N
N

N

HAL

open science

Les implicants premiers, un outil polyvalent pour
I’explication de classification robuste
Hénoik Willot, Sébastien Destercke, Khaled Belahcene

» To cite this version:

Hénoik Willot, Sébastien Destercke, Khaled Belahcene. Les implicants premiers, un outil polyvalent
pour l'explication de classification robuste. 17émes Journées d’Intelligence Artificielle Fondamentale
(JIAF 2023), Zied Bouraoui; Frangois Schwarzentruber; Anaélle Wilczynski, Jul 2023, Strasbourg,
France. pp.146-155. hal-04310904

HAL Id: hal-04310904
https://hal.science/hal-04310904
Submitted on 27 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-04310904
https://hal.archives-ouvertes.fr

Actes JIAF-JFPDA 2023

Les implicants premiers, un outil polyvalent pour I’explication de
classification robuste

Hénoik Willot!

Sébastien Destercke!

Khaled Belahcene?

! Heudiasyc, University of Technology of Compiegne, France
2 MICS, CentraleSupélec, Université Paris-Saclay, France
henoik.willot@hds.utc.fr
sebastien.destercke@hds.utc. fr
khaled.belahcene@centralesupelec. fr

Résumé

Dans cet article, nous étudions comment les résultats
d’un classifieur robuste peuvent étre expliqués a I’aide d’im-
plicants premiers, en nous concentrant sur I’explication de
dominances par paires. Par robustes, nous sous-entendons
des modeles prudents pouvant s’abstenir de classer ou de
comparer deux classes lorsqu’ils manquent d’informations.
Cela peut se faire en utilisant des ensembles (convexes) de
probabilités. Par implicant premier, nous parlons d’un en-
semble minimal d’attributs que nous devons figer afin d’ob-
tenir une certaine conclusion (soit une dominance, soit une
non-dominance entre deux classes). Apres avoir présenté les
concepts généraux, nous les appliquerons au cas bien connu
du classifieur Bayesien naif.

Abstract

In this paper, we investigate how robust classification
results can be explained by the notion of prime implicants,
focusing on explaining pairwise dominance relations. By ro-
bust, we mean that we consider imprecise models that may
abstain to classify or to compare two classes when infor-
mation is insufficient. This will be reflected by considering
(convex) sets of probabilities. By prime implicants, we un-
derstand a minimal number of attributes that we need to
know or specify before reaching a specified conclusion (ei-
ther of dominance or non-dominance between two classes).
After presenting the general concepts, we derive them in the
case of the well-known naive credal classifier.

1 Introduction
Two key aspects of trustworthy Al are the ability to pro-

vide robust and safe inferences or predictions, and to be able
to provide explanations as of why those have been made.

Regarding explainability, the notion of prime implicants
corresponds to providing minimal sufficient condition to
make a given statement, e.g., the attributes that need to
be instantiated to make a classification. They have been
successfully proposed as components of explanations for
large classes of models such as graphical ones [17], with
very efficient procedure existing for specific structures such
as the Naive one [15]. In contrast with other methods such
as SHAP [5] that tries to compute the average influence of
attributes, prime implicants have the advantage to be well-
grounded in logic, and to provide certifiable explanation (in
the sense that the identified attributes are logical, sufficient
reasons).

However, explainable Al tools have been mostly applied
to precise models, at least in the machine learning domain
(this is less true, e.g., in preference modelling [3]). Yet,
in applications involving sensitive issues or in which the
decision maker wants to identify ambiguous cases, it may
be preferable to use models that will return sets of classes
when information is insufficient rather than always retur-
ning a point-valued prediction. Several frameworks such
as conformal prediction [2], indeterminate classifiers [10]
or imprecise probabilistic models [8] have been proposed
to handle this issue. While some explanation methods for
such models have been recently proposed [18, 21], none of
them explicitly adopts a logical standpoint regarding expla-
nations, meaning that the present work is complementary
to those.

Imprecise probabilistic models in particular have the in-
terest that they are direct extensions and generalisations of
probabilistic classifiers, hence one can directly try to trans-
port well-grounded explanation principles existing for pre-
cise probabilistic classifier to this setting. This is what we



intend to do in this paper for prime implicant explanations.

We will start by introducing how the idea of prime im-
plicants can be adapted to classifiers considering sets of
probabilities as their uncertainty models. Section 2 will be
a short reminder of the robust classification setting, and will
introduce our notations. In Section 3, we will present the
idea of prime implicant, as well as how it can answer various
explanatory needs. As the formulated problems are likely
to be computationally challenging for generic models, we
focus in Section 4 on the naive credal classifier, that gene-
ralise the naive Bayes classifier. We show that for such a
model, computing and enumerating prime implicants can
be done in polynomial time, thanks to its independence as-
sumption and decompositional properties. We also provide
an experiment in Section 5 illustrating our approach.

2 Preliminaries on robust classification

In this section, we lay down our basic notations and pro-
vide necessary reminders about imprecise probabilities.

