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Abstract

In this paper, we investigate how robust classification
results can be explained by the notion of prime im-
plicants, focusing on explaining pairwise dominance
relations. By robust, we mean that we consider impre-
cise models that may abstain to classify or to compare
two classes when information is insufficient. This will
be reflected by considering (convex) sets of probabili-
ties. By prime implicants, we understand a subset of
attributes, minimal w.r.t. inclusion, that we need to
know or specify before reaching a specified conclusion
(either of dominance or non-dominance between two
classes). After presenting the general concepts, we
derive them in the case of the well-known naive credal
classifier.

Keywords: robust classifier, explainability, prime im-
plicants, Imprecise Probabilities, Naive credal classifier

1. Introduction

Two key aspects of trustworthy Al are the ability to provide
robust and safe inferences or predictions, and to be able to
provide explanations as of why those have been made.

Regarding explainability, the notion of prime implicants
corresponds to providing minimal sufficient condition to
make a given statement, e.g., the attributes that need to
be instantiated to make a classification. They have been
successfully proposed as components of explanations for
large classes of models such as graphical ones [20], with
very efficient procedure existing for specific structures such
as the Naive one [18]. In contrast with other methods such
as SHAP [22] that tries to compute the average influence of
attributes, prime implicants have the advantage to be well-
grounded in logic, and to provide certifiable explanation (in
the sense that the identified attributes are logical, sufficient
reasons).

However, explainable Al tools have been mostly applied
to precise models, at least in the machine learning domain
(this is less true, e.g., in preference modelling [4]). Yet,
in applications involving sensitive issues or in which the
decision maker wants to identify ambiguous cases, it may
be preferable to use models that will return sets of classes
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when information is insufficient rather than always return-
ing a point-valued prediction. Several frameworks such as
conformal prediction [3], indeterminate classifiers [10] or
imprecise probabilistic models [8] have been proposed to
handle such issue. While some explanation methods for
such models have been recently proposed [21, 26], none of
them explicitly adopts a logical standpoint regarding expla-
nations, meaning that the present work is complementary
to those.

Imprecise probabilistic models in particular have the
interest that they are direct extensions and generalisations
of probabilistic classifiers, hence one can directly try to
transport well-grounded explanation principles existing for
precise probabilistic classifier to this setting. This is what we
intend to do in this paper for prime implicant explanations.

We will start by introducing how the idea of prime
implicants can be adapted to classifiers considering sets
of probabilities as their uncertainty models. Section 2 will
be a short reminder of the robust classification setting,
and will introduce our notations. In Section 3, we will
present the idea of prime implicant, as well as how it
can answer various explanatory needs. As the formulated
problems are likely to be computationally challenging for
generic models, we focus in Section 4 on the naive credal
classifier, that generalise the naive Bayes classifier. We show
that for such a model, computing and enumerating prime
implicants can be done in polynomial time, thanks to its
independence assumption and decompositional properties.
We also provide an experiment in Section 5 illustrating our
approach. Note that this work builds upon some first results
published in [24], that focused exclusively on a unique use
of prime implicants and did not contain any experiment.
In contrast, the study of this paper provides much more
use of prime implicants, study some basic properties of
their behaviour and provide some first experiments on a
real-world data set.

2. Preliminaries on Robust Classification

In this section, we lay down our basic notations and provide
necessary reminders about imprecise probabilities.
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We consider a usual discrete multi-class problem,
where we must predict a variable Y taking values in
Y ={yi1,...,ym} using n input variables X1, ..., X,, that
respectively takes values in X; = {x}, . ,xl].“' }. We note
X =X, X; and x € X a vector in this space. When con-
sidering a subset E C {1,...,n} of dimensions, we will
denote by Xg = x'¢EX; the corresponding domain, and
by xg the values of a vector on this sub-domain. We will
also denote by —F := {1,...,n} \ E all dimensions not
in E, with X_g,x_g following the same conventions as
XEg, xg. We will also denote by (xg, y—g) the concatenation
of two vectors whose values are given for different elements.
Notation (Xg, -) means that all features in —F can take any
value. If E = {1,...,n}, then we will simply ignore the
subscript.

In the rest of the paper, we will often refer to partially
ordered sets, their corresponding relations and sets of suffi-
cient elements that allows to asset them. Those sufficient
elements will here be composed of a vector of specified
feature values and of a set of probabilities. We will denote
by y >, (x) ¥’ the fact that considering the model p and
the vector (x) is sufficient to state (or implies) y > y’.

In the case of precise classifiers, we have y >, (x) ¥’
when the condition!

p(yIx)
— = (1)
p(y'[x)

is met, or in other words when p (y|x) > p (y’|x). However,
probabilistic classifiers can be deceptively precise, for in-
stance when only a small number of data are available to
estimate them, or when data become imprecise.

