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Highlights

Tractability of explaining classifier decisions

Martin C. Cooper, Joao Marques-Silva

e Research highlight 1: a characterisation of tractable languages for the
problem of finding a minimal explanation for a decision taken by a
classifier. This highlights the importance of properties such as mono-
tonicity or submodularity, as well as the asymmetry between explaining
positive and negative decisions.

e Research highlight 2: a study of tractable languages for the problem
of finding a minimum-cardinality explanation which indicate that the
only non-trivial tractable class corresponds to modularity (i.e. decom-
posability into the sum of unary functions). For the problem of finding
a set of diverse explanations, there are no non-trivial tractable classes.
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Abstract

Explaining decisions is at the heart of explainable AI. We investigate the
computational complexity of providing a formally-correct and minimal expla-
nation of a decision taken by a classifier. In the case of threshold (i.e. score-
based) classifiers, we show that a complexity dichotomy follows from the com-
plexity dichotomy for languages of cost functions. In particular, submodular
classifiers allow tractable explanation of positive decisions, but not negative
decisions (assuming P#£NP). This is an example of the possible asymmetry
between the complexity of explaining positive and negative decisions of a
particular classifier. Nevertheless, there are large families of classifiers for
which explaining both positive and negative decisions is tractable, such as
monotone or modular (e.g. linear) classifiers. We extend the characterisa-
tion of tractable cases to constrained classifiers (when there are constraints
on the possible input vectors) and to the search for contrastive rather than
abductive explanations. Indeed, we show that tractable classes coincide for
abductive and contrastive explanations in the constrained or unconstrained
settings. We show the intractability of returning a set of k diverse explana-
tions even for linear classifiers and &£ = 2. Finding a minimum-cardinality
explanation is tractable for the family of modular classifiers, i.e. when the
score function is the sum of unary functions, but becomes intractable when
any non-modular function is also allowed.
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1. Introduction: Explanations of decisions

Recent work has shown that it is possible to apply formal reasoning to
explainable AI, thus providing formal guarantees of correctness of expla-
nations [II, 2, B3], 4, Bl 6l 7, 8|, 9]E] However, scaleability quickly becomes
an issue because testing the validity of an explanation may be NP-hard,
or even #P-hard. As a result, more recent work focused on investigat-
ing classes of classifiers for which explanations can be found in polynomial
time [11], [12] 13| (14} [T5] 16l [17]. A natural question is thus which other classes
of classifiers allow for formal explanations to be computed in polynomial
time. This is our motivation for investigating the computational complexity
of finding explanations of decisions taken by boolean classifiers. More con-
cretely, the paper proposes conditions on the decision problems associated
with classification functions, which enable finding in polynomial time a so-
called abductive or contrastive explanation. Furthermore, the paper shows
that several large classes of classifiers respect the proposed conditions.

We consider a boolean classification problem with two classes K = {0, 1},
defined on a set of features (or attributes) x1,...,z,, which will be repre-
sented by their indices A = {1,...,n}. The features can either be real-valued
or categorical. For real-valued features, domains are (not necessarily finitely-
bounded) intervals of the reals, whereas for categorical features, domains are
finite sets. A concrete assignment to the features referenced by A is rep-
resented by an n-dimensional vector a = (ay, ..., a,), where a; denotes the
value assigned to feature j, represented by variable x;, such that a; is taken
from the domain of z;. The set of all n-dimensional vectors denotes the
feature space F.

Given a classifier with features A, the corresponding decision function is
a mapping from the feature space to the set of classes, i.e. k : F — K. For
example, for a linear classifier, the decision function picks 1 if ) w;z; > ¢,
and 0 if ), w;z; < t, for some constants w; (¢ =1,...,n) and t. Givena € F,
we consider the set of feature literals of the form (z; = a;), where x; denotes
a variable and a; a constant.

IThere exist a wide range of explainable Al approaches offering no formal guarantees
of correctness [10].



Definition 1. An abductive explanation (AXp) of the decision x(a) = cis a
subset-minimal set P C A, denoting feature literals, i.e. feature-value pairs
(taken from a), such that

vix e F). (A o =) = (x(0) =0)) 1)

is true.

Abductive explanations [3] are also referred to as sufficient reasons [1§]
or PI (prime implicant) explanations [I]. We can draw an analogy with
prime implicants of propositional formulae: finding subset-minimal (prime)
implicants rather than shortest implicants is interesting from a computational
point of view since deciding the existence of an implicant of size less than k
is ©F-complete [19].

Example 1. We consider as a running example the case of a bank which
uses a function x to decide whether to grant a loan to a couple represented by
a feature vector x = (saly, saly, agey, ages), where saly, saly are the salaries
and agey,ages the ages of the two people making up the couple. Suppose
that x(x) = 1 if and only if (max(saly, saly) > salpm) A (min(age;, ages) <
agemax). 1f a corresponds to a couple who both earn more than saly;, and
both are younger than age,., then there are four abductive explanations
for k(a) = 1: {1,3}, {1,4}, {2,3} and {2,4}. For example, {1,3} means
that the first and third features (sal; and age;) are sufficient to explain the
decision. On the other hand, if b corresponds to a couple who both earn
more than sal,;, and both are older than age.x, then the only abductive
explanation for x(b) = 0 is {3,4} (i.e. that they are both too old).

If AXp’s contain many features, it may be interesting for the user to
obtain a smaller set of features P with only a probabilistic guarantee that
extensions return the same class c¢. Such sets P are known as relevant sets.
Unfortunately finding one relevant set is NP-hard even for decision trees [20]
and deciding the existence of a relevant set of size at most £ is complete for the
complexity class NPPP [21]. In the search for tractable classes, it is therefore
natural to restrict our attention to the non-probabilistic notion of explanation
of Definition [I One should note, however, that these negative complexity
results do not preclude the practical efficiency of computing approximations
to relevant sets for simple classifiers such as decision trees [22] and naive
Bayes classifiers [12].



Our aim is to characterise those families of classifiers which allow tractable
explaining. For threshold classifiers defined by an objective function which is
the sum of functions from a finite language £, we provide a characterisation
of those languages L for which decisions can be explained (i.e. an AXp can
be found) in polynomial time. This follows from the complexity dichotomy
for languages of cost functions [23]. Examples of tractable languages include
monotone and submodular functions. Indeed, over boolean domains, the
characteristion implies that explainability is NP-hard for languages that are
neither monotone nor submodular. Furthermore, for the important tractable
classes of monotone or submodular functions, tractability does not require
finiteness of the language £ or decomposability of the objective function into
the sum of functions from £: minimising any function f which is either
monotone or submodular can be achieved in polynomial time provided f
itself can be evaluated in polynomial time [24].

Decisions may have an exponential number of AXp’s, so it is natural
to look beyond the basic problem of finding one AXp. In the presence of
multiple explanations, one reasonable goal is to return a small set of diverse
explanations, another is to return a minimum-cardinality explanation. For
these two problems, we again provide characterisations of tractable cases for
families of threshold classifiers.

Adding the criterion of diversity would appear to exclude the existence of
tractable classes. Indeed, we show that finding a set of diverse explanations
is NP-hard when asking for as little as two diverse solutions, even in the
simplest case of a linear classifier over boolean domains.

Concision of explanations is an obvious criterion given the well known
cognitive limitations of human users when processing information [25]. Find-
ing a minimum-cardinality explanation is tractable for threshold classifiers
whose objective function belongs to the language L,,,q of modular functions,
i.e. which are the sum of unary functions of each feature. We show that find-
ing a minimum-cardinality explanation is NP-hard for any proper extension
of Leq and indeed for any non-modular language of {0, 1}-valued functions
over boolean domains.

We generalise our characterisation results to the case of contrastive expla-
nations (minimal sets of features which if changed lead to a change of class)
and also to the case when constraints are given on feature space.

The paper is structured as follows. After defining different families of
classifiers in Section [2] we show the close relationship between finding one
abductive explanation of a positive (respectively, negative) decision and the
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problem TAUTOLOGY (resp., UNSAT) in Section [3| (resp., Section [{}). We
extend this analysis to cover the presence of constraints between features in
Section [f] and contrastive explanations in Section [6] Section [7] provides a
language dichotomy concerning the tractability of finding one abductive (or
contrastive) explanation. In the presence of many alternative explanations,
it can be interesting to either find a small set of diverse explanations or find
a shortest explanation. These problems are almost always intractable, as
shown in Section [§ and Section [Q In Section 10 we conclude and list some
open problems. The main difference compared to the conference version of
this paper [26] is Section [9] which is entirely new.

2. Definitions

In order to study the complexity of finding explanations, and in particular
to identify tractable cases, we need to place restrictions on the classifier .
Let D be a set of domains. For example, D may include all intervals of the
real numbers and all finite subsets of the integers. Let 7P represent the
family of functions & : I ; D; — K where each domain D; belongs to D (i.e.
the feature space F is the Cartesian product of domains from D). We call n
the arity of k. Recall that K = {0,1}.

Let F be a family of functions taking values in RU{—o00, c0}. We say that
k:F — Kis a F-threshold classifier if it can be represented by an objective
function f : F — R U {—00,00} belonging to F such that an input vector
x € F is classified as positive (k(x) = 1) iff f(x) is strictly greater than some
threshold ¢, negative otherwise. Concentrating on threshold classifiers is not
really a restriction, since any binary classifier x : F — {0, 1} can be viewed
as a threshold classifier with f = x and threshold ¢ = 0. It is the choice
of the family of functions F which determines the complexity of explaining
decisions.

If F is the set of real-valued linear functions, then JF-threshold classi-
fiers are known as linear classifiers. Similarly, we can define larger families of
threshold classifiers, such as monotone or submodular threshold-classifiers by
restricting the objective function f to be monotone or submodular. A func-
tion f is monotone if Vx,y, x <y implies f(x) < f(y) (where < is componen-
twise comparison); f is submodular if Vx,y, f(min(x,y))+ f(max(x,y)) <
f(x) + f(y), where min and max are applied componentwise [27]. All linear
functions are submodular but only those linear functions whose coefficients
are non-negative are monotone. Similarly, f is antitone if Vx,y, x<y im-



plies f(x)> f(y); f is supermodular if Vx,y, f(min(x,y))+ f(max(x,y)) >
FOO+F(y): £ is modular i€, y, f(min(x,y))+f(max(x,y)) = f(x)+f().
It is worth pointing out that all these classes of functions (linear, modular,
submodular, supermodular, monotone, antitone) are closed under addition.
Modular functions are exactly those functions f that can be decomposed
into a sum of unary functions f(x) = >, fi(z;) [28]. By definition, mod-
ular functions are both submodular and supermodular and include linear
functions as a special case.

Monotonicity [15] is a desirable property in applications where it is im-
portant to guarantee meritocratic fairness (do not favour a less-qualified can-
didate) [29]. It has been imposed even for classifiers as complex as neural
networks [30].

Submodularity is a well-studied concept in Operations Research and Ma-
chine learning whose origins can be traced back to the optimal transport
problem studied by Gaspard Monge in 1781 [31], 32]. Submodularity is a
desirable property in settings where the feature-values have positive but de-
creasing marginal impact on the function’s value [33]. Examples include
predicting the demand for a product as a function of various options that
might be included. Submodularity can be guaranteed by placing restrictions
on common machine-learning models. For example, deep neural networks
with weights that are strictly non-negative are submodular [34]. The learn-
ability of submodular functions has been extensively studied in the machine
learning community [35] [36, 37, 38].

It is well known that a submodular function over boolean domains can
be minimized in polynomial time [24] 39, [40]. For example, if the objective
function f is the sum of functions of pairs of variables, then minimizing
f is equivalent to finding the minimum cut in a weighted graph [41]. A
polynomial-time algorithm for minimizing a submodular function over any
finite domains follows from the polynomial reduction to boolean domains
obtained by replacing each variable x; with domain {1, ..., d} by d—1 boolean
variables x;, = 1 < x; >r (r=1,...,d —1) [28].

