 to |S| do
11: xi[j] ← dist(Ti, Sj)
12: end for
13: Df ← Df ∪ {(xi, ci)}
14: end for
15: clf ← trainClassifier(C,Df ) ▷ train the classifier on

the transformed dataset
16: return (clf, S)

As a result, reducing the number of shapelets can substantially
decrease the overall training time of the method.

RSAST, in particular, does not explore the entire space
of possible subsequences but instead performs a sampling
of them, distinguishing it from its baseline STC and SAST.
For instance, compared to SAST, RSAST does not utilize all
potential starting points for the subsequences along the time

series due to a parameter that controls the extraction of these
random points. Thus, only when this parameter is set equal
to or higher than the length of the time series does RSAST
consider the same number of subsequences as SAST. Similarly,
since RSAST consider a reduced amount of subsequences
within the randomly selected instances of the training dataset,
these can be adjusted to utilize all instances and all possible
subsequence lengths, enabling the method to explore the same
number of subsequences as STC.

Moreover, other shapelet approaches such as FS and RDST
also utilize the training dataset to select candidate shapelets.
For instance, FS employs multiple SAX words for the subse-
quences losing information in the new representation, while
RDST generates the shapelets randomly considering some pa-
rameters like the number of shapelets to generate, the possible
lengths, the proportion of shapelets that use normalization and
the threshold for the shapelet frequency. Lastly, LS does not
search for subsequences in the training dataset; instead, it
utilizes a heuristic to learn near-optimal shapelets by exploring
shapelet interactions.

C. Time Complexity

The complexity analysis of RSAST starts by the analysis
of the computation of the list of weights. Since the method
applies an ANOVA test for each point along the n time
series of length m. This is accomplished with a complexity
of O(n|c|m) with |c| the number of classes. Also, similar
to SAST, RSAST selects k reference time series with |c|
classes, in O(|c|) steps, resulting in a total of O(k|c|) reference
time series within the dataset. So, given a predetermined
set of p starting points and |L| possible lengths for the



subsequences, O(k|c|p|L|) shapelet candidates are randomly
selected. Therefore, in the worst scenario when |L| reach the
maximum possible values m, the shapelet selection process
has a complexity of O(k|c|pm).

Additionally, for the transformation step the method requires
O(k|c|pm) distance computations over the O(n) time series
with O(m) arithmetic operations, culminating in a time com-
plexity of O(k|c|pnm2).

Moreover, ACF and PACF tests are done in
O(k|c|mlog(m)) and O(k|c|m3) steps, respectively, when
using ACF with Fast Fourier Transform and PACF with
Ordinary Least Square regression.

Therefore, the total time complexity of RSAST is
O(n|c|m) + O(c) + O(k|c|mlog(m)) + O(k|c|m3) +
O(k|c|pm)+O(k|c|pnm2)+O(classifier). Hence the overall
complexity of RSAST is O(nm2) +O(classifier).

IV. EXPERIMENTS

RSAST was implemented in the Python programming
language. The implementation was developed under SAST
framework, following the scikit-learn design principles (URL:
Repository RSAST). The repository contains the outcomes for
the experimentation of the method.

A. Accuracy

In the following section, the results are presented in terms
of accuracy, with a comparative analysis of RSAST against the
original SAST algorithm and STC. Additionally, a comparison
is provided between RSAST and other shapelet-based tech-
niques like Fast Shapelet (FS) [22], Learned Shapelet (LS) [23]
and Random Dilated Shapelet Transform (RDST) [10]. Finally,
a comparison is made between the proposed algorithm and
some ensemble methods comprising state-of-the-art techniques
like HIVE-COTE, TS-CHIEF, and ROCKET.

During the experiments the supervised classifier employed
within RSAST is the Ridge classifier, likewise to ROCKET. So
it is utilized the Ridge Classifier with Leave-One-Out (LOO)
cross-validation for scenarios where the transformed dataset
contains more features than instances. In cases where the
opposite holds true, a Logistic Regression classifier is utilized.
All the parameters for the classifiers are left at their default
values and are not fine-tuned.