We consider a usual discrete multi-class problem, where
we must predict a variable Y taking values in Y =
{¥1,...,ym} using n input variables Xi, ..., X,, that res-
pectively takes values in X; = {X}, o ,xf" }. We note
X = X?zlxi and x € X a vector in this space. When consi-
dering a subset £ C {1,...,n} of dimensions, we will
denote by Xg = x'EX; the corresponding domain, and by
Xg the values of a vector on this sub-domain. We will also
denote by —E := {1,...,n} \ E all dimensions not in E,
with X_g, x_g following the same conventions as Xg, Xg.
We will also denote by (xg,y-g) the concatenation of two
vectors whose values are given for different elements. No-
tation (Xg,-) means that all features in —F can take any
value. If E = {1,..., N}, then we will simply ignore the
subscript.

In the rest of the paper, we will often refer to partially
ordered sets, their corresponding relations and sets of suf-
ficient elements that allows to asset them. Those sufficient
elements will here be composed of a vector of specified
feature values and of a set of probabilities. We will denote
by y >, (x) ¥’ the fact that considering the model p and the
vector (x) is sufficient to state (or implies) y > y’.

In the case of precise classifiers, we have y >, x) ¥’
when the condition !

p(yx)

P 1
PR > )

is met, or in other words when p(y|x) > p(y’|x). Howe-
ver, probabilistic classifiers can be deceptively precise, for
instance when only a small number of data are available to
estimate them, or when data become imprecise.

1. Using dominance expressed this way will be useful in the sequel.
We will also restrict ourselves to 0/1 loss functions here.

This is why, in this paper, we consider generalised proba-
bilistic settings, and more specifically imprecise probability
theory, where one considers that the probability p belongs
to some subset P, often assumed to be convex (this will be
the case here). One then needs to extend the relation >, to
such a case, and a common and robust way to do so is to
require >, to be true for all elements p € #. In this case, y
is said to robustly dominate y’ upon observing a vector X,
written y >p () y’, when the condition

p(yx)
peP p(y'|x)
is met, or in other words when p(y|x) > p(y’|x) for all
p € P. Going from the precise to imprecise probabilities
can introduce incomparabilities between classes, written
Y ><p (x) y” when both

@

p(yIx)

.. P'OIX)
<land inf 2222 <1 3)
pe? p(y'[x)

peP p(ylx)

3 Explaining robust classification through
prime implicants

Explaining the conclusion or deduction of an algorithm,
and in particular of a learning algorithm, has become (again)
an important issue [6]. A notion that can play a key role in
explanation mechanisms is the one of prime implicants, i.e.,
which elements are sufficient for drawing a given conclu-
sion. In this section, we detail how prime implicants can be
used to answer the needs of different explanatory mecha-
nisms, within the setting of robust, imprecise probabilistic
classifiers.

3.1 Prime implicants as validatory explanation

When observing a vector x° and making a prediction
about whether y dominates y’, finding a prime implicant
confirming that y dominates y’ corresponds to finding the
values of x° that are sufficient to state that y dominates y’,
and that are minimal with this property.

With this idea in mind, we will say that a subset £ C
{1,...,n} :=[1,n] of attributes (where E are the indices
of the considered attributes) is a validatory implicant of

y >P,(x‘é,-) y' iff

o v
inf ing ZACEXE) 1, 4)
X' peXog pe? p(¥'|(XE. XV )

that is if dominance holds for any values of attributes whose
indices are outside E, and any probability p € P. This
means that knowing x¢, alone is sufficient to deduce y > y’.
A set E is a prime implicant iff we satisfy (4) and for any
i € E, we have

PG X i)
inf  inf ——— VT BB (5
XZEU{i}EX*EU{i}pE'P P()’ |(XE\{i}’X—EU{i}))



that is if removing any attribute from £ makes our deduc-
tion invalid, so that E is a minimal sufficient condition for
Y >p,(x¢.,) ¥ to hold for any completion of —E. In the
sequel, it will prove useful to consider the function that
associates to each possible subset the value of the ratio bet-
ween the obtained posterior probabilities. This function ¢¥
is defined by :

x2,x¥
¢"(y,y',x?, E) := inf w.
X' peXg pe? p (Y [(xG, XY )

(6)

To ease the use of this function, we will omit the observed
vector x° when context is clear and we will write "y, y'" as
a subscript meaning that class y is the numerator and y’ the
denominator, i.e., ¢;,y, (E) ==¢"(y,y,x°,E)

Note that when the set £ reduces to a singleton, that is
when we consider precise classifiers instead of robust ones,
then our notion of prime implicant reduces to previously
proposed ones [15], and our approach is therefore a formal
generalisation of those.