Example 2. Consider again our example of a bank which uses a function & to
decide whether to grant a loan to a couple represented by the feature vector
x = (saly, saly, agey, ages). Suppose that k is a threshold classifier x(x)
1 & f(x) > t, where f = af) + Bfs + 7fs and fi(x) = max(saly, saly)
pmin(saly, saly) (where 0 < p < 1), and fo(x) = 1 iff (max(age;, ages)
agemin) (and fo(x) = 0 otherwise), and f3(x) = 1 iff (min(age;,ages)
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agemax) (and f3(x) = 0 otherwise), where agemin, agémax and a, 3,7, > 0
are constants, with age,;, being the age of majority and age., retirement
age.

It can be verified that f; and fs are both submodular and monotone, and
that f3 is both submodular and antitone. Thus (by additivity of submodu-
larity), f is submodular but it is neither monotone nor antitone (assuming
a, 3,7 > 0). On the other hand, f is monotone if v = 0.

We say that k is a F-multi-threshold classifier if it can be represented by
functions f; € F (i = 1,...,r) such that an input vector x € F is classified
as positive (k(x) = 1) iff (fi(x) > t1)A...A(f-(x) > t,) for some constants t;
(t=1,...,r). For example, if F is the set of real-valued linear functions, then
for F-multi-threshold classifiers the set of positive examples x is a polytope.

We are specifically interested in families of classifiers 7 C TP which
are closed under replacing arguments by constants (sometimes known as
restriction, conditioning [42] or projection [43]) since this a necessary con-
dition for the correctness of our polynomial-time algorithm. Fortunately,
this is true for most families of functions of interest. For example, a lin-
ear/monotone /submodular threshold-classifier remains respectively linear/
monotone/submodular if any of its arguments are replaced by constants.
For k € TP of arity n, S C {1,...,n} and v an assignment to the arguments
indexed by S, let ry : IliggD; — K be the function obtained from x by fixing
the arguments in S to v, i.e. for all x € Il;gsD;, kv(x) = K(VUX) (where the
partial assignments v and x are viewed as sets of literals). We say that T is
closed under fizing arguments if for all x : II?_; D; — K such that x € T, for
all S C{1,...,n} and for all v € Il;csD;, we have k, € T.

We can view a boolean classifier x as a decision problem: given an input
vector x, should it be classified 0 or 1?7 Thus we use the notation k € P to
indicate that the value of kappa can be computed in polynomial time and
T C P to indicate that this is true for all Kk € T .

In this paper we use the term NP-hard to refer to any problem II for
which a polynomial number of calls to an algorithm to solve II is sufficient
to solve any problem in NP.

3. Tractability of finding one abductive explanation

To obtain a polynomial-time algorithm, we require that a particular de-
cision problem be solvable in polynomial time. For a family 7 C TP of



boolean-valued functions, let TAUTOLOGY(T) be the following decision prob-
lem: given a function k € T, is it true that K = 1, i.e. forallx € F, r(x) = 17
To avoid exploring dead-end branches, our algorithm requires the answer to
this question for functions obtained by fixing a subset of the arguments of a
classifier, which is why we require that 7 be closed under fixing arguments.

Firstly we consider the more general case in which the only assumption
we make is that all functions in 7 execute in polynomial time. In this
case, TAUTOLOGY(T) € coNP (since a counter-example can be verified in
polynomial time). If, furthermore, 7 is closed under fixing arguments, then
using a greedy algorithm (as in Proposition 3.1 case (3) of [44]) we can deduce
that n calls to an NP oracle are sufficient to find an abductive explanation.
In the following, we investigate cases for which TAuTOoLOGY(T) € P and
hence for which finding an abductive explanation is also polynomial-time by
a similar greedy algorithm.

We now state conditions which guarantee a polynomial-time algorithm to
find one abductive explanation for large classes of classifiers. The algorithm
initialises P to A and greedily deletes literals from P as long as this preserves
property of being an explanation.

Proposition 1. If T is closed under fixing arguments and TAUTOLOGY (T )
€ P, then for any classifier k € T and any positively-classified input a, an
abductive explanation of k(a) =1 can be found in polynomial time.

Proof. An explanation is a set P C {1,...,n} such that equation holds.
The algorithm is a simple greedy algorithm that initialises P to the trivial

explanation {1,...,n} (corresponding to the complete assignment a) and for
each i € P tests whether i can be deleted to leave a valid explanation P\ {i}:
P« {1,....,n}
fori=1,...,n:

if P\ {i} is a valid explanation then P < P\ {i}

Clearly, the final value P of P is an explanation. Furthermore, it is minimal
because if P\ {i} was not a valid explanation for some P 2 P, then neither
is P\ {7}.

Let v be the partial assignment corresponding to the values a; for j €
P\ {i}. Testing whether P \ {i} is a valid explanation is equivalent to
testing whether x, = 1 and hence can be performed in polynomial time since
T is closed under fixing arguments and TAUTOLOGY(T) € P. The algorithm



needs to solve exactly n instances of TAuTOLOGY(T). It follows that one
abductive explanation can be found in polynomial time. O]

Proposition [1| can be seen as a special case of the complexity of finding
maximal solutions to problems for which the instance-solution relation is in
P (Proposition 3.1 of [44]).

As we will now see, Proposition 1| applies to a large range of classifiers,
such as linear, submodular or monotone threshold-classifiers as well as multi-
threshold classifiers.

Consider threshold classifiers of the form x(x) = 1 iff f(x) > ¢, for some
real-valued objective function f € F and some constant ¢t. Then

=1 & minf(x) > ¢ (2)
Thus, if T is the set of F-threshold classifiers, then TAuTOLOGY(T) € P if
functions in F can be minimised in polynomial time. Examples of classes
of functions that can be minimised in polynomial time are the objective
functions of extended linear classifiers (referred to as XLCs) [12], monotone
functions over real/integer intervals [15] and submodular functions over finite
ordered domains [39, 2§].
Now consider the case of multi-threshold classifiers of the form x(x) = 1

iff Ai_, fi(x) > t;, for some real-valued functions f; € F and some constants
ti (i=1,...,r). Then

k=l e N (min fi(x) > t) (3)
Thus, if 7 is the set of F-multi-threshold classifiers, then again we have that
TAUTOLOGY(T) € P if each function in F can be minimised in polynomial
time. For example, f; could be monotone, f; submodular and the other f;
linear.

We end this section by showing that a polytime tautology test is not only
a sufficient but also a necessary condition for tractabilty of finding an abduc-
tive explanation. Let AEXPL™(T) be the problem of finding an abductive
explanation of a positive decision taken by a classifier in 7. FP is the class
of function problems that can be solved in polynomial time.

Theorem 1. If T C P is closed under fixzing arguments, then AEXpPLT (T)
e FP iff Tautorocy(T) € P.



Proof. The ‘if’ part of the proof is Proposition [I For the ‘only if’ part,
suppose that T is closed under fixing arguments and AEXPLT(T) € FP.
Let k € T. Let a be an arbitrary choice of feature vector. Then & is a
tautology iff both k(a) = 1 and the empty set is an abductive explanation
of k(a) = 1. Note that in the case that the empty set is an abductive
explanation, it is necessarily the unique abductive explanation. Thus we can
decide TAUTOLOGY(T) in polynomial time. ]

4. Explanations of negative decisions

In the previous section we exclusively studied the problem of finding
an explanation of a positive decision x(a) = 1. We show in this section
that the complexity of this problem can change drastically if we require an
explanation of a negative decision x(a) = 0. For a family 7 C TP of boolean
functions, let UNSAT(T) be the following decision problem: given a boolean
function k € T, is it true that k = 0, i.e. for all x € F, k(x) = 0?7 By
an entirely similar proof based on a greedy algorithm, we can deduce the
following proposition which mirrors Proposition [I}

Proposition 2. If T is closed under fizing arguments and UNSAT(T ) €
P, then for any classifier k € T and any negatively-classified input a, an
abductive explanation of k(a) =0 can be found in polynomial time.

A simple case in which all features are boolean is Tpng, the family of
DNF classifiers. Since deciding the (un)satisfiability of a DNF is trivial,
we have UNSAT(7pnr) € P and so an abductive explanation of a negative
decision can be found in polynomial time. On the other hand, by Theorem [I]
and the co-NP-completeness of deciding whether a DNF is a tautology, an
abductive explanation of a positive decision cannot be found in polynomial
time (assuming P#NP).

It is known that finding an AXp is NP-hard in the case of decision lists
(DL) [9]. We can be more specific. Since DL’s allow rules with both positive
and negative conclusions, they provide a sufficiently rich language in which
to express either positive decisions or negative decisions as a DNF. It fol-
lows that the two distinct problems of finding an abductive explanation of a
positive decision or of a negative decision are both NP-hard for DL’s.

We can mention the special case of classifiers (such as decision trees)
which are equivalent to two mutually exclusive DNF’s ¢*, ¢~ representing
respectively the positive cases and the negative cases (one term in ¢* for each
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positive leaf and one term in ¢~ for each negative leaf in the case of decision
trees). For such classifiers, it follows from Proposition [I| and Proposition
that finding an abductive explanation of any decision, whether positive or
negative, is polynomial-time [45]. It is worth pointing out that in the case
of decision trees, the resulting explanation is often significantly shorter than
the corresponding term in ¢* or ¢~ [14].

Now consider threshold classifiers of the form x(x) = 1 iff f(x) > ¢, for
some real-valued objective function f € F and some constant ¢. Then

k=0 & nxlg];(f(x) <t (4)
Thus, if T is the set of F-threshold classifiers, then UNSAT(T) € P if func-
tions in F can be maximised in polynomial time. Examples of functions
that can be maximised in polynomial time are linear, monotone, antitone
(over real/integer intervals) or supermodular functions (over finite ordered
domains). Note that submodular function maximisation cannot be achieved
in polynomial time (assuming P#NP) [46].

Thus, for a given family of classifiers (such as submodular threshold clas-
sifiers), the complexity of finding an explanation of a positive decision may
be polynomial-time whereas the complexity of finding an explanation of a
negative decision may be intractable.

We end this section with a theorem that is the equivalent of Theorem [1]for
negative decisions. Let AEXPL™ (7)) be the problem of finding an abductive
explanation of a negative decision taken by a classifier in 7.

Theorem 2. If T C P is closed under fixzing arqguments, then AEXpL™ (T)
€ FP iff UNsaT(T ) € P.

Proof. The ‘if’ part of the proof is Proposition [2] For the ‘only if’ part,
suppose that T is closed under fixing arguments and AExpL™(7T) € FP.
Let k € T. Let a be an arbitrary choice of feature vector. Then & is a
unsatisfiable iff both x(a) = 0 and the empty set is an abductive explanation
of k(a) = 0. Thus we can decide UNSAT(T) in polynomial time. O

5. Explanation of classifiers with constrained features

It may be that some constraints exist between features, so that not all
vectors in [ are possible. For example, gender = male and pregnant = yes
are incompatible, and clearly we must have years_of _employment < age.
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Constraints may also exist due to the semantics of the encoding of features.
For example, if a real-valued attribute such as salary or age is encoded as a
set S of boolean features corresponding to non-overlapping ranges of values,
then there is a constraint ATMOSTONE(S) on the set of features S. This
affects the definition of an abductive explanation. Suppose that there are
constraints on the possible feature vectors x given by a predicate C(x). In
the context of constraints C', an abductive explanation [26], 47] of a decision
k(a) = ¢ is now a subset-minimal set P C A of feature literals such that

V(x € F). (c<x> WAWRECE aj)) S K(x) =c (5)

Example 3. Consider a medicine that doctors are allowed to prescribe to
everybody who has the flu except to pregnant women. An abductive expla-
nation why Alice (who is pregnant) was not prescribed the medicine is that
she is pregnant; there is no need to mention that she is a woman given the
constraint that there are no pregnant men. There are two abductive expla-
nations why Bob was prescribed the medicine: (1) that he is not pregnant
and he had the flu, (2) that he is a man and he had the flu. Note that the
rule for prescribing the medicine can be stated without mentioning gender:
prescribe to people who have the flu but are not pregnant. The abductive
explanations remain the same. In particular, the explanation (2) for Bob
being prescribed the medicine mentions gender even though this feature is
not mentioned in the rule. If we did not take into account the constraint
that men cannot be pregnant, then the explanation (2) would not be valid.