This is why, in this paper, we consider generalised proba-
bilistic settings, and more specifically imprecise probability
theory, where one considers that the probability p belongs
to some subset P, often assumed to be convex (this will be
the case here). One then needs to extend the relation >, to
such a case, and a common and robust way to do so is to
require >, to be true for all elements p € P. In this case, y
is said to robustly dominate y’ upon observing a vector X,
written y >p () y’, when the condition

p(y[x) -

2
o o S @

is met, or in other words when p(y|x) > p(y’|x) for all
p € P. Going from the precise to imprecise probabilities
can introduce incomparabilities between classes, written
y ><p (x) ¥’ when both

p(yIx)

in - < 1and inf w
pe? p(y'|X)

) 3
p'e?P p'(y[x) ©)

1Using dominance expressed this way will be useful in the sequel.
We will also restrict ourselves to 0/1 loss functions here.

3. Explaining Robust Classification through
Prime Implicants

Explaining the conclusion or deduction of an algorithm, and
in particular of a learning algorithm, has become (again)
an important issue [6]. A notion that can play a key role in
explanation mechanisms is the one of prime implicants, i.e.,
which elements are sufficient before drawing a given con-
clusion. In this section, we detail how prime implicants can
be used to answer the needs of different explanatory mech-
anisms, within the setting of robust, imprecise probabilistic
classifiers.

3.1. Prime Implicants as Validatory Explanations

When observing a vector x° and making a prediction about
whether y dominates y’, finding a prime implicant confirm-
ing that y dominates y’ corresponds to finding the values of
x? that are sufficient to state that y dominates y’, and that
are minimal with this property.

With this idea in mind, we will say that a subset E C
{L,...,n} :=[1,n] of attributes (where E are the indices
of the considered attributes) is a validatory implicant of

y >P’(XZ'") y’ iff

x%.,x"
inf g LOEX L)y @)
X! peX_g peP P()"|(XE, X_E))
that is if dominance holds for any values of attributes whose
indices are outside E, and any probability p € #. This
means that knowing x{, alone is sufficient to deduce y > y’.
A set E is a prime implicant iff we satisfy (4) and for any
i € E, we have
PONGKE iy X pugiy)

inf inf <L O
X! gy €X-Eutiy PEP p(y’|(X0E\{i}, X‘iEU{i}))

that is if removing any attribute from E makes our deduction
invalid, so that E is a minimal sufficient condition for
Y >p,(x¢.,) ¥’ to hold for any completion of —E. In the
sequel, it will prove useful to consider the function that
associates to each possible subset the value of the ratio
between the obtained posterior probabilities. This function
¢V is defined by :

o \4

¢"(y,y,x°,E) .= inf —p(yI(XE’X_E)) .

X' peXog pe? p (¥ |(XE, XV )

To ease the use of this function, we will omit the observed
vector X? when context is clear and we will write "y, y’” as
a subscript meaning that class y is the numerator and y’ the
denominator, i.e., ¢;’y,(E) =¢"(y,y,x°E)

Note that when the set # reduces to a singleton, that is
when we consider precise classifiers instead of robust ones,
then our notion of prime implicant reduces to previously
proposed ones [18], and our approach is therefore a formal
generalisation of those.

(6)
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Monotony with respect to imprecision. one can note
that the notion of validatory prime implicant is monotonic
with respect to imprecision, in the following sense

Proposition 1 Consider two credal sets P’ C P, then

Y >P,(x%,0) y =y P (x%,) Y

Proof Immediate, since if Equation (4) is true for E and %,
it must be true for E and #’, as the infimum is taken over a
smaller domain. |

This means that a validatory implicant will remain so
if we consider a more precise model (obtained, e.g., by
observing additional data). However, if a subset E was
prime for P, it does not need to be so for £’, meaning
that the size of validatory prime implicants should decrease
as imprecision decreases. This is somehow natural, as a
more informative model should need less measurements to
provide a conclusion.

3.2. Prime Implicants as Contrastive Explanations

Another quite common way to audit or explain a statement
"Why X is P?” is by answering the implicit question ”"Why X
is P and not Q?” [19, 12]. This can classically be answered
by finding a counter-factual, i.e., a modification of the exam-
ple with sufficient changes so as to change our conclusion.
Replying to this question in a minimal way can be seen as
the task of finding a minimal set of attributes or features for
which a modification could change our decision. We will
call E C [1,n]| a contrastive prime implicant if modifying
the attributes within E is a minimal sufficient condition to
change our decision, that is, if

XC,X”
inf inf POIE X)) £ ;E)) <1, (7
XEEXEPGPP()’,KXE’X_E))
and if for any i ¢ E, we do have

POIXE (11X pugy)
inf inf ——_SMIT BV 5 gy
Xg\iy €XEVG) PEP p(y |(XE\{1'}’X—EU{1'}))

that is there is at least one modification of feature values in £
that lead to a different decision, and any change done within
a subset of it would not change the decision. Denoting x§,
the argument of Equation (7), E is a contrastive implicant if
Y FP (xS x2,) y’. We also consider the function ¢;,y, that
associate to each possible subset the value
X<, x°
¢ (E) = intinf LASEXE)
x¢eXp pe? p(V'|(X5, X% 1))

One of the interesting aspects of considering impre-
cise models is that contrastive explanations do not nec-
essary lead to reversing the initial preference (which is

the case for precise models). Indeed, modifying the con-
clusion y >p yo ¥’ by considering the modified vector
(x%,x? ) can lead to two quite different situations, re-
sulting either in y’ >P,(x6x,) Y (reversing of preference)
or y ><p (x x2,) vy’ (weakening of preference) and we
will define two notions of contrastive explanations.