Monotony with respect to imprecision one can note that
the notion of validatory prime implicant is monotonic with
respect to imprecision, in the following sense

Proposition 1. Consider two credal sets P’ C P, then
YEexg,) Y = Y reiag,) Y

Démonstration. Immediate, since if Equation (5) is true for
E and P, it must be true for E and #’, as the infimum is
taken over a smaller domain. |

This means that a validatory implicant will remain so if
we consider a more precise model (obtained, e.g., by obser-
ving additional data). However, if a subset E was prime for
P, it does not need to be so for ’, meaning that the size of
validatory prime implicants should decrease as imprecision
decreases. This is somehow natural, as a more informa-
tive models should need less measurements to provide a
conclusion.

3.2 Prime implicants as contrastive explanations

Another quite common way to audit or explain a state-
ment "Why X is P ?" is by answering the implicit question
"Why X is P and not Q ?" [16, 12]. This can classically be
answered by finding a counter-factual, i.e., a modification
of the example with sufficient changes so as to change our
conclusion. Replying to this question in a minimal way can
be seen as the task of finding a minimal set of attributes
or features for which a modification could change our deci-
sion. We will call E C [1, n]| a contrastive prime implicant
if modifying the attributes within £ is a minimal sufficient
condition to change our decision, that is, if
p(YI(XE. X2 )

inf inf ———L2—E < N
XL €Xg peP P()"|(XE’X_E))

and if for any i ¢ E, we have

POIKE (1 X pugy)
inf  inf — ST BV ()
Xg\ €XEVG) PEP p(y |(XE\{i}’X—EU{i}))

that is there is at least one modification of feature values in £
that lead to a different decision, and any change done within
a subset of it would not change the decision. Denoting X7
the argument of Equation (7), E is a contrastive implicant if
Y FP (xS x7,) y’. We also consider the function qﬁ;"y, that
associates to each possible subset the value
x¢, x?
85,5 = _intinp PO
X €Xg peP p(y |(XE, X_E))

One of the interesting aspects of considering impre-
cise models is that contrastive explanations do not ne-
cessary lead to reversing the initial preference (which
is the case for precise models). Indeed, modifying the
conclusion y >p xo y’ by considering the modified vector
(x%, x? E) can lead to two quite different situations, resul-
ting either in y’ >p,(xs,x0,,) ¥ (reversing of preference) or
Y ><p,(x¢ x2,) ¥ (weakening of preference) and we will
define two notions of contrastive explanations.

Given that E is a contrastive prime implicant, we say that
it is also a reversing prime implicant if in addition we have 2

7’ XC,XO
. p(Y'I( E °e) -
pe? p(y|(x%,x% L))

(10)

as this contrastive prime implicant change the initial sta-
tement or conclusion into its reverse. Otherwise, if it does
satisfy Equations (7) and (8), but not (10), we say that
E is a weakening prime implicant, as it changes a prefe-
rence between two classes into incomparability. The vector
(x4, x? ) also provides us with a contrastive example for
which the decision would change.

Monotony with respect to imprecision as with valida-
tory implicants, the notion of contrastive implicants is mo-
notonic with respect to imprecision, but in the other direc-
tion.

Proposition 2. Consider two credal sets P C P’, then

VAP, Y = Y Fe oo, Y

Démonstration. Immediate, since if Equation (7) is true for
E and P, it must be true for E and #’, as the infinimum is
taken over a larger domain, and is of lower value. m]

This means that a contrastive implicant and the associated
example (x§;,x? ;) will remain so if we consider a more
imprecise model. However, if a subset E was prime for $,
it does not need to be so for £’, meaning that the size of

2. Recall that x; is the argument of Equation (7).



contrastive prime implicants should decrease as imprecision
increases. Again, this is somehow intuitive, as a dominance
obtained for a more imprecise model should be easier to
modify than the same dominance obtained from a more
precise model. It should also be noted that the argument x,
obtained for # in Equation (7) may actually change when
considering #’.

Remark 3. Equation (7) corresponds to finding some mi-
nimal changes that could modify our conclusion, and can
therefore be viewed as a tool to analyse the robustness of
this decision. As such, it can be useful to analyse the model
and its robustness. However, answering the question "what
should I change to be sure to reverse the dominance" would
necessitate another notion where the satisfaction of Equa-
tion (10) is enforced, that we will not consider here, leaving
it for future work.

3.3 Prime implicants as explanation of doubt

For precise models, the statement "Why X is P ?" that
we have to explain is typically a precise assignment or
a dominance relation between two classes. In the case of
robust classification, the question "Why X is neither P nor
Q?", and for what reasons cannot I classify X precisely,
also makes sense.

