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Explaining Fairness-Oriented Recommendations using
Transfers and Transitive Arguments

Hénoı̈k Willot1 Khaled Belahcene1 Sébastien Destercke1

Abstract. We explore the generation of explanations for preferences
based on an ordered weighted average (OWA) model aiming to favour
a balanced distribution of performances relative to the different points
of view. In this paper we propose explanations, correct towards the
model, based on transitivity with elementary arguments such as Pareto
dominance, Pigou-Dalton transfers and the preferential information
(PI) given by the decision maker. We propose several heuristic-based
approaches allowing to compute such explanations, confirmed by
experiments on their availability and their optimal length.

1 Introduction
Our aim is to propose explanation tools for recommendations based on
preference aggregation. The need for decision-theoretic recommender
systems–tools helping decision makers to formalize and support their
judgment in a principled manner–has in turn given rise to a need for
tools allowing people–be they actors of the decision process, or third
parties impacted by it–to understand, scrutinize, validate or contradict
the functioning of such recommender systems.

Preference aggregation is the process of merging comparative judg-
ments expressed from various points of view into a single ranking.
Points of view can represent various aspects of a situation (such as
in multiple criteria decision aiding–MCDA), be expressed by various
agents, or several possible worlds when modelling uncertainty. In
turn, the aggregated judgment can be used as a basis for decision,
supporting tasks such as choosing the best alternative, comparing
them, or sorting them into ordered categories [3].

The MCDA literature usually distinguishes three approaches to
aggregation: “aggregate then compare”, where judgments are norma-
tively described as complete preorders and described numerically with
a score–the higher, the better–and the aggregator is a multi-attribute
utility function [11]; “compare then aggregate”, where the aggregated
judgment is represented by an outranking relation constructed from
the preference profiles [17]; and models based on logic. Following
the numeric approach, it is customary to decide on several high-level
features of the aggregator–either technical, such as possessing an
additive form [12] , or decision-theoretic, such as being compatible
to Pareto-dominance, satisfying anonymity or idempotence, etc. Usu-
ally, these requirements are chosen so as to define, either directly
or indirectly via a representation theorem, a parametric family of
aggregators. When the decision task requires to be able to compare
any two alternatives, the usual approach, called preference elicitation,
is to select a specific, precise value of the preference parameter. It is
common to use indirect elicitation techniques, where the aggregator
is fitted to preference information (PI) given by the decision maker
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in the form of comparative statements about alternatives, as opposed
to statements concerning the parameters [10]. Full elicitation is not
mandatory, though: skeptical recommendations can be derived consid-
ering the whole set of aggregators of the family that are compatible to
the PI.

In the context of MCDA, Belahcene et al. have recently shown that,
for the class of additive aggregators, it is possible to provide structured
explanations where elementary arguments are organized according to
a specific scheme. In [1], an explanation of a comparative statement is
a decomposition into elementary swaps linked together by transitivity.
In [2], an explanation is a decomposition into preference statements
committed by the decision maker, assembled together by a high-order
cancellation property.

When points of view are assessed on the same scale, the Choquet
integral is a convenient class of aggregators, offering a good mixture of
expressiveness, interpretabilty and computational tractability [7]. We
focus on the subclass of anonymous aggregators, where the respective
identities of the points of view play no role into their aggregation.
Evaluations can be permuted, and the importance of a given score
is related to its rank in the ordering of scores. These aggregators
are thus named ordered weighted average (OWAs). Introduced in
MCDA by Yager [19], they form a family of function parameterized
by a tuple of weights, one per criteria, similarly to the weighted
sum, and encompass the minimum, maximum, median and mean
operators as particular cases. Moreover, by imposing the weights to
be non-increasing w.r.t. the rank, it is possible to favour balanced
scores over imbalanced ones, thus representing a sense of fairness.
The explanatory engine described in [1] relies on swaps between
criteria and is inspired by the notion of even swaps [9]. In the field of
welfare economy, many methods and criteria are used to rank sets of
incomes depending on the distribution of wealth among agents. The
Pigou-Dalton principle [18] provides a similar notion of acceptable
transfers in this context: the inequality between agents is reduced
when a rich agent gives a small portion ϵ of its wealth to a poorer
agent.

Our contribution is the definition of structured explanations for
recommendations based on fairness-oriented OWAs. We propose to
arrange comparative statements based on Pareto dominance, Pigou-
Dalton transfers, and PI into a transitive structure. We begin by in-
troducing the OWA operator, the Pigou-Dalton Principle and other
definitions we will use in Section 2. In Section 3, we deal with the
case where preference and explanations can be constructed without
relying on preference information, and propose a heuristic to compute
short explanations. In section 4, we address the case where preference
is inferred from PI, and propose to find an additive decomposition
of a comparative statement as an intermediate step towards finding
a transitive explanation. Finally we will run an example combining



both in Section 5 and give some insight about the performances of the
method in Section 6.