Given that E is a contrastive prime implicant, we say that
it is also a reversing prime implicant if in addition we have?

P O(x%x%,))
—_— = >, 10
o D OIS x0,)) (10

as this contrastive prime implicant change the initial state-
ment or conclusion into its reverse. Otherwise, if it does
satisfy Equations (7) and (8), but not (10), we say that
E is a weakening prime implicant, as it changes a prefer-
ence between two classes into incomparability. The vector
(x%,x? ) also provides us with a contrastive example for
which the decision would change.

Monotony with respect to imprecision. as with val-
idatory implicants, the notion of contrastive implicants is
monotonic with respect to imprecision, but in the other
direction.

Proposition 2 Consider two credal sets P C P’, then

YHEp oo, Y = Y Ee oo, Y

Proof Immediate, since if Equation (7) is true for £ and
P, it must be true for E and #’, as the infinimum is taken
over a larger domain, and is of lower value. |

This means that a contrastive implicant and the associated
example (x%,x? ;) will remain so if we consider a more
imprecise model. However, if a subset E was prime for P,
it does not need to be so for £’, meaning that the size of
contrastive prime implicants should decrease as imprecision
increases. Again, this is somehow intuitive, as a dominance
obtained for a more imprecise model should be easier to
modify than the same dominance obtained from a more
precise model. It should also be noted that the argument x4
obtained for # in Equation (7) may actually change when
considering #’.

Remark 3 Equation (7) corresponds to finding some min-
imal changes that could modify our conclusion, and can
therefore be viewed as a tool to analyse the robustness
of this decision. As such, it can be useful to analyse the
model and its robustness. However, answering the question
“what should I change to be sure to reverse the dominance”
would necessitate another notion where the satisfaction of
Equation (10) is enforced, that we will not consider here,
leaving it for future work.

2Recall that x¢ is the argument of Equation (7).
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3.3. Prime Implicants as Explanations of Doubt

For precise models, the statement "Why X is P?” that
we have to explain is typically a precise assignment or a
dominance relation between two classes. In the case of
robust classification, the question "Why X is neither P nor
0?7, and for what reasons cannot I classify X precisely,
also makes sense.

In this case, we say that E C [[1,n]| is a prime implicant
of doubt if

p(yI(xg, x4 )

sup inf ————— <1, (11a)
xd ex_p PP POV |(x3.x7 )
and
’ XO,Xd
sup inf POIEX2g)) <1, (11b)

xd ex_ PP pOI(xg, x4 )

that is any change performed outside of E (in particular
the changes for the most favourable values for y in Equa-
tion (11a) and the most favourable for y’ in Equation (11b))
will not modify the fact that the two classes are incompara-
ble given our model and knowledge of it. It is further more
minimal if for any i ¢ E, we do have either

POIXY, oy )
sup inf B\ EU{I} >1, (12a)
* iy < Xoron PP p(yl(XE\{i}’X—EU{i}))
or
PG X poiy)
sup inf —— M ZE0 > 1 (12p)

P p(yI(XE (iy- X EU{I}))

X‘fEU{i}GX,EU{,-}
We also consider the function ¢ , that associate to each
possible subset the value

o d
dy'(E)i sup infw 13)

EX,:PEPP()} |(XE’X E))

¢d , corresponds to Equation (11a) and ¢d to Equa-
tion (11b) and both will be used in the computat1ons as we
will see in Sectlon 4 for the naive credal classifier. In general,
the vectors x¢ g for which the bounds of (11a)-(11b) are
obtained will be different.

Monotony with respect to imprecision. as before, we
can easily show that implicants of doubt are somehow
monotonic with imprecision, in the following sense

Proposition 4 Consider two credal sets P C P’, then

Y =<pxo,) Y = Y ><prxe Y

Proof Immediate, since if Equations (11a)-(11b) are true
for E and P, it must be true for E and #’, as the infinimum
is taken over a larger domain, and is of lower value. |

It should be remarked that while those implicants are
also of validatory nature, in the sense that they confirm our
conclusion, their monotonicity is not in the same direction
as the validatory implicants of dominance relations. This is
however not surprising: as imprecision increases, it becomes
easier to obtain that two classes are incomparable, hence
prime implicants should decrease in size as credal sets
become more imprecise.