In this case, we say that E C [[1,n] is an implicant of

doubt if
X7,
sup inf M <1, (11a)
X‘fEeX,E pePp(y |(X X E))
and 4
"1(x%., x
sup inf PO X)) <1, (11b)

s exp PP pOI(x.x? )

that is any change performed outside of E (in particular
the changes for the most favourable values for y in Equa-
tion (11a) and the most favourable for y” in Equation (11b))
will not modify the fact that the two classes are incompa-
rable given our model and knowledge of it. It is further more
minimal, i.e. prime, if for any i ¢ E, we have either

PO 1y X i)

sup ing) - y >1, (12a)
iy Xomoin PP PNy 35X 5))
or
POIGY X 0)
sup  inf EMPT-EOW 5 4 (12b)

G ACU[C YAV SY)

d €
X pu) €X_Euf) 4

We also consider the function ¢;’ N that associates to

each possible subset the value

x2,, x4
Sup pOI(xg,x25))

Lex.n PP P(VI(xg,x4 )

4 (E) = (13)

¢$ , corresponds to Equation (11a) and ¢¢, ~to Equa-
tion (11b) and both will be used in the computatlons as we
will see in Section 4 for the naive credal classifier. In ge-
neral, the vectors x‘f E for which the bounds of (11a)-(11b)
are obtained will be different.

Monotony with respect to imprecision as before, we can
easily show that implicants of doubt are somehow monoto-
nic with imprecision, in the following sense

Proposition 4. Consider two credal sets P C P’, then
Y ><p,(x2,) y =y > <P (x4, Y

Démonstration. Immediate, since if Equations (11a)-(11b)
are true for E and P, it must be true for E and P’, as the
infinimum is taken over a larger domain, and is of lower
value. |

It should be remarked that while those implicants are
also of validatory nature, in the sense that they confirm our
conclusion, their monotonicity is not in the same direction
as the validatory implicants of dominance relations. This
is however not surprising : as imprecision increases, it be-
comes easier to obtain that two classes are incomparable,
hence prime implicants should decrease in size as credal
sets become more imprecise.

Remark 5. We could also have considered contrastive im-
plicants of doubt that would transform the incomparability
into a dominance relation, as done for example in [21]. Such
implicants would be of the same kind as the ones mentio-
ned in Remark 3, as they would answer the question "what
should I change to be sure to have a dominance relation'.

Remark 6. In contrast with the previous implicants trying
to either verify or contradict a dominance relation between
two classes, it may be that E = ( is the only prime implicant
of y ><y’, in which case doubt is simply due to inherent
imprecision of our information (think, for instance, about
the case of total ignorance).

3.4 Short discussion about the three types of Prime
implicants

We defined three functions ¢° v ¢d NE ¢V ¥ which are

1nclus1on monotonic : for ¢;l v ¢>; Vv and E C F, we have
Vv J(E) £ ¢ (F) andf0r¢ Vv and E C F, we have
°y,<E> > ¢¢ " (F).

This means that they can be seen as value functions asso-
ciated to E, and that finding a prime implicant amounts
to the task of finding a minimal "bundle of items"3 E
such that ¢¥ (E) > 1, ¢§ ,(E) < 1 or ¢§{’y,(E) < 1,
therefore allowing us to map the finding of robust prime
implicants to an item selection problem or to knapsack

3. Each index of an attribute being associated to an item.



problems where we have to fill the sack until it reaches a
certain value. Unfortunately, in general, the log-functions 4
of each problem will not be additive, as we will not have
log ¢y, (E U {i}) = log ¢y, (E) +log ¢y ({i}). We
will nevertheless show in Section 4 that it is the case for the
Naive credal classifier.

While providing a minimal subset of features such that
a preference/dominance is preserved or changed can be
considered to some extent as satisfactory for the user [19, 7]
(as long as those features have a meaning for the user),
the same cannot really be said about non-dominance or
incomparability. In such a case, the user will probably not
be satisfied by the mere fact that features values in E are
sufficient to claim incomparability, and will request to know
why this incomparability happens.

In a machine learning setting, it makes sense to diffe-
rentiate between incomparability due to ambiguity, where a
small change in our knowledge representation $ would lead
to a decision, from incomparability due to lack of know-
ledge, where it would require significantly more knowledge
to obtain a decision. These two types of uncertainty sources
are often referred to as epistemic and aleatoric uncertainties,
and those can be quantified [13].

It seems reasonable that the complementary explanation
to incomparability should differ according to the domina-
ting source of uncertainty or indecision. In particular :

— if the indecision is mainly due to aleatoric uncertain-
ties, it is clear that collecting more data is unlikely
to solve the issue, and that it would be important to
identify those features that generate the ambiguity.
In this case, it would seem preferable to provide a
contrastive explanation (in the sense of Section 3.2)
rather than recommending the collection of further
data, so as to answer the question : "which features
generate my ambiguity ?".

— if the indecision is mainly due to epistemic uncertain-
ties, a possible way to answer this question is to know
how many further data points would we need to col-
lect (and which ones) in order to reach a conclusion
rather than producing none. The question we would
answer would then be "what data should I collect to
gain knowledge ?"