In addition, we employed the Wilcoxon significance test
with a significance level of 0.05 to make the comparison
of accuracy among the methods. So in order to visualize
this, a critical difference diagrams were constructed following
the methodology proposed in [34]. These plots show the
average ranks across all datasets and visualize them on a
line, grouping classifiers into cliques where there exists no
statistically significant difference in rank.

The experiment was run on an AMD EPYC 7763 64-Core
Processor with 256 CPUs. The experiment encompassed the
utilization of 128 datasets obtained from the UEA & UCR
repository [35], employing the default training and test set
provided by the repository.

Furthermore, for specific comparative analyses involving
other methods, RSAST was run with 10 resampling iterations,
covering the same 128 datasets as before. This approach aimed
to comprehensively evaluate RSAST’s performance across
different scenarios and datasets.

After evaluating the performance of RSAST by varying the
hyperparameters of the method (k instances per class and p
starting point) we set this values to k = 10 and p = 10.
Increasing the number of instances did not yield a signifi-
cant improvement in accuracy but exponentially increased the
method’s execution time. Also with this number of instances
reduces the variability in accuracy that could lead to chose
just one instance per class.

The outcomes for SAST were taken from the SAST orig-
inal paper (72 datasets). While the results for the remaining
methods were taken directly from the UEA & UCR webpage
(85 Bake Off datasets) for the default train/test results as well
as the resampled results.

1) Comparison RSAST, SAST and STC: We evaluated and
compared RSAST in terms of accuracy against the original
SAST algorithm altogether STC and 1-nearest neighbour with
dynamic time warping (1NN-DTW) as a benchmark method.
For the results of SAST there are 72 results from the original
paper using the default train/test split from the UCR archive,
which corresponds to 56 datasets from the 85 Bake Off [36].
Similarly, the results from STC correspond to the 85 Bake
Off datasets from the UEA & UCR webpage with the default
train/test results, leading to a comparable dataset of 56 datasets
for further analysis.

Fig.4, provides a visualization of the relative ranks of
each method. Thus, it is observed that RSAST outperforms
the accuracy of the TSC benchmark 1NN-DTW. Also, as it
is showed by the clique in the critical difference diagram,
RSAST achieves a similar level of accuracy to SAST and
STC. So, RSAST attains comparable accuracy to its baseline
counterparts while being faster to train.

Fig. 4: Critical difference diagram between RSAST, SAST,
STC and the benchmark 1NN-DTW

Furthermore, when it is compared one and one the accuracy
of RSAST against the other methods, for the different datasets,
we found that RSAST wins, against the benchmark 1NN-
DTW, in 41 times, losses in 10 and draws in 5 times. Similarly,
against SAST, RSAST wins 24 times, losses 21 times and
draws 11 times. Finally, comparing with STC, RSAST wins
20 times, losses 30 times and draws 6 times (see Fig 5).

2) Comparison RSAST and Shapelet Methods: For this
section, we compared shapelet methods based on the avail-
ability of results in the UCR Repository [35], or using well-

https://github.com/nirojasva/random_sast.git


(a) RSAST(41 wins) vs 1NN-DTW(10
wins), 5 draws

(b) RSAST (24 wins) vs SAST (21 wins),
11 draws

(c) RSAST (20 wins) vs STC (30 wins), 6
draws

Fig. 5: Pairwise comparison of RSAST against SAST, STC and 1NN-DTW

established implementations, that allow testing the model
locally.

Hence, the comparison among shapelet methods includes
Fast Shapelet (FS), Learned Shapelet (LS), Random Dilated
Shapelet Transform (RDST), and the benchmark 1NN-DTW.
In the case of RSAST, this is evaluated using 128 datasets from
the UCR archive with 10 resamples. For the rest of methods
the available results corresponds to the 85 Bake Off datasets.
Consequently, the results are computed for the 85 datasets of
the evaluation of RSAST in the Bake Off.