Remark 5 We could also have considered contrastive im-
plicants of doubt that would transform the incomparability
into a dominance relation, as done for example in [26]. Such
implicants would be of the same kind as the ones mentioned
in Remark 3, as they would answer the question "what
should I change to be sure to have a dominance relation”.

Remark 6 [In contrast with the previous implicants trying
to either verify or contradict a dominance relation between
two classes, it may be that E = ( is the only prime implicant
of y ><y’, in which case doubt is simply due to inherent
imprecision of our information (think, for instance, about
the case of total ignorance).

3.4. Short Discussion about the 3 Types of Prime
Implicants

We defined three functions ¢y v ¢;l v (b; y which are

inclusion-monotonic: for ¢¢ ,, ¢* , and E C F, we do
have ¢, (E) < ¢y7y,(F), and for’¢;,y, and £ C F, we
have q)c (E) > ¢;,y,(F).

ThlS means that they can be seen as value functions
associated to E, and that finding a prime implicant amounts
to the task of finding a minimal “bundle of items”3 E
such that ¢>;’y,(E) > 1, ¢;’y,(E) < 1lor (Z);”y,(E) <1,
therefore allowing us to map the finding of robust prime
implicants to an item selection problem or to knapsack
problems where we have to fill the sack until it reaches a
certain value. Unfortunately, in general, the log-functions#
of each problem will not be additive, as we will not have
log ¢y v (E U {i}) = log ¢y v (E) +log ¢y v ({i}). We
will nevertheless show in Section 4 that it is the case for the
Naive credal classifier.

While providing a minimal subset of features such that
a preference/dominance is preserved or changed can be
considered to some extent as satisfactory for the user [23, 7]
(as long as those features have a meaning for the user),
the same cannot really be said about non-dominance or

3Each index of an attribute being associated to an item.
4As we will deal later with joint probabilities and independence, using
log transform will allow us to turn products into sums.
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incomparability. In such a case, the user will probably not
be satisfied by the mere fact that features values in E are
sufficient to claim incomparability, and will request to know
why this incomparability happens.

In a machine learning setting, it makes sense to differen-
tiate between incomparability due to ambiguity, where a
small change in our knowledge representation # would lead
to a decision, from incomparability due to lack of knowl-
edge, where it would require significantly more knowledge
to obtain a decision. These two types of uncertainty sources
are often referred to as epistemic and aleatoric uncertainties,
and those can be quantified [13].

It seems reasonable that the complementary explanation
to incomparability should differ according to the dominating
source of uncertainty or indecision. In particular:

« if the indecision is mainly due to aleatoric uncertainties,
it is clear that collecting more data is unlikely to solve
the issue, and that it would be important to identify
those features that generate the ambiguity. In this
case, it would seem preferable to provide a contrastive
explanation (in the sense of Section 3.2) rather than
recommending the collection of further data, so as
to answer the question: “which features generate my
ambiguity?”.

* if the indecision is mainly due to epistemic uncer-
tainties, a possible way to answer this question is to
know how many further data points would we need to
collect (and which ones) in order to reach a conclusion
rather than producing none. The question we would
answer would then be “what data should I collect to
gain knowledge?”

It is clear to us that providing formal reasons as to why
an incomparability is observed, and proposing tools in this
direction is a worthwile undertaking, and that our proposal
could be useful to the analyst as a way to audit the model
(why is my model doubting, and what could I do about
it?). It is less clear that the notion proposed in this paper
is instrumental to the end-user. Indeed, once x° is known,
letting the end-user know that we could have known earlier
(i.e., with less measurement) that we could not reach a
decision is not very helpful. However, our approach can
also be considered to detect from partial observations, and
before measuring all features, that incomparability will
ensue whatever happens, therefore sending an early signal
that with this model and this degree of cautiousness, taking
more measurements is fruitless.

A definite goal we have in mind for future work is to
go beyond the definition of prime implicants of doubts,
and investigate problems such as active learning or fea-
ture acquisition in which they could offer an operational
advantage.

4. The Case of the Naive Credal Classifier

We now study the specific case of the Naive credal clas-
sifier [25], and show that in this case, computing prime
implicants becomes easy, as such a computation can be
brought back to selecting items with an additive value
functions, or equivalently to simple knapsack problems.

4.1. Generic Case

The basic idea of the Naive credal classifier (the same
as its precise counterpart) is to assume that attributes are
independent of each other given the class. This modelling
assumption means that

[T, pi(xily) x py (y)

p(y[x) = )

once we apply the Naive assumption and Bayes rule. This
means in particular that

_ py(Q) p pitaly)
py(y) i pi(xily")

P (yIx)
p(y'[x)

with every p;(-|y) being independent of p;(-|y’), and every
pi(:ly), pj(-]y) independent for i # j. When switching to
credal models, one considers sets of conditional distribu-
tions Py, (-|y) and a set Py of priors rather than precise
probabilities. We will abuse the notation Py, by #; and p x,
by p; for the sake of conciseness.