It is clear to us that providing formal reasons as to why
an incomparability is observed, and proposing tools in this
direction is a worthwile undertaking, and that our proposal
could be useful to the analyst as a way to audit the model
(why is my model doubting, and what could I do about it ?).
Itis less clear that the notion proposed in this paper is instru-
mental to the end-user. Indeed, once x° is known, letting the
end-user know that we could have known earlier (i.e., with
less measurement) that we could not reach a decision is not
very helpful. However, our approach can also be considered

4. As we will deal later with joint probabilities and independence,
using log transform will allow us to turn products into sums.

to detect from partial observations, and before measuring
all features, that incomparability will ensue whatever hap-
pens, therefore sending an early signal that with this model
and this degree of cautiousness, taking more measurements
is fruitless.

A definite goal we have in mind for future work is to
go beyond the definition of prime implicants of doubts,
and investigate problems such as active learning or feature
acquisition in which they could offer an operational advan-
tage.

4 The case of the Naive credal classifier

We now study the specific case of the Naive credal clas-
sifier [20], and show that in this case, computing prime im-
plicants become easy, as such a computation can be brought
back to selecting items with an additive value functions, or
equivalently to simple knapsack problems.

4.1 Generic case

The basic idea of the Naive credal classifier (the same
as its precise counterpart) is to assume that attributes are
independent of each other given the class. This modelling
assumption means that

[Tz, pi(xily) X py (¥)
p(x)

once we apply the Naive assumption and Bayes rule. This
means in particular that

p(yIx) =

p(yIx)
p(y'|x)

_py(y) Pi(xi|y)
Ty () l_[ pi(xi]y")

with every p;(:|y) being independent of p;(:|y”), and every
pi(-ly), pj(:ly) independent for i # j. When switching to
credal models, one considers sets of conditional distribu-
tions Px, (-|y) and a set Py of priors rather than precise
probabilities. We will abuse the notation £y, by #; and p x,
by p; for the sake of conciseness.

In our Equations (4), (7) and (11a, 11b) we have two
optimisation problems, one in Xg (or X_g) and one in P.
Thanks to the independence assumptions, the two problems
can be solved independently. Let us now see how the com-
mon part of the three Equations, the problem in £, transform
in this case. We have

p(y[x)

py (y) X;|y)
22 (7 Ix) ,,Yepypy(wnp,mp,(w) (19

Once again, thanks to our Independence assumption, each
term of the equation can be taken independently of the
others (different variables) and inside each feature the nu-
merator is independent of the denominator (different condi-
tioning element). Moreover, as our probability sets $; are



convex, finding the minimum and maximum value is usually
easy. Finally, we get that Equation (14) becomes

p,(xily)

inf py(y)
L pi(xily’)

pyePy py (y’ )

s)

where p(x) = infpep p(X) and p(X) = sup,cp p(X). Let's
note p¥¥" = inf,,ep, If YY((yy,)). We can now rewrite our

functions as :

p,(x71y) P (x{1y)
vV (E) = ¥y
¢y (E)=p Dipl(xﬂy) 1_[ X, eX P,(X 1y")
(16a)
P, (x{1y) p.(x7]y)
¢ (E)=p¥Y L
¢y (E)=p IE]—[EXIHEIX Pi(xEly) ll_[E Di(x2]y")
(16b)
p.(x2]y) p,(x{1y)
d (E) = p¥Y = er—
O (E)=p EP,(X ’1y) ll_[Ex eI))(,l_’(de’)
(16¢)

As we see in Equations (16a), (16b) and (16c¢), in the case
of the NCC the optimisation on Xg (or X_g) is independent
of the computation of ¢, ,+(E). It follows that the results
are unique and can be computed before choosing the items
in E. We can represent them by unique "worst opponent”
vectors, depending only on classes y and y’ (the former in
the numerator and the later at the denominator) :

Y Z 3 arg inf p(x71y)

= vex pi(xy1y)

X6y =X}, arg inf m

=T xex pi(xs1y)

s P, (1)
XEVY =X arg sup =

b deX; Pl(de’)

When we solve the problem of selecting E, in the case of va-
lidatory and contrastive prime implicants, we will only use
the "worst opponent” vectors with "y, y’", whereas we also
need the converse "y’, y" for prime implicants of doubt. We
will then refer to x” and x¢ instead of x”*¥>Y" and x°-". We
can also note that x” and x¢ are equal in the case of NCC, the
two problems of finding validatory and contrastive prime
implicants only differing by the fact that in the validatory
case, elements of E are fixed, while they are modified in the
contrastive case. It should be noted that this uniqueness of
"worst opponent” is not true for more generic models, in the
sense that the arguments Equations (4), (7) and (11a, 11b)
in Xg will typically depend on E.