We have the following equivalence which follows from equations (1)),
and the logical equivalence (CANA) - B = A— (BV ()

Proposition 3. A set of literals P is an abductive explanation of the decision
k(a) = ¢ under constraints C' if and only if it is an abductive explanation of
the unconstrained (k(a) = c) vV =C.

Consider a threshold classifier with objective function f under constraints
C. We can reduce to the unconstrained case by introducing the function g

where
~JoifC(x)
9(x) = {oo if =C'(x) (6)

Then an abductive explanation for f(a) > ¢ under constraints C' is an ab-
ductive explanation of f(a) + g(a) > t (in the unconstrained setting). We
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saw in Section |3| that finding an abductive explanation of a positive deci-
sion taken by a threshold classifier is polynomial-time if the objective func-
tion can be minimised in polynomial time. Thus, for example, if f + g
is submodular over finite domains, then an abductive explanation can be
found in polynomial time. Assume in the following that f is finite-valued
and ¢ is defined as in equation @ A necessary condition for f + g to
be submodular is that g be both min-closed and max-closed [48], where
min-closed means C(x) A C(y) = C(min(x,y)) and maz-closed means
C(x) ANC(y) = C(max(x,y)) [49]. Over finite domains, the class of mono-
tone objective functions can be extended to a maximal tractable class of
constrained minimisation problems by adding min-closed constraints and the
class of antitone objective functions can be extended to a maximal tractable
class by adding max-closed constraints [2§].

As we have already seen, explanations of positive and negative decisions
may have very different complexities. Indeed, an abductive explanation for
f(a) <t under constraints C' is an abductive explanation of f(a) — g(a) <
t (in the unconstrained setting). The sign of g has changed so that the
inequality is satisfied whenever ¢ is infinite. As we saw in Section [} an
abductive explanation of a negative decision of a threshold classifier can
be found in polynomial time if the objective function can be maximised in
polynomial time. Thus, for example, if f— g is a supermodular function (over
finite domains), then an abductive explanation can be found in polynomial
time. A necessary condition for f — g to be supermodular is that g be both
min-closed and max-closed [48]. For the class of monotone functions f, the
maximisation of f — g is tractable if the relations C' (corresponding to the
functions g) are max-closed, and for the class of antitone functions f, the
maximisation of f — g is tractable if the relations C' are min-closed [28]. This
allows us to identify the tractable families of constrained threshold-classifiers
listed in Table [

Other combinations of classifiers and constraints which imply tractable
explaining can also be deduced from Proposition [3 Theorem [I] and Theo-
rem[2] For example, explaining modular classifiers remains tractable when we
add constraints of the form ATMOSTONE(S;) (i = 1,...,r) where Sy, ..., S,
is a laminar (e.g. non-overlapping) family of sets of features [50]. Similarly,
explainability remains tractable for modular classifiers in the presence of
non-overlapping ALLDIFFERENT constraints (since the corresponding con-
strained optimisation problem satisfies the joint-winner property [51]).
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decision ‘ objective function f ‘ constraints C ‘

positive submodular max and min-closed
positive monotone min-closed
positive antitone max-closed
negative supermodular max and min-closed
negative monotone max-closed
negative antitone min-closed

Table 1: Examples of tractable families of constrained threshold-classifiers over finite
domains.

6. Contrastive explanations

Abductive explanations are answers to the question ‘Why is x(a) = ¢?’
A contrastive explanation [52, 53] is an answer to a different question: “Why
is it not the case that x(a) # ¢’? It gives a set of features which if changed in
the feature vector a can lead to a change of class. Contrastive explanations
tend to be smaller than abductive explanations and hence can be easier to
interpret by a human user [52].

Definition 2. Given that k(a) = ¢, a contrastive explanation (CXp) is a
subset-minimal set S C A such that

I(x € F). ((/\ﬁs(xj - aj)) A r(x) # c) (7)

If kK = ¢, then there is no contrastive explanation of k(a) = c.

Example 4. Consider the classifier studied in Example [I} a bank uses a
function s, given by r(x) = 1 if and only if (max(saly, sals) > Salymin) A
(min(agey, ages) < agemax), to decide whether to grant a loan to a couple
represented by a feature vector x = (saly, sals, agey, ages). If a corresponds
to a couple who both earn more than sal,;, and both are younger than
agemax, then the contrastive explanations of the decision k(a) = 1 are {1,2}
and {3,4}. If b corresponds to a couple who both earn more than sal,,;, but
both are older than age,.x, then the contrastive explanations of the decision
k(b) =0 are {3} and {4}.

Let INVALID(T) be the following decision problem: given a boolean func-
tion k € T, does there exist x € F such that x(x) = 0. Similarly, let SAT(7)
be the problem: given a boolean function x € T, does there exists x € F
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such that x(x) = 1. The following proposition is the contrastive equivalent
of Proposition [I] and Proposition [2]

Proposition 4. Suppose T is closed under fixing arguments. If INVALID (")
€ P, then for any classifier k € T and any a such that k(a) = 1, a contrastive
explanation of k(a) = 1 can be found in polynomial time. If SAT(T ) € P,
then for any classifier k € T and any a such that k(a) = 0, a contrastive
explanation of k(a) = 0 can be found in polynomial time.

Proof. We say that S can lead to a class change if equation ([7]) holds. The al-
gorithm is analogous to the algorithm for abductive explanations. It requires
n tests of equation to find a contrastive explanation:

S« {1,...,n}
if S cannot lead to a class change then report that no CXp exists ;
fori=1,...,n:

if §\ {i} can lead to a class change then S < S\ {i}

Testing whether S can lead to a class change from 1 is a test of invalidity
(after fixing features in A \ §), whereas testing whether S can lead to a
class change from 0 is a test of satisfiability (after fixing features in A\ S).
Thus, the above algorithm finds a contrastive explanation of k(a) = ¢ in
polynomial time if INVALID(7) € P (in the case ¢ = 1) or SAT(7) € P (in
the case ¢ = 0). O

For threshold classifiers of the form x(x) = 1iff f(x) > ¢, invalidity corre-
sponds to minyer f(x) < t and satisfiability corresponds to maxyer f(x) > t.
Thus, if 7 is the set of F-threshold classifiers, then INVALID(7) € P if func-
tions in F can be minimised in polynomial time and SAT(7") € P if functions
in F can be maximised in polynomial time.

Let CEXPLT(T) (respectively, CEXPL™ (7)) be the problem of finding a
contrastive explanation of a positive (negative) decision taken by a classifier
in 7 or determining that no contrastive explanation exists. The following
theorem follows from Proposition |4] and the fact that deciding the existence
of a contrastive explanation of k(a) = ¢ is equivalent to deciding —(k = ¢).

Theorem 3. If T C P is closed under firing arguments, then CEXpLY (T )
€ FP iff INVALID(T ) € P, and CEXpPL™ (T ) € FP iff SAT(T ) € P.
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In the context of constraints C, a contrastive explanation of a decision
k(a) = ¢ is now a subset-minimal set S C A of feature literals such that

3(x € F). ((/\ﬁs(xj - aj)) A K(X) £ ¢ A C(X)) (8)

Using the logical equivalence =B A C' = —=(B V (), we have the following
proposition.

Proposition 5. A set of literals P is a contrastive explanation of the decision
k(a) = ¢ under constraints C' if and only if it is a contrastive explanation of
the unconstrained classifier kK V —=C'.

In the case of constrained threshold classifiers, with objective function f
and threshold ¢, let g be as defined by equation (@ Then testing invalidity
under constraints C' is equivalent to determining whether minyer(f(x) +
g(x)) < t and testing satisfiability is equivalent to determining whether
maxxer(f(x) — g(x)) > t. It follows that the tractable cases for finding
contrastive explanations or abductive explanations are identical. Examples
are shown in Table [I} where, in both cases, the decision corresponds to the
original decision (i.e. the value of x(a)).

In fact, from Theorem [1, Theorem [2, Theorem [3| Proposition [3 and
Proposition [5, we can deduce the following theorem which says that tractable
classes of finding abductive or contrastive explanations coincide. It follows
from the fact that INVALID(T") € P iff TAuTOLOGY(T) € P and that SAT(T)
€ P iff UNsAT(T) € P (since a problem is in P iff its complement is in P).

Theorem 4. In the unconstrained or constrained setting, if T C P is closed
under fiving arguments, AEXpLY (T ) € FP iff CExpL"(T) € FP, and
AExpL™ (T ) € FP iff CExpL™ (T ) € FP.

7. A language dichotomy for threshold classifiers

In this section we consider threshold classifiers over finite (i.e. categori-
cal) domains whose objective function can be decomposed into functions of
bounded arity. If o is a list of indices from {1,...,n} (i.e. features) and
x € F is a feature vector, then we use the notation x[o;] to denote the pro-
jection of x on these indices. We assume that the objective function f is the
sum of functions f; each with a corresponding scope o; (the list of featues on
which it is applied):

fox) = D" filxlo) (9)
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Given a set (language) L of functions, we denote by 7. the set of threshold
classifiers whose objective function f is the sum of functions f; € L. Recall
that AEXPLT(7;) is the problem of finding an abductive explanation of a
positive decision taken by a classifier in 7.

Cost Function Networks (CFNs) (also known as Valued Constraint Sat-
isfaction Problems) are defined by sets of functions f; (and their associated
scopes) over finite domains whose sum f (given by equation (9)) is an objec-
tive function to be minimized [54]. CFNs are a generic framework covering
many well-studied optimisation problems. For example, Bayesian networks
can be transformed into CFNs after taking logarithms of probabilities [54].
Let CFN(L) denote the problem of determining, given an objective function
f of the form given in equation @ where each f; € L, together with a real
constant ¢, whether

min f(x) < t.

A technical point is that, due to the necessarily bounded precision of the
values of functions, this is equivalent to the problem of determining, given f
and ¢t € R, whether min f(x) is strictly less than t.

The complexity of CFN(L) has been extensively studied for finite lan-
guages (i.e. languages L such that |£] is finite). It is now known that there
is a dichotomy: depending on the language £, CFN(L) is either in P or
is NP-complete. This result was known for languages of finite-valued cost-
functions [55] and the dichotomy for the more general case, in which costs
can be infinite, follows from the recently-discovered language dichotomy for
constraint satisfaction problems [56, 57, 23, 58]. The following proposition
will lead us to a similar dichotomy for explaining decisions.

Proposition 6. Let L be a set of non-negative functions closed under fixing
arguments. Then AEXPLT (Tz) € FP if and only if CEN(L) € P.

Proof. If L is closed under fixing arguments, then so is 7,. The ‘if’ part of
the proof follows directly from Proposition [I] and the subsequent discussion
in Section [3| so we concentrate on the ‘only if’ part.