In our Equations (4), (7) and (11a, 11b) we have two
optimisation problems, one in Xg (or X_g) and one in P.
Thanks to the independence assumptions, the two problems
can be solved independently. Let us now see how the
common part of the three Equations, the problem in P,
transform in this case. We do have

ry(y) pi(xily)
14
PYEPV PY(y ) nl’zep Pz(th’) ( )

p(yIx)
mr ——
pe? p(y'x)

Once again, thanks to our Independence assumption, each
term of the equation can be taken independently of the others
(different variables) and inside each feature the numerator
is independent of the denominator (different conditioning
element). Moreover, as our probability sets $; are convex,
finding the minimum and maximum value is usually easy.
Finally, we get that Equation (14) becomes

pY(y) l—[ P (Xl|y) (15)

pyesoy py(Y) A1 pi(xily’)

where p (x) = infpep p(X) and p(X) = sup,cp p(X). Let’s

Py ()

prePy py(y7y- e can now rewrite our

note p¥Y = inf
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functions as :

p.(x?y) p.(x}y)

v (E) = p* T

by (B) =2 Dspl( x21y') n X} n pi(x}'1y")
(16a)

p,(x{1y) p.(x71y)

< (E)=p [ ] —

¢y,y( ) p l_[x‘leX Di (xcly) l_[ pi(Xl-"b’/)
(16b)

p.(x?1y) p,(x{1y)

¢d J(EY=p | | == || sup =
- - I—[pi(X?Iy) [

icE ie—ExdeX; Pi(X;”y’)

(16¢)

As we see in Equations (16a), (16b) and (16c¢), in the case

of the NCC the optimisation on Xg (or X_g) is independent

of the computation of ¢, - (E). It follows that the results

are unique and can be computed before choosing the items

in E. We can represent them by unique ’worst opponent”

vectors, depending only on classes y and y’ (the former in
the numerator and the later at the denominator) :

X" = x" arg inf ki D)
xex: pi(x) 1Y)

xCYY —x_larg inf P(ch’)
XCeX; D (x )

p,(x{1y)

dyy _X; | arg sup —p (Xd|y)
xeX

When we solve the problem of selecting E, in the case of
validatory and contrastive prime implicants, we will only
use the “worst opponent” vectors with "y, y’”, whereas
we also need the converse ’y’, y” for prime implicants of
doubt. We will then refer to x” and x¢ instead of x*¥-Y" and
x“¥Y" We can also note that x” and x° are equal in the
case of NCC, the two problems of finding validatory and
contrastive prime implicants only differing by the fact that in
the validatory case, elements of E are fixed, while they are
modified in the contrastive case. It should be noted that this
uniqueness of “worst opponent” is not true for more generic
models, in the sense that the arguments of Equations (4),
(7) and (11a, 11b) in Xg will typically depend on E.

Coming back to the NCC, we can also see that each of our
function is additive on their log form. Indeed, for instance
for qﬁ;yy, we have :

log ! ., (E U {i})

(log p,(x71y)
- (log p (x;1y)

—log ¢}/ (E) =

—log p;(x7y"))

—log p;(x{1y)) (7
As this value is independent of any feature (inside or outside

E) different from i. We can therefore define contribution
functions G, G¢ and G;’ N mapping each feature i to the

contribution of adding i to E :

G (i) = (log p (x?]y) —log p;(x71y"))

- (log p.(x{]y) —log p;(x}1y"))  (18a)
G (i) = (log p,(x{ly) —log P;(x{|y"))
- (log p (x7ly) —log p;(x{]y"))  (18b)

G (i) = (log p.(x71y) — log B;(x{1y"))

d:y,y’ — . dy,y s
— (log p (x; P y) —log P (x1 |y))
(18¢)
We see that, by definition, values of functions G"’s are

at least zero because we replace the worst opponent value
with a better value (the observed one)’ and is at most 0 for

G¢ and G;l’ - It follows that
log 7, (E) =log @ ,(0) + > G*(i) (19a)
icE
log ¢, (E) = log ¢, ,(0) + > G (i) (19b)
icE
log ¢, (E) =log ¢, () + Y G, () (1)
icE

We will note the log-contributions of the empty set by C”,
Cand CY .

Using these additive rewriting, we will now investigate
how to compute our three types of prime implicants (valida-
tory, contrastive and doubt), and the associated complexity.

4.2. Validatory Prime Implicants

From Equation (19a), we have that log ¢;’y,(E) =C"+
Yice GV (i) and our goal (4) is to find subsets E C |1, n]|
such that log ¢V J(E) = 0.

It follows that we want to optimise E so that the sum of
positive contributions is greater than CV. Finding a smallest
prime implicant is then computationally easy, as it amounts
to order the GV (i)’s in decreasing order, and add them until
Yiee GY(i) = —CV. The whole procedure is summarised
in Algorithm 1.