Coming back to the NCC, we can also see that each of our
function is additive on their log form. Indeed, for instance

for ¢; y we have :

log ¢y . (E U {i}) —log ¢} . (E) =
(log p (x7]y) = log p;(x71y"))
— (log p (x/ly) —log p;(x{[y")) ~ (17)

As this value is independent of any feature (inside or outside
E) different from i. We can therefore define contribution
functions GV, G¢ and G¢ vy’ mapping each feature i to the
contribution of adding i to E:

G (i) = (log p (x?]y) —log p;(x71y"))

— (log p (x/1y) —log p;(x/[y"))  (18a)
G (i) = (log p (xi|y) —log p;(x{1y"))
— (log p (x71y) —log p;(x}[y")) ~ (18b)

G2, () = (log p (x¢]y) ~ log P;(x/]y"))
d:y,y’ — s dy,y'
— (log p,(x; TV y) —log p;(x{7 [y")
(18¢)
We see that, by definition, values of functions G"’s are

at least zero because we replace the worst opponent value
with a better value (the observed one) > and is at most O for

G€¢ and G;l’y,. It follows that
log ¢!,/ (E) = log @} ,(0) + > G* (i) (192)
icE
log ¢¢ , (E) =log ¢5 ., (0) + > G (i) (19b)
ieE
log ¢, (E) = log ¢, (0) + > Gy () (1%)
ieE

We will note the log-contributions of the empty set by CV,
CCand CY .

Using these additive rewriting, we will now investigate
how to compute our three types of prime implicants (valida-
tory, contrastive and doubt), and the associated complexity.

4.2 Validatory Prime implicants

From Equation (19a), we have that log ¢7 ., (E) =
Yice GV (i) and our goal (4) is to find subsets E C [1,n]
such that log (b" J(E) = 0.

It follows that we want to optimise E so that the sum of
positive contributions is greater than C”. Finding a smallest
prime implicant is then computationally easy, as it amounts
to order the GV (i)’s in decreasing order, and add them until
Yicg GV (i) = —CV. The whole procedure is summarised
in Algorithm 1.

The complexity of Algorithm 1 is linear over the or-
dered contributions, in number of attributes. Computing

5. Indeed, log B[-(Xivb’) ~log P;(xV]y’) < log Bi(x?b’) _
log p; (x?|y’) by definition.



Input: CV; GV
Output: Xpl = (E,x{,) : explanation in terms of
attribute
Order G in decreasing order, with o the associated
permutation
i1
while ¢;’y,(E) +C" <0do
i—i+1
E «— EU{c~ (i)}
8y (E) — 8, (E) + G (0 (1))
end
Xpl — (E,x%)
return (Xpl)
Algorithm 1: Compute first available prime implicants
explanation

the contributions remains easy as the only complexity is
to compute the "worst case" vector x”, whose components
X! requires |X;| = k; evaluations on each dimensions. As
sets P are typically polytopes defined by linear constraints,
finding the values p and p amounts to solving linear pro-
grams, something that can be done in polynomial time. For
some specific cases such as probability intervals [9] (indu-
ced, e.g., by the classical Imprecise Dirichlet Model [4]),
this can even be done in linear time. Therefore, the overall
method is polynomial, with a linear pre-treatment over the
sum of k;’s, followed by a sorting algorithm, after which
Algorithm 1 is linear over the number of attributes.

4.3 Contrastive Prime implicants

The case of the contrastive prime implicants is straight-
forward once we solved the validatory prime implicants.
Indeed, as suggested by the similarity between the defini-
tions of ¢;’y, and ¢;’ Vv in Equations (16a) and (16b) and
the definitions of x¥ and x¢, we almost compute the same
thing, the difference being that the role of E for qﬁ‘y” N is
fulfilled by —F for ¢;’y,. We obtain that C¢ > 0 whereas
we had CV < 0, as C¢ is obtained when we observe the full
vector x’, and that G¢(7) < 0. To use Algorithm 1, we only
need to change the while condition to ¢;’ Vv (E)+C° >0,
and the vector GV to be ordered in ascending order.

That such strong duality relations hold in general is un-
likely, even if validatory and contrastive explanations are
known to be linked in general [14].

4.4 Prime implicants of doubt

From the definition of prime implicant of doubt in Equa-
tions (11a) and (11b) we have to investigate simultaneously
two problems, one in favour of y against y’ and one in fa-
vour of y” against y. To do so we have two functions qﬁ;l, N

and ¢;’,’ 4+ Which in the case of the NCC are additive :

log¢? (E)=Cd, + Z G2 (0,
ieE

log¢?, [(E)=C%  + Z G4, ().
ieE

C;’ y and C ;1 y are obtained when we assume observing the

"worst case opponents” x4¥>Y" and x4"¥ | the two vectors
the most in favour of y against y’ and of y’ against y. In
practice, we then want to find which features of x“ are
sufficient to observe so that both dominance relationships
(if they hold for some vectors x4-Y", x4Y"-¥ which may
not be the case as hinted by Remark 6) are broken, i.e., both
y }P,(xg,x‘fz’y') y" and y’ }P,(xg,x‘_{g"-") y. This problem
can be represented as a 2-dimensional Knapsack where the
objects are the features and the two Knapsacks corresponds
to the dominance of y over y’ and the converse. We obtain
the following formulation

miani
i=1
subject to
Cd (s d

DixixGe () < -CL
i=1

n
DixixGl () < -CE
i=1
Vie{l,...,n}x; €{0,1}.