So, Fig 6 illustrates that RSAST outperforms FS and the
benchmark method. Moreover, RSAST demonstrates a similar
level of accuracy to LS. However, when comparing RSAST
and RDST, the latter method performs better in most of the
datasets.

Fig. 6: Critical difference diagram between shapelet ap-
proaches and the benchmark 1NN-DTW.

When comparing the different accuracy of RSAST against
the other shapelet approaches (see Fig 7), it is observed that
RSAST outperforms FS in 73 cases, loses in 7 cases, and has 5
draws. Similarly, against LS, RSAST wins 40 times, loses 34
times, and has 11 draws. Finally, when compared with RDST,
RSAST wins 6 times, loses 71 times, and has 8 draws.

Some datasets exhibit substantial variations in results among
shapelet approaches. For instance, in ElectricDevices and
Lightning7, RSAST surpasses FS, with scores of 0.82 com-
pared to 0.29, and 0.75 compared to 0.15, respectively. Addi-
tionally, RSAST outperforms LS significantly in the OliveOil
dataset, achieving a score of 0.87 compared to 0.17. However,
RSAST shows notably lower performance in the ShapeletSim
dataset, compared to the rest of shapelet methods recording
an accuracy of 0.48 compared to 1.0, 0.93, and 0.99 for FS,
LS, and RDST, respectively.

3) Comparison RSAST and Other Categories: For this
comparison we employed the most representative methods,
previously introduced, from each category along with RSAST.

Therefore, specifically, we used Time Series Forest (TSF)
for interval-based methods, Elastic Ensemble (EE) for
distance-based methods, and Bag of Symbolic Fourier Ap-
proximation Symbols (BOSS) for dictionary-based methods.
Similar to the shapelet methods comparison, we used the 128
results for RSAST with 10 resampling, but this time narrowed
to 83 results of BOSS from the UCR webpage. As a result,
the comparison against RSAST it is computed for a total of
83 datasets.

The mean rank (see Fig 8) for each of these methods
shows that BOSS is the most accurate, followed by RSAST.
However, RSAST is not significantly worse; in fact, it is
comparable in terms of accuracy with all the methods. Lastly,
the distance-based method (EE) and the interval-based method
(TSF) present similar accuracy.

Fig. 8: Critical difference RSAST with other categories

In one-on-one accuracy comparisons among these methods
(see Fig 9), RSAST outperforms TSF 42 times, loses 32 times,
and results in 9 draws. Against EE, RSAST wins 37 times,
loses 35 times, and draws 11 times. Finally, when compared
with BOSS, RSAST wins 29 times, loses 40 times, and draws
14 times. Particularly, in the dataset named ShapeletSim,
BOSS outperforms all the methods by a significant margin.

4) Comparison RSAST and SOTA methods: Similarly, as
with shapelet methods, RSAST is compared with other state-
of-the-art algorithms that are based on many type of features,
sometimes including shapelets. For instance, some ensemble
methods are included for the comparison such as: HIVE-COTE
v1.0 which uses interval, dictionary, shapelet and spectral
base features; TS-CHIEF which uses distance, dictionary and
spectral base features; and ROCKET which extracts different



(a) RSAST (73 wins) vs FS (7 wins), 5
draws

(b) RSAST (40 wins) vs LS (34 wins), 11
draws

(c) RSAST (6 wins) vs RDST (71 wins),
8 draws

Fig. 7: Pairwise comparison of shapelet approaches

(a) RSAST (42 wins) vs TSF (32 wins), 9
draws

(b) RSAST (37 wins) vs EE (35 wins), 11
draws

(c) RSAST (29 wins) vs BOSS (40 wins),
14 draws

Fig. 9: Pairwise comparison with other categories

features through the convolution operation with random ker-
nels.

The results indicate that RSAST appears to be less accurate
than ROCKET, HIVE-COTE and TS-CHIEF (see Fig 10).
However it is important to notice that RSAST is a single
feature approach whereas in the ensemble methods there are
many features used to make the classification. Moreover, the
majority of these ensemble methods function as black box
models, making it impossible to discern how the classification
of time series is performed. In contrast, RSAST employs
shapelets for this task, providing clarity in the classification
process.