The complexity of Algorithm 1 is linear over the ordered
contributions, in number of attributes. Computing the con-
tributions remains easy as the only complexity is to compute
the “worst case” vector x”, whose components x;" requires
| X;| = k; evaluations on each dimensions. As sets # are
typically polytopes defined by linear constraints, finding the
values p and p amounts to solve linear programs, something
that can be done in polynomial time. For some specific
cases such as probability intervals [9] (induced, e.g., by
the classical Imprecise Dirichlet Model [5]), this can even

SIndeed, log p,(x}y) - log B;(x}1y") < log p (x¢]y) -

log p; (x{|y”") by definition.
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Input: CV; GV
Output: Xpl = (E,x}): explanation in terms of attribute
Order GV in decreasing order, with o the associated permu-
tation
i—1
while ¢;’y, (E)+CY <0do
i—i+1
E — EU{c (i)}
8 (E) = ¢} ,(E) + G* (o)

end

Xpl — (E,x$)
return (Xpl)
Algorithm 1: Compute first available prime implicants
explanation

be done in linear time. Therefore, the overall method is
polynomial, with a linear pre-treatment over the sum of k;’s,
followed by a sorting algorithm, after which Algorithm 1 is
linear over the number of attributes.

4.3. Contrastive Prime Implicants

The case of the contrastive prime implicants is straight-
forward once we solved the validatory prime implicants.
Indeed, as suggested by the similarity between the defini-
tions of ¢;’y, and </>;,y, in Equations (16a) and (16b) and
the definitions of x¥ and x°, we almost compute the same
thing, the difference being that the role of E for ¢;’y, is
fulfilled by —F for ¢);’ V- We obtain that C¢ > 0 whereas
we had CY < 0, as C€ is obtained when we observe the full
vector x?, and that G¢ (i) < 0. To use Algorithm 1, we only
need to change the while condition to ¢>;’y, (E)+C° >0,
and the vector G” to be ordered in ascending order.

That such strong duality relations hold in general is
unlikely, even if validatory and contrastive explanations are
known to be linked in general [14].

4.4. Prime Implicants of Doubt

From the definition of prime implicant of doubt in Equa-
tions (11a) and (11b) we have to investigate simultaneously
two problems, one in favour of y against y’ and one in
favour of y” against y. To do so we have two functions ¢;l’ Vv

and ¢‘yi,,y, which in the case of the NCC are additive:

log ¢, (E) =, + > G4 (i),
icE

log¢¢, (E)=CZ  + Z G4, ().
icE

C;l ¥ and C;l, y are obtained when we assume observing the

“worst case opponents” x4¥-¥" and x4¥"-¥, the two vectors

the most in favour of y against y’ and of y’ against y. In
practice, we then want to find which features of x° are
sufficient to observe so that both dominance relationships
(if they hold for some vectors x4¥>Y", x4Y-¥ ' which may
not be the case as hinted by Remark 6) are broken, i.e., both
y }P,(x;,xg‘y') y" and y’ }P’(XE,X?Z'J) y. This problem
can be represented as a 2-dimensional Knapsack where the
objects are the features and the two Knapsacks corresponds
to the dominance of y over y” and the converse. We obtain
the following formulation

n
min Z Xi
i=1
subject to
n
DoxixGe () <-CL (20)
i=1
n
in * G‘yi,’y (i) < —C;i,’y,
i=1

Vie{l,...,n}x; €{0,1}.

This problem can be solved by using efficient MILP solver,
which may provide fast solutions for the average case, even
if the problem worst complexity remains NP-hard. The
indexes with a non zero associated x; are the components
of E, i.e. are our prime implicants.

4.5. NCC with the Imprecise Dirichlet Model

In this section we will present the Imprecise Dirichlet Model
[5], which is a classical model of representation of domain
of probabilities, and study how the prime implicants will
behave in this case.

The main idea of the IDM is to build a cautious interval
around a precise probability distribution. Let’s note the
number of observation of an event X by nx, same notations
for a conditional event X|Y by nx|y and N the total number
of observation. We obtain that the probability of witnessing
Xis nﬁx We introduce the meta-parameter s of the IDM
which can be interpreted as a number of “unwitnessed”
observations. As these could be or not witnessed for X the
probability of X belongs to the interval [%, ';VX—:;]

We can easily see that, in the case of the IDM, the s
hyper-parameter allows us to go from fully precise (s = 0)
to fully imprecise (s = c0), meaning that the monotonicity
properties we mentioned so far can easily be checked by

modifying its value.

5. First Experiments

This Section will present an illustrative case based on the
data from the Zoo dataset from UCI repository [11] using the
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NCC alongside the IDM. To avoid probabilities of 0 we will
regularize them by mixing them with a uniform distribution
(using a coeflicient € = 0.05 to weight this uniform). The
experiment will be separated in two parts. The first one will
focus on trying to answer with a quantitative study to the
questions "How do the different implicants behave, in size,
absence, number, based on the kind of implicants we search,
and on whether we justify a relation consistent with the
ground truth ?”” and Is the size of pairwise explanations
dependent of the imprecision and the number of predicted
classes ?”. Second one will illustrate how a discussion with
a user could occur based on this data for the different types
of explanations.