By Theorem [1] we know that if AEXPLT(7;) € FP then TauTOLOGY(7;)
€ P. TautoLoGY(7;) is the problem of determining, for a function f ex-
pressible as the sum of functions f; € £ (as in equation @) and a constant
t, whether f(z) > t for all x € F. This is the complement of CFN(L)
which is the problem of determining whether min,cp f(z) < t. Hence, if
TAUTOLOGY(T,) € P then CFN(L) € P, which completes the proof. O
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We now consider constrained classifiers. Let I' be a language of constraint
relations. For each constraint relation in I' we can construct a corresponding
{0, co}-valued function g, as given by equation @ Let Cr denote the set
of all such {0, co}-valued functions for relations in I'. Then £ U Cr can be
viewed as a language of cost functions. Let CONAEXPL™ (7, I') (respec-
tively, CONAEXPL™ (7, I')) denote the problem of finding one abductive
explanation of a positive (negative) decision taken by a classifier in 7, under
a finite set of constraints from T'.

Proposition 7. Let L be a set of non-negative functions closed under fixing
arguments and T a finite set of constraint relations. Then CONAEXPL™ (T,
I') € FP if and only if CFN(LUCr) € P.

Proof. We know from the discussion in Section [5| that CONAEXpPLY (7., I')
is equivalent to AEXPLT(Tuc.). Thus the result follows immediately from
Proposition [6] O

We now consider finding explanations for negative decisions. Although,
as we will show, there is again a dichotomy, it is not the same since in this
case we are studying a (constrained) maximisation problem rather than a
(constrained) minimisation problem. Given a finite language £ of real-valued
functions, all bounded above by B € R, let L;,, denote the set {B — f :
f € L}. Clearly, maximising a sum of functions from £ is equivalent to
minimising a sum of functions from L, .

Proposition 8. Let L be a set of non-negative finite-valued functions closed
under fizing arguments. Then AEXPL™ (T;) € FP if and only if CFN(L;,,)
e P.

Proof. The ‘if” part follows from Proposition 2] and the subsequent discus-
sion in Section [dl For the ‘only if’ part, we know from Theorem [2] that if
AEXPL™(7;) is in FP then UNSAT(7;) is in P. UNSAT(7;) is the problem of
determining, for a function f expressible as the sum of m functions f; € L
and a constant ¢, whether f(z) <t for all # € F. This is equivalent to deter-
mining whether mB — f(x) > mB —t for all z € F. This is the complement
of the problem of determining whether min(mB — f) < t’ (for ' = mB —t).
This is precisely CFN(L;,,). Hence, if UNSAT(7;) € P, then CFN(L;,,) € P,
which completes the proof. n

We now generalise this result to constrained classifiers.
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Proposition 9. Let L be a set of non-negative functions closed under fixzing
arqguments and I a finite set of constraint relations. Then CONAEXPL™ (T,
I') € FP if and only if CFN(L;,, UCr) € P.

Proof. CONAEXPL™ (7., I') is equivalent to CONAEXPLY (7, ., I'). Thus
the result follows immediately from Proposition [7} n

Given the known P/NP-complete dichotomy for CEN(L) for finite lan-
guages L, discussed above, we can immediately deduce the following theorem.

Theorem 5. Let L be a finite language of non-negative functions closed un-
der fizing arguments and I" a finite set of constraint relations with T;,I' C P.
Then each of the problems AEXPLT (T; ), CONAEXpPL™ (T, T'), AEXpPL™ (T;)
and CONAEXpPL™ (T, I') is either in FP or is NP-hard.

Indeed, by Theorem [4] we have an identical dichotomy result for con-
trastive explanations.

Corollary 1. Let L be a finite language of non-negative functions closed un-
der fizing arguments and I" a finite set of constraint relations with T;,I' C P.
Then each of the problems CEXPL™ (T ), CONCEXPL" (T, T'), CExPL™ (T.)
and CONCEXPL™ (T, ') is either in FP or is NP-hard.

In the special but important case of Boolean domains, the characterisa-
tion of tractable cost-function languages [28] tells us that the only tractable
cases are those identified in Table [Il In the unconstrained case over non-
boolean domains, the only tractable languages are those that admit a binary
symmetric fractional polymorphism [55]. Binary symmetric fractional poly-
morphisms can be viewed as componentwise closure operations which include
as special cases both monotonicity and submodularity. An interesting point
is that there is a common algorithm, which can be seen as a linear pro-
gramming relaxation of an integer program, that solves the corresponding
minimisation problem for all such languages [55].

8. Diversity of explanations

We have concentrated up until now on the problem of finding a single
explanation. This is because the problem of finding all explanations has the
obvious disadvantage that the number of explanations may be exponential.
For example, in a first-past-the-post election in which a A wins with m > k
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out of the n = 2k — 1 votes cast, and each vote is considered as a feature,
there are C* abductive explanations for this victory; for a candidate B who
lost with only p < k votes, there are Cﬁ:ﬁ contrastive explanations for why
they did not win.

Rather than providing a single explanation to the user or listing all expla-
nations, we can envisage providing a relatively small number of diverse ex-
planations. A similar strategy of finding a number of diverse good-quality so-
lutions to a Weighted Constraint Satisfaction Problem has been used success-
fully in computational protein design [59], among other examples [60, 61, [62].

An obvious measure of diversity of a set of explanations {Si,..., Sk} is
the minimum Hamming distance |S;AS;| between pairs of distinct explana-
tions .S;, S, where A is the symmetric difference operator between two sets.
This leads to the following computational problem.

k-Div-AEXPLT: Given a binary classifier k : F — {0,1}, a positively-
classified input a and an integer m, find k£ abductive explanations S, ..., Sk
of k(a) = 1 such that for all 4, j such that 1 <i < j <k, |S;AS;| > m.

The definitions for negatively-classified inputs a (k-D1v-AEXPL™) and/or
for contrastive explanations (k-D1v-CEXpPLT, k-D1v-CEXPL™) are entirely
similar. Since Hamming distance is a submodular function, one might hope
that there would be interesting tractable classes. Unfortunately, since we
are, in a sense, maximising this distance rather than minimising it, these
four problems turn out to be NP-hard even in the simplest non-trivial case.

Proposition 10. Fven in the case of k = 2 and for a linear classifier k
over domains of size 2, the following four problems are NP-hard: (a) k-D1v-
AExpL*, (b) k-Div-AEXPL™, (¢) k-Div-CEXPL", (d) k-Div-CEXPL™.

Proof.  (a) Without loss of generality, we suppose that the domains D;
(¢ = 1,...,n) are all {0,1} and k(x) = 1 iff > auz; > t. We
prove NP-hardness for the particular case in which a = (1,...,1) and
the values t,aq, ..., a, are strictly positive integers which satisfy the
following inequalities:

<L < g < <y (10)
i + 2> o= 2t+1) (11)
=1 =m-+1



To solve 2-Div-AEXPL™T we require sets S1,Ss C {1,...,n} satisfying
(1) |S1ASs] > m and (2) Sy, 52 are minimal (for inclusion) sets such
that the minimum value of > | a;z; is at least ¢ + 1 for inputs x with
r; =a; = 1forallieS; (j =1,2). Since the values «; are positive,
the minimum is attained when x; = 0 for all i ¢ S;, and so this is
equivalent to

o = t+1 (j=1,2) (12)

i€S;

Summing these two inequalities (for j = 1,2) gives

i + > = 2t+1) (13)

€51 1€S52
Since, by , we have o, < a; for r < m < s, and |S1ASy| > m, we
know that the left hand side of equation is at most equal to the left
hand side of equation ({L1]), which is equal to 2(¢ + 1). It follows that
we actually have equality in inequality and S1ASy = {1,...,m}
and S; NSy = {m+1,...,n}. Equality in implies that we must
also have equality in the inequalities for j = 1,2. Equality implies
minimality for subset inclusion since all weights «; are strictly positive.

Denoting t+1->"" ., a; by T'and S;N{1,...,m} by P; (for j = 1,2),
we can deduce that we require a partition P;, P, of {1, ..., m} such that
Yo -7 -Ya

i€Py 1€Ps

This is precisely the partition problem which is well known to be NP-
complete [63]. Tt follows that k-Div-AExpL* is NP-hard.

We consider the same linear classifier £ as in case (a), except that
equation is replaced by >.7" «; = 2t, and this time we consider
the vector a = (0,...,0) which is classified negatively by k. To solve
k-D1v-AEXPL™, we require two sets Sp, Sy such that (1) [S1ASs| > m
and (2) Sy, 5, are minimal (for inclusion) sets such that Zi¢sj a; <
t (j = 1,2). Given equation ([L0]), this can only be attained when
S1ASy ={1,...,m} and S1 NSy ={m+1,...,n}, so that 3 .. o; =
>igs, @2 = t. Thus, we need to find two sets P; = {1,...,n}\ S;
(7 = 1,2) which partition {1,...,m} and such that



Thus, again we have a polynomial reduction from the partition prob-
lem. Hence k-D1v-AEXPL™ is NP-hard.

(c) Consider the same linear classifier x as in case (b), but this time
a=(1,...,1). To solve k-D1iv-CEXPL™, we require two sets Sj, Sy C
{1,....n} such that 3", .c o; <t (j = 1,2) and [S51AS;| > m. Since
this is exactly the same problem encountered in case (b), we can again
deduce NP-hardness.

(d) Consider the same linear classifier x as in case (a), but with a =
(0,...,0). To solve k-Div-CExpPL~, we require 51,5, C {1,...,n}
such that 3 ,cq a; > t+1 (j = 1,2) and [S;ASz[ > m. Since this
is exactly the problem encountered in case (a), we can again deduce
NP-hardness.

O

It is worth pointing out that the NP-hardness of finding a diverse set of
k explanations is robust to changes in the definition of diversity of a set of
k explanations, since Proposition [10] applies even in the case k = 2. For ex-
ample, defining a set of k explanations to be diverse if the average Hamming
distance is bounded below by a constant is equivalent to our definition when
k = 2. Indeed, this is true for all measures of diversity which coincide with
a minimum Hamming distance in the case of a set of two explanations.

It is well known that the partition problem is one of the easiest NP-hard
problems to solve in practice [64]. Thus, Proposition [10| precludes (assuming
P#NP) a worst-case polynomial-time algorithm for finding a diverse set of
explanations, but leaves the door open to the existence of practically-efficient
algorithms.

9. Minimum-cardinality explanations

In this section we show that finding a minimum-cardinality explanation
is in P for modular classifiers (i.e. classifiers whose objective function is
the sum of unary functions of each feature). We then show that finding a
minimum-cardinality explanation is NP-hard for threshold classifiers whose
objective function is the sum of simple non-modular functions. Indeed, over
boolean domains, the problem is NP-hard as soon as any {0, 1}-valued non-
modular binary function is allowed. Over arbitrary domains, the problem is
NP-hard for any proper extension of modular classifiers.
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Many decisions have more than one explanation. Many researchers have
identified parsimony as an important criterion for choosing between expla-
nations [65, 66]. From the point of view of a human user, smaller expla-
nations tend to be easier to understand and more meaningful. As an ex-
ample, consider a classifier k on n boolean features x; (i = 1,...,n). Sup-
pose that k(x) = 21 V (T2 A ... A T,) and we want to explain the decision
k(1,0,...,0) = 1. Clearly {1} is an AXp (abductive explanation), but so is
{2,...,n}. We will therefore now study the complexity of finding the small-
est explanation. We know that, on the one hand, deciding whether there
exists an AXp of size less than k is ¥¥-complete for multilayer perceptron
classifiers [60], but is quasi-linear time for threshold classifiers with modular
objective functions [I12]. An interesting point is that the symmetry we have
observed between AXp’s and CXp’s no longer holds when looking for small-
est explanations: deciding whether there exists a CXp of size less than k lies
at the first (rather than the second) level of the polynomial hierarchy, as we
now show.

Proposition 11. The problem of deciding whether there exists a CXp of size
less than k for a decision k(v) = ¢, where k € P, belongs to NP.