(20)

This problem can be solved by using an efficient MILP
solver. The indexes with a non zero associated x; are the
components of E, i.e. are our prime implicants.

4.5 NCC with the Imprecise Dirichlet Model

In this section we will present the Imprecise Dirichlet
Model [4], which is a classical model of representation of
domain of probabilities, and study how the prime implicants
will behave in this case.

The main idea of the IDM is to build a cautious inter-
val around a precise probability distribution. Let’s note the
number of observation of an event X by nx, same notations
for a conditional event X|Y by nx|y and N the total number
of observation. We obtain that the probability of witnessing
X is an We introduce the meta-parameter s of the IDM
which can be interpreted as a number of "unwitnessed" ob-
servations. As these could be or not witnessed for X the
probability of X belongs to the interval [, 2=

We can easily see that, in the case of the IDM, the s
hyper-parameter allows us to go from fully precise (s = 0)
to fully imprecise (s = o0), meaning that the monotonicity
properties we mentioned so far can easily be checked by
modifying its value.




5 First Experiments

This Section will present an illustrative case based on the
data from the Zoo dataset from UCI repository [11] using
the NCC alongside the IDM. To avoid probabilities of O we
will regularize them by mixing them with a uniform distri-
bution (using a coefficient € = 0.05 to weight this uniform).
The experiment will be separated in two parts. The first
one will focus on trying to answer with a quantitative study
the questions "How do the different implicants behave, in
size, absence, number, based on the kind of implicants we
search, and on whether we justify a relation consistent with
the ground truth ?" and "Is the size of pairwise explanations
dependent of the imprecision and the number of predicted
classes ?". Second one will illustrate how a discussion with
a user could occur based on this data for the different types
of explanations.

The Zoo dataset is a classification dataset containing 101
samples of animals with 16 input features and the class.
The classes are numbers from 1 to 7 corresponding to
Mammal, Bird, Reptile, Fish, Amphibian, Bug and Inver-
tebrate. We used 14 features for classification ( ’feathers’ :
{fe,~fe}, ’eggs’ : {e, —e}, "airborne’ : {ai, —ai}, *aqua-
tic’ : {aq, ~aq}, 'predator’ : {p, —p}, toothed’ : {ro, —to},
"backbone’ : {b, —b}, *breathes with lungs’ : {/, -/}, *veno-
mous’ : {v, -}, *fins’ : {fi, ~fi}, legs’ : {0,2,4,5,6,8},
tail” : {ta, —ta}, *domestic’ : {d, ~d}, ’at least catsize’ :
{c,=c}), all binary except for the number of legs. To have
sufficient classification errors, we removed 2 features ("hair’
and 'milk’) from the original features.

5.1 Quantitative study

We performed this study using a 4-Fold cross-validation
with a stratified data separation, due to the samples by class
being very unbalanced, e.g. 41 for Mammals and 4 for
Amphibians.

Are Validatory and Contrastive explanations size de-
pendent of miss-classification? The idea behind this
question is to verify the shape of explanations when the ob-
servation is well classified against when it is miss-classified.
If y is the true class, we could expect explanation for an ob-
served dominance y >p xo y’ that are "true" to differ from
observed dominance y” >p xo y that are false. In Figure 1,
we plot the size of such explanations.

First note that the monotonicity in terms of imprecision
are well observed : as s increases, the size of validatory
and contrastive explanations respectively increases and de-
creases.

Then, we can see that there is no significant difference
between the distributions when the prediction is correct
or not, except maybe for a bigger variability in the case of
wrong prediction. While further experiments would be nee-

Prediction does not contain the truth
Validatory Prime implicants
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Ficure 1 — Explanation length according to prediction truth.
Green triangles are mean values.

ded to confirm this, it seems that the length of explanation
is not related to whether they explain a correct or incorrect
prediction, suggesting that one would have to check their
plausibility.

5.1.1 AreDoubt explanation dependent of the number
of undominated items ?

We will now focus on prime implicants of doubt expla-
nations. As said in Section 3.4, incomparabilities may arise
from lack of knowledge or from ambiguity about the obser-
ved element. A question is then to know whether this affects
the length of our explanation.

As aproxy, we plotted in Figure 2 the length of implicants
explaining incomparabilities against the number of undomi-
nated classes, with the idea that this is a reasonable proxy of
ambiguity versus lack of knowledge (the more the number
of undominated, the more incomparabilities are likely to be
due to lack of knowledge). Again, while the Figure 2 does
show the expected monotonicity, it seems that the size of
pairwise explanation is not especially affected by the final
number of classes in the prediction. As we used a proxy,
this independence would however have to be confirmed by
more precise assessment of whether our incomparability is
mainly due to epistemic or aleatoric uncertainty.

5.2 Illustrative explanations

Let us now present some results we can get from the
experiments. We will focus on values s € {0.5,1,2} and
on 3 animals : Giraffe, Seal and Tortoise. We will denote
NCCs the corresponding classifier.