The Zoo dataset is a classification dataset containing 101
samples of animals with 16 input features and the class.
The classes are numbers from 1 to 7 corresponding to
Mammal, Bird, Reptile, Fish, Amphibian, Bug and Inver-
tebrate. We used 14 features for classification ( ’feathers’:
{fe,~fe}, eggs’: {e, —e}, airborne’: {ai, —ai}, aquatic’:
{aq,—aq}, predator’: {p, —p}, ‘toothed’: {to, —to}, *back-
bone’: {b, —b}, ’breathes with lungs’: {/, -/}, ’venomous’:
{v,=v}, *fins’: {fi,—fi}, ’legs’: {0,2,4,5,6,8}, ’tail’:
{ta, -ta}, ’domestic’: {d, ~d}, ’at least catsize’: {c, =c}),
all binary except for the number of legs. To have sufficient
classification errors, we removed 2 features (Chair’ and
’milk’) from the original features.

5.1. Quantitative Study

We performed this study using a 4-Fold cross-validation
with a stratified data separation, due to the samples by class
being very unbalanced, e.g. 41 for Mammals and 4 for
Amphibians.

Are Validatory and Contrastive explanations size de-
pendent of miss-classification ? The idea behind this
question is to verify the shape of explanations when the ob-
servation is well classified against when it is miss-classified.
If y is the true class, we could expect explanation for an ob-
served dominance y >p xo y’ that are "true” to differ from
observed dominance y’ >p xo y that are false. In Figure 1,
we plot the size of such explanations.

First note that the monotonicity in terms of imprecision
are well observed: as s increases, the size of validatory
and contrastive explanations respectively increases and
decreases.

Then, we can see that there is no significant difference
between the distributions when the prediction is correct
or not, except maybe for a bigger variability in the case
of wrong prediction. While further experiments would be
needed to confirm this, it seems that the length of explanation
is not related to whether they explain a correct or incorrect
prediction, suggesting that one would have to check their
plausibility.

Prediction contains the truth Prediction does not contain the truth
Validatory Prime implicants Validatory Prime implicants

12.5 12.5 i‘
a 10.0 T 10.0 1 ’L
%5 o]
= 7 ’_—|;‘ \AI 7 A
£ 75 a N 751 o a
g T ¢ L
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41 © 4
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Figure 1: Explanation length according to prediction truth.
Green triangles are mean values.

Are Doubt explanation dependent of the number of un-
dominated items? We will now focus on prime implicants
of doubt explanations. As said in Section 3.4, incomparabil-
ities may arise from lack of knowledge or from ambiguity
about the observed element. A question is then to know
whether this affects the length of our explanation.

As a proxy, we plotted in Figure 2 the length of implicants
explaining incomparabilities against the number of undomi-
nated classes, with the idea that this is a reasonable proxy of
ambiguity versus lack of knowledge (the more the number
of undominated, the more incomparabilities are likely to be
due to lack of knowledge). Again, while the Figure 2 does
show the expected monotonicity, it seems that the size of
pairwise explanation is not especially affected by the final
number of classes in the prediction. As we used a proxy,
this independence would however have to be confirmed by
more precise assessment of whether our incomparability is
mainly due to epistemic or aleatoric uncertainty.

5.2. Illustrative Explanations

Let us now present some results we can get from the
experiments. We will focus on values s € {0.5,1,2} and
on 3 animals: Giraffe, Seal and Tortoise. We will denote
NCC:s the corresponding classifier.

Giraffe as a non-ambiguous problem. Described by
(=fe,—e,—ai,—~aq,-p,to,b,l,-v,~fi,4,ta,—d,c),
the Giraffe is a prototypical example of Mammals, as all
NCCO0.5,NCC1 and NCC2 classifies it as a Mammal only. To
illustrate the validatory prime implicants explanations, we
will take a look into the preference "Mammal >p Girarfe
Bird”. For NCCO.5, a sufficient reason to classify the Girafte
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Doubt Explanations length
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Figure 2: Length of pairwise doubt prime implicants by
size of prediction and values of IDM (ball size
is normalized with respect to the number of ex-
amples having the same number of undominated
classes)

as Mammal and not Bird is that it has no feathers (- fe),
does not produce eggs (—¢) and is toothed (r0). With the
increasing cautiousness of NCC1 we need to add the fact
that the Giraffe has 4 legs to the explanation and for NCC2
we then add that it is not airborne. All advanced reasons
correspond to attributes of Mammals and not of Birds.

A contrastive explanation showing how “robust” our
classification is for NCCO0.5 and NCC1 that we change the
values of the features feathers, eggs and toothed. So, an
animal like the giraffe, but with feathers, laying eggs and
no teeth could be either a mammal or a bird.