Proof. Let v be the feature vector whose decision k(v) is to be explained. A
certificate consists of a set of features S and a feature vector x € F. We can
clearly verify in polynomial time that (1) |S| < k, (2) x and v only differ on
features in S and (3) k(x) # K(V). O

As in Section [} we consider languages L of real-valued functions and
denote by 7, the set of threshold classifiers k defined by k(x) = f(x) > ¢ for
a threshold ¢, where f is the sum of functions from £ applied to components
of the feature vector x.

We denote by MINCARDAXPT(7;) (respectively, MINCARDAXP~(7;))
the problem of finding a minimum-cardinality AXp of a decision x(v) = 1 (re-
spectively, k(v) = 0), given a classifier k € T, and a positively (respectively,
negatively) classified feature vector v. We use similar notation for contrastive
explanations (CXp’s). Let L,04 be the language of modular functions. We
first state a positive result concerning modular objective functions which is
a minor generalisation of known results [12 [66].

Theorem 6. Suppose that the objective function f of a threshold classifier
k € P is modular and that domain-sizes are bounded by a constant. Then
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minimum-cardinality AXp’s and CXp’s can be found for either positive or
negative decisions in log-linear time.

Proof. Consider first a positive decision to be explained, corresponding to
f(v) > t, where f is modular. It is well known that all modular functions
are expressible as the sum of unary functions [28], so

flx) = Zfi(iﬁi)

for some unary functions f;. Fori =1,... n, let u; € D; be such that f;(u;)
is minimum, and let §; = f;(v;) — fi(u;). In O(nlogn) time we can order the
values ¢; in decreasing order. Without loss of generality and for notational
convenience, assume that 6; > ... > d,,. Let k be minimal such that

n

Fv) = > 6 >t

i=k+1

By our choice of k, {1,...,k} is an AXp, and since 6; > 0, (1 < k < j) it is
of minimum-cardinality.

To find a minimum-cardinality CXp of f(v) > t, it is sufficient to choose
the minimal j such that

fv) = D 6 <t

Our choice of j ensures that {1,...,75} is a CXp and 6; > ... > ¢, ensures
that it is of minimum cardinality.

Since — f is modular if and only if f is modular, and a negative decision
f(v) <t can be interpreted as a positive decision — f(v) > —t, we can easily
adapt the above proof to explanations of negative decisions. O

Thus it is tractable to find smallest explanations for classifiers in 7, when
L = Loq- Unfortunately, as we will show in this section, there is little
chance of finding another language £ for which finding smallest explanations
is tractable.
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9.1. Boolean domains

We first define some simple functions over boolean domains:

for ) 1 fu=1Vvoe=1
u,v) =

OR 0 otherwise.

1 fu=v=1

0 otherwise.

fAND<u7 U) - {

1 fu=0A0v=1

0 otherwise.

fCUT(Ua U) = {

1 ifuz#w

0 otherwise.

fmq(u,v) = {

We note that for and fanp are monotone, and that for, fcur and fxpq are
submodular. Indeed, modulo domain inversion (i.e. interchanging 0 and 1
in each domain), these are the only {0, 1}-valued functions g of arity 2 over
boolean domains which are not modular but for which CEN({g}) € P [67].

Proposition 12. MINCARDAXP" (7;) and MINCARDCXP~ (7;) are NP-
hard if for € L.

Proof. The proof is by reduction from MINIMUM VERTEX COVER which
is a well-known NP-hard problem. Let G = (V| E) be a graph with V' =
{1,...,n} and m = |E|. Let

f&) = Y for(wix))

{i,j}€E

Let t =m —1and v=(1,...,1). Clearly f(v) = m > t, so v is positively
classified by the corresponding threshold classifier. The AXp’s of f(v) > ¢
are easily seen to be subset-minimal S C V such that for all {i,j} € E,i € S
or j € S (since each copy of for has to return 1 whatever the values assigned
to features not in S). Thus, a minimum-cardinality AXp is a smallest vertex
cover of the graph . This completes the reduction from MINIMUM VERTEX
COVER to MINCARDAXPT(7;), which is clearly polynomial.

Now consider w = (0, ...,0) which is negatively classified since f(w) =
0 <t = m —1 (assuming without loss of generality that m > 0). The
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minimum-cardinality CXp’s of f(w) < ¢ are again the smallest vertex cov-
ers of the graph G. Thus we have a polynomial reduction from MINIMUM
VERTEX COVER to MINCARDCXP ™ (7;). O

Proposition 13. MINCARDAXP" (7;) and MINCARDCXP~ (7;) are NP-
hard Zf fAND S ,C

Proof. The proof is by reduction from CLIQUE, a well-known NP-complete
problem, which consists in determining whether a graph contains a clique
of size k, i.e. whether the complete graph on k vertices is a subgraph. Let
G = (V,E) be a graph with V = {1,...,n} and m = |E|. Let

) = > fano(wiz))

{i,j}€FE

Lett = k(k—1)/2—1and v = (1,...,1). Suppose, without loss of generality,
that m > k(k—1)/2 and k > 1, otherwise CLIQUE is trivial. Clearly f(v) =
m > t, so v is positively classified by the corresponding threshold classifier.
Let S be a minimum-cardinality AXp of f(v) > t. We claim that G contains
contains a clique of size k if and only if |S| = k.

In one direction, suppose that C' = (V, E¢) is a subgraph of G which is a
clique of size k. Then the minimum value of f over all feature vectors which
agree with v on features in Vi is k(k —1)/2 > t. Furthermore this minimum
value of f is at most (k—1)(k—2)/2 < k(k—1)/2—1 =t for proper subsets
of Vi (since we assume k£ > 1). Hence Vi is an AXp of f(v) > t.

In the other direction, suppose that S is an AXp of f(v) >t and |S| = k.
Then the minimum value of f over all feature vectors which agree with v on
features in S is at most k(k — 1)/2 (due to |S| = k) and at least t + 1 =
k(k —1)/2 since S is an AXp. It follows that this minimum value of f must
be equal to k(k — 1)/2 which is only attained when the induced subgraph of
G on vertex set S is a clique of size k.

Thus, there is a minimum-cardinality AXp of size k iff there is a clique
of size k in the graph G. This completes the reduction from CLIQUE to
MINCARDAXP™(T;), which is clearly polynomial.

Now consider w = (0, ...,0) which is negatively classified since f(w) =
0 <t==k(k-1)/2—1. By a similar argument to the above, there is a
minimum-cardinality CXp of f(w) < t of size k iff there is a clique of size
k in the graph G. Hence, there is a polynomial reduction from CLIQUE to
MINCARDCXP™ (7). O
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Proposition 14. MINCARDAXP™ (7. ) is NP-hard if fxrq € T

Proof. The proof is by reduction from MINIMUM VERTEX COVER, as in the
proof of Proposition but, this time, there is a feature corresponding to
each vertex and two features corresponding to each edge of the graph. Let
G = (V,E) be a graph with V = {1,...,n} and m = |E|.

A feature vector x is composed of n + 2m features: a feature z; (i € V)
corresponding to each vertex and two features z;;, z;; (i < jA{i,j} € E)
corresponding to each edge. Let

f(x) = Z (fxmq(®i, 2j)+ fymq (@i, Tig)+ fypq (@), Tij) +2 fyeq (@i, i)

1<jN{i,j}€FE

Lett=4m—1landv=(1,...,1,0,...,0,1,...,1) (i.e. v assigns 1 to each x;
(teV),0toeachz;; (i < jA{i,j} € F)and 1toeachz;; (i < jA{i,j} € E)).
We can easily see that f(v) = 4m > t, so v is positively classified by the
threshold classifier corresponding to the objective function f and threshold
t. We will show that for each minimum-cardinality AXp of f(v) > ¢, there
is a corresponding minimum vertex cover of G and vice versa.

Consider the term in f corresponding to edge {i,j}:

Ti; = fyeq(wi, ;) + frxeq(Ti, xij) + feq (@), v4) + 2 fNeq (i), 75i)

Since the three boolean features x;, x;, x;; cannot all be different, we can
easily deduce that the maximum value of 7;; is 4 and hence the maximum
value of f(x) is 4m (the value of f(v)). Consider the quadruplet of features
(@i, x5, %5, %), assigned (1,1,0,1) when x = v. An AXp S must fix features
so that each term Tj; is guaranteed to have a value of 4 whatever the values
assigned to the features not in . This implies that S must contain z;; and
xj;. Furthermore, S must contain at least one of x; and x;, since changing
both of z;,x; reduces the value of T;; from 4 to 2. Let C = {i | (1 <i <
n) A (z; € S)}. Then C is a vertex cover of G since, as we have just seen, S
contains at least one of x; and x; for each edge {i,j} € E.

Hence, for each minimum-cardinality AXp S, there is a minimum vertex
cover of the graph G. Conversely, it is easy to see that each minimum vertex
cover of G is an AXp of f(v) > t = 4m — 1. Thus, finding a minimum-
cardinality AXp for this f and ¢ is equivalent to finding a minimum vertex
cover of G. This reduction is clearly polynomial. O]

Proposition 15. MINCARDAXP™ (7 ) is NP-hard if four € L.
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Proof. This is a corollary of Proposition 14| since fxgrq(u,v) = feur(u,v) +
four (v, u) provides a polynomial reduction from MINCARDAXP™ (T{fyu0})
to MINCARDAXPT(T,) if four € L. ]

As pointed out at the beginning of this section, there is an asymmetry
between finding smallest AXp’s and smallest CXp’s. Indeed, for AXp’s we
want to minimise the number of features which stay the same, whereas for
CXp’s we want to minimise the number of features which change. In order
to cover all cases for contrastive explanations, we need to study two more
functions over boolean domains:

1 fu=w

0 otherwise.

fEQ(U; U) - {

1 fu=1Vov=0

0 otherwise.

fNCUT(U, U) = {

The following two propositions show that each of these two functions are
again sufficient to provoke NP-hardness (for the case of a smallest CXp of a
negative decision).

Proposition 16. MINCARDCXP™ (7)) is NP-hard if frq € L.

Proof. The proof is by a reduction from CLIQUE. Let G = (V, E) be a graph
with V = {1,...,n} and m = |E|. We consider the following function f on
n + 2m features: z; (1 € V) and w5, xj; (i <j A {i,j} € E).

fo0 = Y (fealmi ) + fea(@i, xy) + faa(ey, wy) + 2 fea(zy, ©5:))
i<jN{i,j}€E

Let t =3m+k(k—1)—1 (where k > 1) and w = (0,...,0,1,...,1,1,...,1)
(i.e. each z; is assigned 0, each z;; is assigned 1 and z;; assigned 1). Clearly
f(w) =3m <t, sow is negatively classified. Consider the term

Ti; = feq(zi, ;) + feq(i, zij) + feq(xj, zij) + 2 feq(xij, Tji)

It is easily verified that the value of Tj; is either 1, 3 or 5. The value of Tj;
is 3 when x = w and only increases (from 3 to 5) if both z; and z; change
from 0 to 1 or both of z;; and zj; change from 1 to 0. Observe that flipping
just z; alone does not change the value of 7;;. So, in the case in which z; and
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x; are both flipped, this has no side-effects on the values of T;;, for h # j or
Ty; for h # i. Given any CXp X, we can replace any pair of features x;;,x;;
by the pair z;,xz;: the resulting set will still be a CXp thanks to the lack of
side-effects on terms other than 7j;. The resulting CXp will be of the same
size or even smaller (if z; or x; were already in X). Thus, without loss of
generality we can consider just CXp’s consisting of a subset of the features
x; (i=1,...,n) corresponding to the vertices of G. Since a CXp of f(x) <t
requires an increase of t — f(w) = k(k — 1) in f(x), it follows that CXp’s
of size k correspond to cliques of size k in G. Hence there is a polynomial
reduction from CLIQUE to MINCARDCXP~(7;). O

Proposition 17. MINCARDCXP~ (7)) is NP-hard if fncur € L.