Fig. 10: Critical difference diagram SOTA algorithms

When comparing RSAST against each of the other methods
for each dataset individually (see Fig 11), it is observed that
RSAST wins 18 times against HIVE-COTE, loses 58 times,
and draws 9 times. Similarly, RSAST wins 15 times against
TS-CHIEF, loses 60 times, and draws 10 times. Lastly, RSAST

wins 6 times against ROCKET, loses 68 times, and draws 11
times.

B. Scalability

The scalability assessment of RSAST followed a method-
ology similar to that of SAST, so we compared the training
time of the models with respect the time series length and the
number of time series within the dataset. So, for the length
method in RSAST, we used the ACF&PACF criteria, varying
the number of instances across 1, 10, while the number of
random points ranged between 10 and 30. Additionally, we
evaluated the most scalable methods, to our knowledge, like
the original SAST algorithm, ROCKET, and RDST.

The experiments were performed using RSAST integrated
with logistic regression for the section focused on increasing
the training set size (Section IV-B1). However, in relation
to the time series length, the experiments were conducted in
conjunction with a ridge regression classifier (Section IV-B2).

Both experiments (time series length and training set size)
were carried out locally utilizing an Intel Core i5-4300U
processor. Also, in order to better show the results we re-scale
the training time in a logarithmic scale.

1) Training set size: To assess the scalability of the method
concerning the training set size, a random oversampling of
the Chinatown dataset was performed. Instances were selected
with replacement from the original dataset within the range of



(a) RSAST (18 wins) vs HIVE-COTE (58
wins), 9 draws

(b) RSAST (15 wins) vs TS-CHIEF (60
wins), 10 draws

(c) RSAST (6 wins) vs ROCKET (68
wins), 11 draws

Fig. 11: Pairwise comparison with SOTA methods

24, 25, 26, 27, 28, 29 and 210. This procedure yielded a new
dataset with an augmented number of time series. A logistic
regression classifier was employed for all the methods.

The results are presented in Figure 12, showcasing the per-
formance of the various tested approaches. Notably, RSAST
demonstrates good performance compared to the other ap-
proaches. Specifically, as it is shown in Table I, RSAST with
1 instance and 10 random points exhibits the best time per-
formance, taking only 0.3s, for 1024 instances. Additionally,
RSAST with 10 instances, and 10 random points took 3.84s
for the same number of time series.

It is noteworthy that ROCKET is the method that experi-
ences the most significant increase in total training time as the
number of time series (TS) rises, going from 0.97s to 7.79s
for 16 and 1024 instances respectively.

The SAST approach, using a logistic regression classifier,
took 3.1s for 1024 instances mirroring the tendency observed
with RDST as the number of instances grows.

Lastly, RDST achieved a training time of 5.97 seconds
for 1024 instances, showing similarity to RSAST with 10
instances and 10 random points.

SAST

RSAST: K=10, P=10

RSAST: K=1, P=30

RSAST: K=1, P=10

RDST
ROCKET

Fig. 12: training time versus training set size

2) Time series length: To evaluate the scalability of the
method in terms of the time series length, the HouseTwenty
dataset is utilized, with time series truncated at lengths of 25,

# Series
Method 16 1024

RSAST: n random points=10 nb inst per class=1 0.05s 0.3s
RSAST: n random points=10 nb inst per class=10 0.12s 3.84s
RSAST: n random points=30 nb inst per class=1 0.05s 0.48s
RDST: n shapelets=10 000 0.06s 5.97s
ROCKET: num kernels=10 000 0.97s 7.79s
SAST: min shapelet length=3 max shapelet length=m 0.14s 3.1s

TABLE I: Summary training time versus training set size

26, 27, 28, 29, and 210. A Ridge Classifier was employed
for all the methods (RSAST, SAST, RDST and ROCKET).
Figure 13, provides a visual representation of the escalating
computation time exhibited by the various methods as the time
series length grows.