Seal as an ambiguous animal. Described by
(=fe,—e,—ai,aq, p,to,b,l,-w, fi,0,-ta,—d,c),

it is classified as a Mammal for NCCO0.5, but NCC1
and NCC2 are more cautious by predicting the set
{Mammal, Reptile, Fish, Amphibian}. Let us now
investigate the comparison between Mammal (the true
class) with Fishes.

For NCCO0.5 a sufficient reason to classify as a Mammal
is that the Seal has lungs, does not produce eggs, is (at
least) catsized, is not venomous, has no feathers and has a
backbone. Note that this time explanations contain element
that support Mammal but can nevertheless be met in fishes
as well (e.g., has no feathers). The decision is also less
robust, as contrastive explanation shows that flipping one
of the features ['lungs’, eggs’, ’catsized’, ’venomous’] is
enough to make Mammal and Fish incomparable.

When going to NCC1, Mammal ><p s.q; Fish can be
explained by the fact that the Seal does not produce eggs, is
aquatic, breathes, has fins, has no legs. Interestingly, we
can see that the explanation shows that the seal is somehow
ambiguous, having some typical features of fishes (aq, f7)
as well as of Mammals (—e, ).

Tortoise as a mistaken animal. Described by
(—fe,e,nai,—aq,—p,-to,b,l,—~v,~fi,4,ta,~d,c),

it is wrongly labelled by NCC0.5 and NCC1 as a Mammal
rather than a Reptile. NCC2 is much lesser precise and
predicts that a Tortoise can be every class except for Fish.

If we investigate the reasons why NCCO0.5 believes the
Tortoise is a Mammal we obtain the validatory prime
implicant not venomous, has 4 legs, is catsized, breathes,
is not a predator, has a backbone, is not airborne (for
NCCI1 we add that it has no feathers, is not aquatic and
has no fins.)

The explanation is reasonable but quite long, and does
not use the fact that a Tortoise lay eggs (the Platypus being
one of the mammal, it is possible for mammals to lay eggs).
Also, the Reptile class is poorly represented (4 examples)
and most by “serpent like” animals with no legs, pretty
venomous, small (so not catsized) and predators.

Finally, when increasing to NCC2, we obtain that the
doubt between Reptile and Amphibian is not caused by
any feature (empty prime implicant of doubt). This clearly
shows that Reptile and Amphibian are indistinguishable by
default” and are underrepresented, as the Amphibian and
reptile classes have respectively 3 and 4 learning observa-
tions which is too little compared to s=2.

6. Discussion and perspectives

Considering explanations for imprecise classifier opens up
many questions, for instance in relation with the possibility
of observing incomparability, or of increasing/decreasing
the imprecision of a model. In this paper, we focused on
prime implicants, extending notions proposed so far in
the precise setting. We introduced three notions of prime
implicants in the case of pairwise comparison, answering
the questions "Why X is P?”, "Why X is P and not Q?” and
“Why is X neither P nor Q?”. When applying them to the
Naive credal classifier, we obtain that the computations are
computationally easy (at least for validatory and contrastive
explanations).

Complexity beyond the NCC case While Section 4
showed that the notions of Section 3 could be computed
relatively easily for some case, it is clear that applying them
in general will present many challenges, as the problem
of finding prime implicants with minimal cardinality or
of enumerating prime implicants is known to be NP-hard.
Coming up with methods to extract such prime implicants
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from other credal classification methods therefore constitute
an important avenue for future research. We are however
relatively confident that the notion of (prime) implicants
could be used in numerous cases, notably for the following
reasons:

* while considering NCC results in an additive structure
making the problme of finding prime implicants linear
in the number of features, other structural assumptions
may also make this task easy. For instance, monotone
classifiers [17] and decision trees [16] also exhibit
a structure that allows for efficient algorithms in the
precise case;

* while finding prime implicants for other classifiers such
as random forest can turn out to be quite complex [15],
relaxing the notion of prime implicants to weaker
notions such as being a prime implicant for a majority
of trees may allow for efficient, polynomial search
methods [2];

* many classification problems do not include that many
features, meaning that even if the problem of finding or
enumerating prime implicants is computationally chal-
lenging, one could still use, e.g., ILP formulations of
the problem with powerful solver to obtain a solution.

Some perspectives In the future, we would like to focus
on various questions not investigated here, such as for which
robust models (e.g., including some dependence statements)
do computations remain tractable? What happens with
interaction between attributes ? When trying to explain the
complete partial order, should we use pairwise or holistic
(i.e., prime implicants explaining the non-dominated classes
at once) explanations? How do we select what dominance
to explain in such a case ? There are also several other
explanation mechanisms we could consider [1]. We also
want to investigate the case with prediction costs. Indeed,
we can associate costs to making a prediction y’ when the
truth is y. During this paper we used the usual 0/1 cost for
all types of miss-classification.

Finally, we also feel that we have only skimmed the
surface of the role of incomparability explanations, in
the sense that the operational role and advantage of such
explanations still remain to be explored.
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