Proof. This is a corollary of Proposition |16|since frq(u,v) = fncur(u,v) +
Ixcur(v, u)—1 provides a polynomial reduction from MINCARDCXP™ (T f,4})
to MINCARDCXP~(7;) if fxcur € L. O

Theorem 7. Suppose that L C P is a language of {0, 1}-valued functions
over boolean domains that is closed under fixing arguments. Then each of the
problems MINCARDAXPT (7. ), MINCARDAXP™ (7 ), MINCARDCXP" (7;)
and MINCARDCXP™ (T ) belong to P if all functions in L are modular, oth-
erwise these four problems are NP-hard.

Proof. We know from Theorem [6] that if all functions in £ are modular then
each of MINCARDAXP'(7z), MINCARDAXP (7;), MINCARDCXP™(7)
and MINCARDCXP~ (7;) belong to P.

It is well known that if a function f is not modular then there is a pair
of vectors a,b which are a witness of non-modularity (i.e. f(a) + f(b) #
f(min(a, b)) + f(max(a, b))) and such that a, b differ on only two variables.
Since L is closed under fixing arguments, it follows that if £ contains a
function f which is not modular, then it contains a non-modular function on
just two variables (the variables on which a and b differ). Thus it suffices to
prove NP-hardness for languages containing a non-modular function on two
variables.

There are exactly 16 distinct {0, 1}-valued functions g on two boolean
variables, since each of the four values g(a,b) (a,b € {0,1}) may be 0 or
1. Ten of these functions are not modular. Three of these functions are
neither submodular, monotone or antitone, and hence by the argument in
the proof of Proposition [6] and the characterisation of tractable languages of
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CFN(L) over boolean domains [67], finding one AXp (let alone a minimum-
cardinality AXp) of a positive decision is NP-hard if ¢ € £. The seven
remaining functions are either one of fanp, for, fneq or fcur or equivalent
to one of these functions after inversion of all domains. For these seven
non-modular functions, NP-hardness of MINCARDAXP"(7.) follows from
Proposition Proposition Proposition |14 and Proposition [15]

Given a language £ of {0, 1}-valued functions, let £’ represent the lan-
guage of {0, 1}-valued functions 1 — g for ¢ € £. Consider a minimum-
cardinality AXp of f(v) < t where f is the sum of M functions from L.
Let ' = M —t—1and f' = M — f. Clearly, f' is the sum of M func-
tions from £'. Now f(v) <te M- f(v) < M-t -1« fi(v) >t +1
< f'(v) > t’. Thus the minimum-cardinality AXp’s of the negative de-
cision f(v) < t, where f € L, are the minimum-cardinality AXp’s of the
positive decision f'(v) > t/, where f' € £'. Knowing that £ is modular
iff £"is modular, we can deduce that the dichotomy (proved for minimum-
cardinality AXp’s of positive decisions in the previous paragraph) also holds
for minimum-cardinality AXp’s of negative decisions.

For the case of CXp’s, we consider first negative decisions. All non-
modular {0, 1}-valued functions on two boolean variables are either one of

fanp, for, fxeq, fcur, feq, fncur or are equivalent to one of these functions
after inversion of all domains. By the characterisation of tractable languages

of CEN(L) over boolean domains [67] we can deduce from Theorem {4| and
the argument in the proof of Proposition [§| that finding one CXp (which
requires maximising the objective function f) is NP-hard if fygq € £ or
focur € L since these functions are neither supermodular, monotone nor
antitone (the only tractable languages for the maximisation of sums of finite-
valued cost functions over boolean domains). We can then deduce the NP-
hardness of MINCARDCXP~ (7;) if £ contains a non-modular function since
the cases in which one of fanp, for, frq, fncur belongs to £ are covered by
Proposition [I2] Proposition [I3] Proposition [16] and Proposition [17]

By a similar argument to that in the case of AXp’s, the dichotomy for
minimum-cardinality CXp’s of positive decisions follows from the dichotomy
for minimum-cardinality CXp’s of negative decisions. ]

9.2. Arbitrary finite domains

We now consider arbitrary finite values and domains of any finite size.
On the other hand, we assume that all unary functions are available. Re-
call that L,,q is the language of modular functions and that all modular
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functions are expressible as the sum of unary functions. We know that
MINCARDAXPT (T, ) € P by Theorem @ We now show that this L£,,.q a
maximal tractable language (assuming P # NP).

Theorem 8. Consider threshold classifiers whose objective function is a sum
of functions from a language L of functions which is a proper superset of
Lumoa (and hence contains all unary functions). Then MINCARDAXP™ (T;),
MINCARDAXP™ (Tz), MINCARDCXP" (7T;) and MINCARDCXP~ (T;) are
NP-hard.

Proof. For each of the four combinations (an abductive/contrastive explana-
tion of a positive/negative decision) we use the same construction to demon-
strate a polynomial reduction from either MINIMUM VERTEX COVER or
CLIQUE. The main difference between the cases lies only in the instance w
whose decision is to be explained and the threshold. We therefore give a
detailed proof for MINCARDAXP™ (L) and then indicate how this proof can
be modified for the other three cases.

MINCARDAXP (Tz). Since L4 C L, there is a function g € £ which is
not modular. Thus, there are vectors u = (uq,...,u,.), v= (vy,...,v,) such
that

g(max(u,v)) + g(min(u,v)) # g(u) + g(v) (14)

where max and min are applied component-wise. It is well known that sub-
modularity (and supermodularity) can be tested by comparing only vec-
tors which differ in only two arguments [27]. So, we can assume with-
out loss of generality, and by permuting arguments if necessary, that u; >
vy, Uy < vy and u; = wv; (i = 3,...,7) where r is the arity of g. Let
a = g(max(u,v)) = g(u,ve,us,...,u.), f = g(u), v = g(v) and § =
g(min(u,v)) = g(v1, ug, us, ..., u,). Thus, from Equation [14] we can identify
two distinct cases:

. a+0 < B+~ (ie g is not supermodular)
2. a+6 > [+ (ie. g is not submodular)

For any real value p and any domain value a, let f# be the unary function
given by ff(a) = p, f(x) = 0 (for x # a). Let 77 be the unary function
defined by_fi(x) = 0ifz € Aand f(z) = pif z ¢ A. We will use the unary

functions fi to assign large values (greater than the threshold ¢) to domain
values outside of subdomains A of interest, so that such values b ¢ A have
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no effect on determining whether a set of features is an AXp. This reduces
the problem to size-2 domains, but since these domains (namely {u;, v, } and
{ug,v9}) may be different, we need a gadget involving two copies of g and
some unary functions f?(a) = p (for different values of a and p) to reduce to
boolean domains. Our gadget will effectively simulate fog which will allow us
to use, as in the proof of Proposition a reduction from MINIMUM VERTEX
COVER. Let A = {uy,v1}, Ay = {ug,v2} and A; = {u;} fori =3,... 7.

First, consider the case o+ < f+7. Let i be an arbitrary value greater
than the threshold ¢. Define the arity-(r+1) function h as follows:

h(xlaxllax%m&”'axr) = g<xlax27"'7x7“> + g(l’/l,l’%...,.]}‘r)
o (@) + o (@) + £ () + £ (27) + £ (22)

+ g 0 (2) + (Z Fa (f%)) + (@)
i=1

For 1,2 € Ay, x5 € Ay and x; = u; (i = 3,...,7), the last two terms in the
definition of h contribute 0 and we have the following values for h:

h(vy, v, ug,us, ..., uy) = 3a+B+v+9
h(vy,uy,ug, us, ..., u.) = 2(a+5+7)
h(vy,v1,v9,ug, ..., uy) 2+ B +7)
h(vy,ut,ve,us, ..., u) = 2(a+B+7)
h(uy, vy, ug, us, ..., u.) = 2(a+F+7)
h(uy,uy, ug, us, ..., u) = a+368+3y—94
h(uy,v1,v9,u3,...,u) = 2(a+B+7)
h(uy, uq,v9,us, ..., u.) = 2(a+[+7)

Note that a« +38+37 =36 > 2(a++7) and 3o+ B +v+0 < 2(a+ B +7)
since a +6 < B+ 7.

We will demonstrate a reduction from MINIMUM VERTEX COVER in
which for each edge e = {i,j} of a graph G = (V| E) there is a copy
of h. So, to understand this reduction, consider first a single copy of h:
h(x;, T;, T, Teg, Tea, - - ., Tep) ON variables x;, x; corresponding to the vertices
i, 7, variable x, corresponding to the edge e = {i, j} and ‘padding’ variables
Te3s -+ Tep. The AXp’s of h(uy, uy, ve,us, ..., u.) > 2(a+B+7) are {i}, {j}
and {e}, since the only way that the minimum value of h(z;, z;, T, Tes, . - ., Ter)
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can be less than 2(« + 3 + ) is if all three of the variables z;, z;, z. are al-
lowed to vary from their respective values uq,u1,v9. Recall that the large
value p incurred by other assignments means that we only need to consider
(i, z5,x.) € Ay X Ay X As.

So, given a graph G = (V, E), define the objective function f as follows.

f<X> = Z h(xiaxjvxevxe3axe4u--wxer)

e={i,j}€E
where the feature vector x contains a feature x; for each i € V.= {1,... ,n},
a feature for each edge e € F together with r — 2 features x.3, ..., .. for

each edge e € E. Let t = 2(a+[+7v)m — ¢, where m = |E| and € is the
smallest non-zero difference between values taken by the function g. Let w
be the feature vector that assigns the value u; to each feature x; (i € V),
the value vy to each feature z, (e € E) and the value uy, to each feature zy
(e e E, k=3,...,r). Then f(w) = 2(a+S+7y)m > t. By the argument
in the previous paragraph, any AXp S of f(w) > ¢ must contain for each
edge e = {i,j} of G, at least one of i, j, or e. Since S is minimal, it cannot
contain e and i (or e and j) since the feature e could be deleted to leave
an AXp. If S is a minimum-cardinality AXp of f(w) > ¢ which contains e
and neither of 7 or j, then we can replace e by i, i.e. (S\ {e})U{i} is also
necessarily a minimum-cardinality AXp. So, from any minimum-cardinality
AXp we can obtain a minimum-cardinality set S which contains either ¢ or
j for each edge {i,j} of G. We have therefore demonstrated a polynomial
reduction from MINIMUM VERTEX COVER.

To complete the proof we need to consider the case a+46 > S+~. We can
use the same construction and, in particular, the same functions h and f.
Now we have a+38+37—4§ < 2(a+S+7) and 3a+F+v+0 > 2(a+LF+7) since
a+ 6 > [+ 7. This means that when explaining h(vy, vy, vo, ug, ..., u,) >
2(a+ [ +y) we again have the three AXp’s {i}, {j} and {e}, since it suffices
to fix any one of the first three features to avoid the low-scoring assignment
(u1,uq,us, us, ..., u,). The objective function f is identical, but the instance
to explain changes compared to the above proof: w’ assigns the value v; to
each feature z; (i € V'), the value vq to each feature z. (e € E) and the value
uy to each feature xo (e € E, k= 3,...,r). As above, from any minimum-
cardinality AXp of f(w’) > ¢ we can obtain a minimum vertex cover of G,
and we again have a polynomial reduction from MINIMUM VERTEX COVER.
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MINCARDAXP™ (7Tz). We use an identical construction as above in the
MINCARDAXPT case, except for the subtle difference that the value p as-
signed to feature-values that we wish to ignore is now a large negative value
so that they have no effect on an explanation of a negative decision.

Let £ = 2(a+B+7)m. In case (1) (i.e. a+d < 3+7), for any minimum-
cardinality AXp of the negative decision f(w’) < £, there is a minimum
vertex cover of G and vice-versa. Similarly, in case (2) (i.e. a+0 > 5+ 7),
for any minimum-cardinality AXp of the negative decision f(w) < £, there is
a minimum vertex cover of G and vice-versa. Hence, we have a polynomial
reduction from MINIMUM VERTEX COVER.