Giraffe as a non-ambiguous problem. Described by
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(=fe,—e,nai,—aq,—p,to,b,l,-v,~fi,4,ta,—d,c),
the Giraffe is a prototypical example of Mammals, as
all NCCO0.5, NCC1 and NCC2 classifies it as a Mammal
only. To illustrate the validatory prime implicants expla-
nations, we will take a look into the preference "Mam-
mal >p Girarfe Bird". For NCCO.5, a sufficient reason to
classify the Giraffe as Mammal and not Bird is that it has no
feathers (- fe), does not produce eggs (—¢) and is toothed
(to). With the increasing cautiousness of NCC1 we need to
add the fact that the Giraffe has 4 legs to the explanation and
for NCC2 we then add that it is not airborne. All advanced
reasons correspond to attributes of Mammals and not of
Birds.

A contrastive explanation showing how "robust" our clas-
sification is for NCC0.5 and NCC1 that we change the values
of the features feathers, eggs and toothed. So, an animal
like the giraffe, but with feathers, laying eggs and no teeth
could be either a mammal or a bird.

Seal as an ambiguous animal. Described by
(=fe,—e,—ai,aq, p,to,b,l,-v, fi,0,-ta,—d,c),

it is classified as a Mammal for NCC0.5, but NCC1
and NCC2 are more cautious by predicting the set
{Mammal, Reptile, Fish, Amphibian}. Let us now
investigate the comparison between Mammal (the true
class) with Fishes.

For NCCO0.5 a sufficient reason to classify as a Mammal
is that the Seal has lungs, does not produce eggs, is (at
least) catsized, is not venomous, has no feathers and has a
backbone. Note that this time explanations contain element
that support Mammal but can nevertheless be met in fishes
as well (e.g., has no feathers). The decision is also less

robust, as contrastive explanation shows that flipping one
of the features ['lungs’, ’eggs’, 'catsized’, ’venomous’] is
enough to make Mammal and Fish incomparable.

When going to NCC1, Mammal ><p s0,; Fish can be
explained by the fact that the Seal does not produce eggs, is
aquatic, breathes, has fins, has no legs. Interestingly, we
can see that the explanation shows that the seal is somehow
ambiguous, having some typical features of fishes (aq, fi)
as well as of Mammals (—e, ).

Tortoise as a mistaken animal. Described by
(=fe, e, nai,maq,—p,—to,b,l,-v,=fi,4,ta,~d,c),

it is wrongly labelled by NCCO0.5 and NCC1 as a Mammal
rather than a Reptile. NCC2 is much less precise and
predicts that a Tortoise can be every class except for Fish.

If we investigate the reasons why NCCO0.5 believes the
Tortoise is a Mammal we obtain the validatory prime im-
plicant not venomous, has 4 legs, is catsized, breathes,
is not a predator, has a backbone, is not airborne (for
NCC1 we add that it has no feathers, is not aquatic and
has no fins.)

The explanation is reasonable but quite long, and does
not use the fact that a Tortoise lay eggs (the Platypus being
one of the mammal, it is possible for mammals to lay eggs).
Also, the Reptile class is poorly represented (4 examples)
and most by "serpent like" animals with no legs, pretty
venomous, small (so not catsized) and predators.

Finally, when increasing to NCC2, we obtain that the
doubt between Reptile and Amphibian is not caused by
any feature (empty prime implicant of doubt). This clearly
shows that Reptile and Amphibian are indistinguishable "by
default" and are underrepresented, as the Amphibian and
reptile classes have respectively 3 and 4 learning observa-
tions which is too little compared to s=2.

6 Conclusion and future works

Considering explanations for imprecise classifier opens
up many questions, for instance in relation with the
possibility of observing incomparability, or of increa-
sing/decreasing the imprecision of a model. In this paper,
we focused on prime implicants, extending notions propo-
sed so far in the precise setting. We introduced three notions
of prime implicants in the case of pairwise comparison, ans-
wering the questions "Why X is P?", "Why X is P and not
Q ?"and "Why is X neither P nor Q ?". When applying them
to the Naive credal classifier, we obtain that the computa-
tions are computationally easy (at least for validatory and
contrastive explanations).

In the future, we would like to focus on various ques-
tions not investigated here, such as for which robust models
(e.g., including some dependence statements) do compu-
tations remain tractable? What happens with interaction
between attributes ? When trying to explain the complete



partial order, should we use pairwise or holistic (i.e., prime
implicants explaining the non-dominated classes at once)
explanations ? How do we select what dominance to ex-
plain in such a case ? There are also several other explana-
tion mechanisms we could consider [1]. We also want to
investigate the case with prediction costs. Indeed, we can
associate costs to making a prediction y’ when the truth is
y. During this paper we used the usual 0/1 cost for all types
of miss-classification.

Finally, we also feel that we have only skimmed the sur-
face of the role of incomparability explanations, in the sense
that the operational role and advantage of such explanations
still remain to be explored.
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