Notably, as it is shown in Table II, the SAST approach
exhibits the highest training computation time, going from
0.87s with instances of length 32 to 18 hours, 45 minutes,
and 48.02 seconds with instances of length 1024. On the other
hand, RSAST, with 10 instances and 10 random points, took
38 minutes, and 1.96 second for time series of length 1024.

Furthermore, RDST and ROCKET emerges as the most
scalable method, followed by RSAST with 1 instance and 10
random points, taking a training times of 12.45s, 7.96s and 3
minutes 15.76s, respectively for time series of length 1024.

SAST
RSAST: K=10, P=10

RSAST: K=1, P=30

RSAST: K=1, P=10

RDST

ROCKET

Fig. 13: Training time versus time series length



Length
Method 32 1024

RSAST: n random points=10 nb inst per class=1 0.05s 3m 15.76s
RSAST: n random points=10 nb inst per class=10 0.24s 38m 1.96s
RSAST: n random points=30 nb inst per class=1 0.07s 4m 26.37s
RDST: n shapelets=10 000 0.04s 12.45s
ROCKET: num kernels=10 000 0.48s 7.96s
SAST: min shapelet length=3 max shapelet length=m 0.87s 18h 45m 48.02s

TABLE II: Summary training time versus time series length

C. Interpretability

Similar to the primitive approach [18], and the rest of
shapelet approaches within the literature, the predictions made
by RSAST can be interpreted through the identification and
visualization of the selected shapelets.

Thus, for our method, this is done by the application of
feature importance analysis, as in SAST. In this process, each
feature is linked to a shapelet candidate extracted from a
time series. The shapelet candidates that correspond to the
most significant features are regarded as the top-performing
shapelets.

Additionally, it is important to note that the class label
associated with any given shapelet candidate is derived from
the class of the time series from which it was originally
extracted. So, the class label of a new time series can be
obtained by using the class labels of the shapelet candidates
to which it is the most similar.

Thus, RSAST predictions uses the significance of each
feature, determined by the absolute value of its corresponding
learned weight. So, as depicted in a example of the Coffee
dataset from the UCR archive (see Figure 14), the extracted
shapelets spanning short subsequences, from 13 points (feature
3), and larger shapelets with a length of 78 points (feature 1).

Fig. 14: Shapelets for RSAST using Coffee dataset

Moreover, Figure 15 illustrates the top 3 best shapelets
extracted by RSAST, plotted on the reference time series, for
the Coffee dataset. The top rows of the figures correspond
to the reference time series selected from class 0, while the
second rows represent the reference time series selected from
class 1. A perfect match between a shapelet candidate and
a reference time series implies that the shapelet has been
extracted from that particular reference time series. Thus, in

this case, the feature 1 is learned from class 0, while the feature
2 and 3 are learned from class 1. This visualization offers
insights into the discriminatory patterns learned by RSAST
for distinguishing between the two classes of the dataset.

Fig. 15: Top 3 shapelets, on TS, learned by RSAST on Coffee
dataset.

V. CONCLUSION

In summary, shapelet-based methods in time series classi-
fication aim to identify distinctive patterns within time series
so as assign a class, to a new time series, from a range of
possible class values.

The Scalable and Accurate Subsequence Transform (SAST)
is a state-of-the-art technique that makes use of these repre-
sentative subsequences to train a classifier. However, despite
its accuracy, SAST faces challenges in terms of scalability,
particularly when dealing with longer time series.

Thus, in order to enhance the computational efficiency of
the algorithm we proposed Random SAST (RSAST) a method
that generates shapelets randomly, guided by certain statistical
criteria, reducing the search space of shapelets.

RSAST demonstrates competitive accuracy when compared
to other shapelet-based techniques, as well as against various
state-of-the-art approaches. Moreover, its interpretability is a
noteworthy feature, as it relies on the extraction of continuous
subsequences from the training time series. This characteristic
allows for a clearer understanding of the model’s decision-
making process.
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