MINCARDCXPT (Tz). In the case of contrastive explanations of a positive
decision, we demonstrate a polynomial reduction from CLIQUE. The func-
tion f and the instances to explain are identical to those in the case of
MINCARDAXP™T, but the value of the thresholds are different.

In case (1) (i.e. a+d < B+7), the instance to explain is w, defined above,
i.e. w assigns the value u; to each feature z; (i € V), the value vy to each
feature z. (e € E) and the value uy to each feature xo (e € E, k=3,...,r).
f(w) = 2(a+p+y)m. We say that the features associated with an edge
e = {i,j} of G are x;, z; and z.. A decrease in the value of f(w) occurs
when (and only when) each of the three features z;, z;, z. associated with an
edge e = {i, 7} change from wy,uy, vy to vy, vy, us. The resulting decrease in
f(w)is 2(a+5+7v)—(Ba+p+v+d) = f+7—a—4§. So, to provoke a decrease
of exactly h(8+~—a—0), the features associated with exactly h edges must
be changed. Let H = (Vig, Ey) be the subgraph of G corresponding to these
h edges. Let t. = 2(a+ B+~)m — M= 1)(5+’y a—30). ACXpof f(w) >t
corresponds to a subgraph H = (Vg EH) of G such that |EFy| = k(k;). The
total number of features associated with the edges of H is |Vy| + |EF|.

follows that there is a CXp of f(w) > ¢, of size (kH) =k+ k(k Viff G has
k(k 1)

a subgraph H with ) edges and k vertices (i.e. a clique of size k). We
have thus demonstrated a polynomial reduction from CLIQUE.

In case (2) (i.e. a+6 > [+ 1), the feature vector to explain is w’ which
assigns the value v; to each feature x; (i € V'), the value vy to each feature
z. (e € E) and the value uy to each feature z (e € E, k= 3,...,r). The
threshold is now ¢, = 2(a+f+~)m — @(a—l—é—ﬁ —7). As in the proof of
case (1), the minimum-cardinality CXp’s of the positive decision f(w') > .,
correspond to cliques H of G of size k. Hence, again we have a polynomial
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reduction from CLIQUE.

MINCARDCXP~ (7z). In the case of contrastive explanations of a negative
decision, we again demonstrate a polynomial reduction from CLIQUE. We
use the same function f as in the MINCARDAXP™ case (i.e. identical to the
function f used in the MINCARDAXP™ case except that the value u assigned
to feature-values we wish to ignore is a large negative value).

In case (1) (ie. a+ 6 < B+ 7), the feature vector to explain is w'.
The threshold is now £, = 2(a + 8 + v)m — @(6 +7v—a—0)—e¢ The
minimum-cardinality CXp’s of the negative decision f(w') < f. correspond
to cliques H of G of size k. Hence, again we have a polynomial reduction
from CLIQUE.

In case (2) (i.e. a+ 6 > [+ 7), the feature vector to explain is w.
The threshold is now , = 2(a + 8 + v)m — @(a +0—p—7)—¢€ The
minimum-cardinality CXp’s of the negative decision f(w) < #. correspond
to cliques H of G of size k. Hence, again we have a polynomial reduction

from CLIQUE. O

10. Discussion and Conclusion

We have investigated the complexity of finding subset-minimal abductive
or contrastive explanations for different families of classifiers. Explaining
a decision is, in general, (co)NP-hard, but there are interesting tractable
classes, i.e. classes of (constrained) threshold-based classifiers for which one
explanation can be found in polynomial time. Interestingly, these classes
coincide for abductive and contrastive explanations, but not for positive and
negative decisions.

We have identified a strong link with the tractability of cost-function
networks. However, since, as yet, there is no known characterisation of the
complexity of cost-function languages over infinite domains, the existence of
a language dichotomy concerning the complexity of finding an explanation
for decisions taken by classifiers with real-valued features is still an open
problem.

Instead of searching for one explanation, we may want to find many ex-
planations. Unfortunately, the fact that a greedy algorithm can find one
explanation in polynomial time provides no guarantee that explanations
can be enumerated with polynomial delay. For linear classifiers, there is
a polynomial-delay algorithm for enumerating abductive explanations [12],
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and it is an open question is whether this is true for other families of classi-
fiers. It is known to be false for monotone classifiers (assuming P#NP) [15].

Since the number of explanations may be exponential, we investigated the
problem of finding a small but diverse set of explanations. Unfortunately,
this problem is NP-hard even for linear classifiers. Another approach is to
find the best explanation according to some simple criterion such as cardinal-
ity. The problem of finding a smallest explanation is tractable for the class
of modular classifiers (which includes linear classifiers) but NP-hard for any
proper extension of this class. Although our NP-hardness results coincide
for abductive and contrastive explanations, it is known that the complex-
ity of finding minimum-cardinality abductive explanations lies at the second
level of the polynomial hierarchy [66] whereas finding minimum-cardinality
contrastive explanations is at the first level (Proposition . Thus, in the
case of minimum-cardinality abductive explanations, the complexity land-
scape among the NP-hard languages could reveal richer structure and is an
interesting open problem.

Acknowledgements

This work was supported by the Al Interdisciplinary Institute ANITI,
funded by the French program “Investing for the Future — PIA3” under
Grant agreement ANR-19-PI3A-0004.

References

[1] A. Shih, A. Choi, A. Darwiche, A symbolic approach to explaining
bayesian network classifiers, in: IJCAI, 2018, pp. 5103-5111.

[2] A. Shih, A. Choi, A. Darwiche, Compiling bayesian network classifiers
into decision graphs, in: AAAI, 2019, pp. 7966-7974. doi:10.1609/
aaai.v33101.33017966.

[3] A. Ignatiev, N. Narodytska, J. Marques-Silva, Abduction-based expla-
nations for machine learning models, in: AAAI, 2019, pp. 1511-1519.

[4] A. Ignatiev, N. Narodytska, J. Marques-Silva, On relating explanations
and adversarial examples, in: NeurIPS, 2019, pp. 15857-15867.

[5] A. Darwiche, A. Hirth, On the reasons behind decisions, in: ECAI, 2020,
pp. 712-720. ldoi: 10.3233/FATA200158!

36


https://doi.org/10.1609/aaai.v33i01.33017966
https://doi.org/10.1609/aaai.v33i01.33017966
https://doi.org/10.3233/FAIA200158

[6]

[10]

[11]

[12]

[13]

[14]

[15]

A. Darwiche, Three modern roles for logic in Al, in: PODS, 2020, pp.
229-243. doi:10.1145/3375395.3389131.

A. Ignatiev, Towards trustable explainable AI, in: IJCAI, 2020, pp.
5154-5158. |[doi:10.24963/ijcai.2020/726.

Y. Izza, J. Marques-Silva, On explaining random forests with SAT, in:
Z. Zhou (Ed.), IJCAI, 2021, pp. 2584-2591. doi:10.24963/ijcai.
2021/356.

A. Ignatiev, J. P. M. Silva, SAT-based rigorous explanations for deci-
sion lists, in: C. Li, F. Manya (Eds.), SAT 2021, Vol. 12831 of LNCS,
Springer, 2021, pp. 251-269. |doi:10.1007/978-3-030-80223-3\_18.

R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, D. Pe-
dreschi, A survey of methods for explaining black box models, ACM
Comput. Surv. 51 (5) (2019) 93:1-93:42. doi:10.1145/32360009.

G. Audemard, F. Koriche, P. Marquis, On tractable XAI queries based
on compiled representations, in: KR, 2020, pp. 838-849.|doi:10.24963/
kr.2020/86.

J. Marques-Silva, T. Gerspacher, M. C. Cooper, A. Ignatiev, N. Naro-
dytska, Explaining naive Bayes and other linear classifiers with polyno-
mial time and delay, in: Larochelle et al. [68].

G. Audemard, S. Bellart, L. Bounia, F. Koriche, J. Lagniez, P. Marquis,
On the computational intelligibility of boolean classifiers, in: Bienvenu
et al. [69], pp. 74-86. |doi:10.24963/kr.2021/8.

X. Huang, Y. Izza, A. Ignatiev, J. Marques-Silva, On efficiently ex-
plaining graph-based classifiers, in: Bienvenu et al. [69], pp. 356-367.
doi:10.24963/kr.2021/34.

J. Marques-Silva, T. Gerspacher, M. C. Cooper, A. Ignatiev, N. Naro-
dytska, Explanations for monotonic classifiers, in: M. Meila, T. Zhang
(Eds.), ICML 2021, Vol. 139 of Proceedings of Machine Learning Re-
search, PMLR, 2021, pp. 7469-7479.

Y. Izza, A. Ignatiev, J. Marques-Silva, On explaining decision trees,
CoRR abs/2010.11034 (2020). arXiv:2010.11034.

37


https://doi.org/10.1145/3375395.3389131
https://doi.org/10.24963/ijcai.2020/726
https://doi.org/10.24963/ijcai.2021/356
https://doi.org/10.24963/ijcai.2021/356
https://doi.org/10.1007/978-3-030-80223-3_18
https://doi.org/10.1145/3236009
https://doi.org/10.24963/kr.2020/86
https://doi.org/10.24963/kr.2020/86
https://doi.org/10.24963/kr.2021/8
https://doi.org/10.24963/kr.2021/34
http://arxiv.org/abs/2010.11034

[17]

[18]

[19]

[20]

[21]

[22]

[24]

[25]

[26]

X. Huang, Y. Izza, A. Ignatiev, M. C. Cooper, N. Asher, J. Marques-
Silva, Tractable explanations for d-dnnf classifiers, in: AAAI 2022,
AAAT Press, 2022, pp. 5719-5728.

A. Darwiche, A. Hirth, On the reasons behind decisions, in: G. D. Gia-
como, A. Catala, B. Dilkina, M. Milano, S. Barro, A. Bugarin, J. Lang
(Eds.), ECAI, Vol. 325 of Frontiers in Artificial Intelligence and Appli-
cations, IOS Press, 2020, pp. 712-720. |doi:10.3233/FATIA200158.

C. Umans, The minimum equivalent DNF problem and shortest impli-
cants, J. Comput. Syst. Sci. 63 (4) (2001) 597-611. doi:10.1006/jcss.
2001.1775.

M. Arenas, P. Barcel6, M. Romero, B. Subercaseaux, On comput-
ing probabilistic explanations for decision trees, CoRR abs/2207.12213
(2022) arXiv:2207.12213, doi:10.48550/arXiv.2207.12213.

S. Waldchen, J. MacDonald, S. Hauch, G. Kutyniok, The computational
complexity of understanding binary classifier decisions, J. Artif. Intell.
Res. 70 (2021) 351-387. |doi:10.1613/jair.1.12359.

Y. Izza, A. Ignatiev, N. Narodytska, M. C. Cooper, J. Marques-
Silva, Provably precise, succinct and efficient explanations for deci-
sion trees, CoRR abs/2205.09569 (2022). |arXiv:2205.09569, doi:
10.48550/arXiv.2205.09569.

V. Kolmogorov, A. A. Krokhin, M. Rolinek, The complexity of general-
valued CSPs, SIAM J. Comput. 46 (3) (2017) 1087-1110. doi:10.1137/
16M1091836.

J. B. Orlin, A faster strongly polynomial time algorithm for submodular
function minimization, Math. Program. 118 (2) (2009) 237-251. doi:
10.1007/s10107-007-0189-2.

N. Cowan, The magical number 4 in short-term memory: A reconsid-
eration of mental storage capacity, Behavioral and brain sciences 24 (1)
(2001) 87-114.

M. C. Cooper, J. Marques-Silva, On the tractability of explaining deci-
sions of classifiers, in: L. D. Michel (Ed.), CP 2021, Vol. 210 of LIPIcs,

38


https://doi.org/10.3233/FAIA200158
https://doi.org/10.1006/jcss.2001.1775
https://doi.org/10.1006/jcss.2001.1775
http://arxiv.org/abs/2207.12213
https://doi.org/10.48550/arXiv.2207.12213
https://doi.org/10.1613/jair.1.12359
http://arxiv.org/abs/2205.09569
https://doi.org/10.48550/arXiv.2205.09569
https://doi.org/10.48550/arXiv.2205.09569
https://doi.org/10.1137/16M1091836
https://doi.org/10.1137/16M1091836
https://doi.org/10.1007/s10107-007-0189-2
https://doi.org/10.1007/s10107-007-0189-2

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2021, pp. 21:1-21:18.
d0i:10.4230/LIPIcs.CP.2021.21.

S. Fujishige, Submodular Functions and Optimisation, 2nd Edition,
Vol. 58 of Annals of Discrete Mathematics, Elsevier, 2005.

D. A. Cohen, M. C. Cooper, P. Jeavons, A. A. Krokhin, The complexity
of soft constraint satisfaction, Artif. Intell. 170 (11) (2006) 983-1016.

M. Joseph, M. J. Kearns, J. Morgenstern, A. Roth, Fairness in learning:
Classic and contextual bandits, in: Lee et al. [70], pp. 325-333.

X. Liu, X. Han, N. Zhang, Q. Liu, Certified monotonic neural networks,
in: Larochelle et al. [68].

G. Monge, Mémoire sur la théorie des déblais et des remblais, Imprimerie
Royale, 1781.

R. E. Burkard, B. Klinz, R. Rudolf, Perspectives of Monge properties in
optimization, Discret. Appl. Math. 70 (2) (1996) 95-161.

M. Balcan, N. J. A. Harvey, Learning submodular functions, in: L. Fort-
now, S. P. Vadhan (Eds.), STOC, ACM, 2011, pp. 793-802. doi:
10.1145/1993636.1993741.

B. W. Dolhansky, J. A. Bilmes, Deep submodular functions: Definitions
and learning, in: Lee et al. [70], pp. 3396-3404.

M. X. Goemans, N. J. A. Harvey, S. Iwata, V. S. Mirrokni, Approxi-
mating submodular functions everywhere, in: C. Mathieu (Ed.), SODA,
STAM, 2009, pp. 535-544. doi:10.1137/1.9781611973068.

V. Feldman, P. Kothari, J. Vondrak, Representation, approximation
and learning of submodular functions using low-rank decision trees, in:
S. Shalev-Shwartz, I. Steinwart (Eds.), COLT, Vol. 30 of JMLR Work-
shop and Conference Proceedings, JMLR.org, 2013, pp. 711-740.

V. Feldman, J. Vondrak, Optimal bounds on approximation of sub-
modular and XOS functions by juntas, STAM J. Comput. 45 (3) (2016)
1129-1170. doi:10.1137/140958207.

39


https://doi.org/10.4230/LIPIcs.CP.2021.21
https://doi.org/10.1145/1993636.1993741
https://doi.org/10.1145/1993636.1993741
https://doi.org/10.1137/1.9781611973068
https://doi.org/10.1137/140958207

[38]

[39]

[40]

M. Balcan, N. J. A. Harvey, Submodular functions: Learnability, struc-
ture, and optimization, SIAM J. Comput. 47 (3) (2018) 703-754.
doi:10.1137/120888909.

Y. T. Lee, A. Sidford, S. C. Wong, A faster cutting plane method and
its implications for combinatorial and convex optimization, in: FOCS,
2015, pp. 1049-1065.

D. Chakrabarty, Y. T. Lee, A. Sidford, S. C. Wong, Subquadratic sub-
modular function minimization, in: STOC, 2017, pp. 1220-1231.

D. A. Cohen, M. C. Cooper, P. Jeavons, A. A. Krokhin, A maximal
tractable class of soft constraints, J. Artif. Intell. Res. 22 (2004) 1-22.

A. Darwiche, P. Marquis, A knowledge compilation map, J. Artif. Intell.
Res. 17 (2002) 229-264. |doi:10.1613/jair.989.

M. H. Anthony, Discrete mathematics of neural networks, Vol. 8 of STAM
monographs on discrete mathematics and applications, STAM, 2001.

Z. Chen, S. Toda, The complexity of selecting maximal solutions, Inf.
Comput. 119 (2) (1995) 231-239. doi:10.1006/inco.1995.1087.

X. Huang, Y. Izza, A. Ignatiev, M. C. Cooper, N. Asher, J. Marques-
Silva, Tractable explanations for d-dnnf classifiers, in: AAAI, AAAI
Press, 2022, pp. 5719-5728. doi:10.1609/aaai.v3615.20514.

N. Creignou, S. Khanna, M. Sudan, Complexity classifications of
Boolean constraint satisfaction problems, Vol. 7 of STAM monographs
on discrete mathematics and applications, STAM, 2001.

N. Gorji, S. Rubin, Sufficient reasons for classifier decisions in the pres-
ence of domain constraints, in: AAAI, AAAI Press, 2022, pp. 5660-5667.
doi:10.1609/aaai.v3615.20507.

M. C. Cooper, S. de Givry, M. Sanchez-Fibla, T. Schiex, M. Zytnicki,
T. Werner, Soft arc consistency revisited, Artif. Intell. 174 (7-8) (2010)
449-478.

P. Jeavons, M. C. Cooper, Tractable constraints on ordered domains,
Artif. Intell. 79 (2) (1995) 327-339. doi:10.1016/0004-3702(95)
00107-7.

40


https://doi.org/10.1137/120888909
https://doi.org/10.1613/jair.989
https://doi.org/10.1006/inco.1995.1087
https://doi.org/10.1609/aaai.v36i5.20514
https://doi.org/10.1609/aaai.v36i5.20507
https://doi.org/10.1016/0004-3702(95)00107-7
https://doi.org/10.1016/0004-3702(95)00107-7

[50]

[51]

[52]

[53]

M. C. Cooper, S. Zivny, Tractable triangles and cross-free convexity
in discrete optimisation, J. Artif. Intell. Res. 44 (2012) 455-490. doi:
10.1613/jair.3598.

M. C. Cooper, S. Zivny, Hybrid tractability of valued constraint prob-
lems, Artif. Intell. 175 (9-10) (2011) 1555-1569. doi:10.1016/j.
artint.2011.02.003.

T. Miller, Explanation in artificial intelligence: Insights from the social
sciences, Artif. Intell. 267 (2019) 1-38.

A. Ignatiev, N. Narodytska, N. Asher, J. Marques-Silva, From con-
trastive to abductive explanations and back again, in: M. Bal-
doni, S. Bandini (Eds.), AIxIA 2020, Vol. 12414 of Lecture Notes
in Computer Science, Springer, 2020, pp. 335-355. doi:10.1007/
978-3-030-77091-4\_21.

M. C. Cooper, S. de Givry, T. Schiex, Graphical models: Queries, com-
plexity, algorithms (tutorial), in: STACS, 2020, pp. 4:1-4:22.

J. Thapper, S. Zivny, The complexity of finite-valued CSPs, J. ACM
63 (4) (2016) 37:1-37:33.

A. A. Bulatov, A dichotomy theorem for nonuniform CSPs, in: FOCS,
2017, pp. 319-330. [doi:10.1109/FOCS.2017.37.

D. Zhuk, A proof of CSP dichotomy conjecture, in: FOCS, 2017, pp.
331-342. |doi:10.1109/F0CS.2017.38.

A. A. Krokhin, S. Zivny, The complexity of valued CSPs, in: A. A.
Krokhin, S. Zivny (Eds.), The Constraint Satisfaction Problem: Com-
plexity and Approximability, Vol. 7 of Dagstuhl Follow-Ups, Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2017, pp. 233-266. doi:
10.4230/DFU.Vo017.15301.9.

M. Ruffini, J. Vucinic, S. de Givry, G. Katsirelos, S. Barbe, T. Schiex,
Guaranteed diversity & quality for the weighted CSP, in: ICTAI 2019,
IEEE, 2019, pp. 18-25. [doi:10.1109/ICTAI.2019.00012.

E. Hebrard, B. Hnich, B. O’Sullivan, T. Walsh, Finding diverse and simi-
lar solutions in constraint programming, in: M. M. Veloso, S. Kambham-

pati (Eds.), AAAI, AAAT Press / The MIT Press, 2005, pp. 372-377.

41


https://doi.org/10.1613/jair.3598
https://doi.org/10.1613/jair.3598
https://doi.org/10.1016/j.artint.2011.02.003
https://doi.org/10.1016/j.artint.2011.02.003
https://doi.org/10.1007/978-3-030-77091-4_21
https://doi.org/10.1007/978-3-030-77091-4_21
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1109/FOCS.2017.38
https://doi.org/10.4230/DFU.Vol7.15301.9
https://doi.org/10.4230/DFU.Vol7.15301.9
https://doi.org/10.1109/ICTAI.2019.00012

[61]

[62]

[63]

[64]

[65]

J. Horan, B. O’Sullivan, Towards diverse relaxations of over-constrained
models, in: ICTAI 2009, IEEE Computer Society, 2009, pp. 198-205.
doi:10.1109/ICTAI.2009.89.

L. Ingmar, M. G. de la Banda, P. J. Stuckey, G. Tack, Modelling diver-
sity of solutions, in: AAAI 2020, AAAI Press, 2020, pp. 1528-1535.

R. M. Karp, Reducibility among combinatorial problems, in: R. E.
Miller, J. W. Thatcher (Eds.), Proceedings of a symposium on the
Complexity of Computer Computations, The IBM Research Symposia
Series, Plenum Press, New York, 1972, pp. 85-103. doi:10.1007/
978-1-4684-2001-2\_9.

E. L. Schreiber, R. E. Korf, M. D. Moffitt, Optimal multi-way number
partitioning, J. ACM 65 (4) (2018) 24:1-24:61. doi:10.1145/3184400.

R. Boumazouza, F. C. Alili, B. Mazure, K. Tabia, ASTERYX: A model-
agnostic sat-based approach for symbolic and score-based explanations,
in: G. Demartini, G. Zuccon, J. S. Culpepper, Z. Huang, H. Tong (Eds.),
CIKM 21, ACM, 2021, pp. 120-129. doi:10.1145/3459637 .3482321.

P. Barceld, M. Monet, J. Pérez, B. Subercaseaux, Model interpretability
through the lens of computational complexity, in: Larochelle et al. [6§].

D. A. Cohen, M. C. Cooper, P. Jeavons, A complete characterization of
complexity for boolean constraint optimization problems, in: M. Wallace
(Ed.), CP 2004, Vol. 3258 of LNCS, Springer, 2004, pp. 212-226. doi:
10.1007/978-3-540-30201-8\_18.

H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, H. Lin (Eds.),
NeurIPS 2020, 2020.

M. Bienvenu, G. Lakemeyer, E. Erdem (Eds.), Proceedings of the 18th
International Conference on Principles of Knowledge Representation and
Reasoning, KR, 2021. doi:10.24963/kr.2021.

D. D. Lee, M. Sugiyama, U. von Luxburg, I. Guyon, R. Garnett (Eds.),
NIPS 2016, 2016.

42


https://doi.org/10.1109/ICTAI.2009.89
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1145/3184400
https://doi.org/10.1145/3459637.3482321
https://doi.org/10.1007/978-3-540-30201-8_18
https://doi.org/10.1007/978-3-540-30201-8_18
https://doi.org/10.24963/kr.2021

	Introduction: Explanations of decisions
	Definitions
	Tractability of finding one abductive explanation
	Explanations of negative decisions
	Explanation of classifiers with constrained features
	Contrastive explanations
	A language dichotomy for threshold classifiers
	Diversity of explanations
	Minimum-cardinality explanations
	Boolean domains
	Arbitrary finite domains

	Discussion and Conclusion