2 Preliminaries
2.1 Ordered Weighted Averages
In this section we will introduce the decision problems and the for-
mulation of the OWA operator. The MCDA problem we consider is
ranking alternatives over a set of n criteria N = {1, . . . n}, defined
on the same domain X , which can be [0, 1] or R. The model of pref-
erence should then create an order over the candidates represented by
their vectors x ∈ Xn.

Definition 1 (Reordering function). We define the reordering function
↑ as the permutation function over Xn s.t. x 7→ x↑ with x↑

1 ≤ x↑
2 ≤

· · · ≤ x↑
n.

We denote by Xn↑ the domain of such vectors x↑.

Definition 2 (Ordered Weighted Average [19]). The OWA operator
is a function Xn → R+ defined by a vector of weights w ∈ W s.t.
∀ i wi ∈ [0, 1] and

∑n
i=1 wi = 1 :

OWAw(x) =

n∑
i=1

wix
↑
i

Even if it is presented as a weighted sum, thanks to the reordering
function ↑ the weights are assigned to the rank of the criteria, allowing
to represent non linear preference operators, such as the min opera-
tor wmin = (1, 0, . . . , 0), the max operator wmax = (0, . . . , 0, 1),
and in general any quantile as well as the arithmetic mean operator
wmean = ( 1

n
, . . . , 1

n
).

Definition 3 (Fairness-oriented OWA (FOWA)). Also called OWA
operator with decreasing weights [6] or totally or-like OWA
operator[16], an OWA operator is fairness-oriented if its weight
vector w also satisfy w1 ≥ w2 ≥ · · · ≥ wn. We note by W↘ ⊂ W
the domain of such weights.

A FOWA represents preferences oriented toward equity because,
with a higher emphasis put on the smaller values, it gives higher scores
to vectors with balanced values than to vectors where modalities are
concentrated on a small subset of criteria. We can note that an increase
in a small variable has a bigger impact on the aggregated value than the
same increase in a big variable, i.e. ∀ i < j OWAw(x

↑ + k× ei) ≥
OWAw(x

↑+k×ej), with el the vector that is one for its lth element
and zero everywhere else.

Remark 1. A FOWA with very unbalanced weights, i.e. tending
toward the min operator (1 on the first criteria and 0 on the others),
is more fairness oriented than a balanced operator with 1

n
on each

criteria, i.e. tending toward the arithmetic mean, even though its
behaviour tends to balance the vectors of candidates.

Definition 4 (Ranking relation). We define the ranking relation ⪰w

induced by the operator OWAw by :

a ⪰w b ⇐⇒ OWAw(a) ≥ OWAw(b)

Example 1. The Decision Maker is asked to rank students over their
results (scaled between 0 and 1) in their 3 main courses {”Physics”,

”Biology”, ”Maths”}. She prefers students who are balanced between
the 3 courses, and with an analyst the OWA with the following vector
of weights has been designed : w = (0.6, 0.3, 0.1).

If we consider three students a, b and c such that a = (0.7, 1, 0.5),
b = (0.7, 0.7, 0.7) and c = (1, 0.7, 0.8). Their scores defined by
the OWA w will be computed on their reordered vectors a↑ =
(0.5, 0.7, 1), b↑ = (0.7, 0.7, 0.7) and c↑ = (0.7, 0.8, 1), and are
:

OWAw(a) = 0.5× 0.6 + 0.7× 0.3 + 1× 0.1 = 0.61

OWAw(b) = 0.7× 0.6 + 0.7× 0.3 + 0.7× 0.1 = 0.7

OWAw(c) = 0.7× 0.6 + 0.8× 0.3 + 1× 0.1 = 0.76

Therefore we obtain the preferences c ⪰w b ⪰w a.

In this example, we do not exactly know why the weight vector
was w = (0.6, 0.3, 0.1). The issue with determining a specific set
of weights is that it produces a total preorder (with possible ties)
and may produce knowledge that the DM is not aware of and could
potentially disagree with. Furthermore, obtaining precise values is
cognitively demanding and require strong efforts. To circumvent this
problem of finding the right set of weights, we can robustify our
model using a set of models [14]. The set of OWA is defined as the set
which respects the information obtained from the DM, her preferential
information (PI), through an interactive process. In our case of study,
the information collected is of the shape of m preference statements
aj ⪰PI bj , j ∈ M = {1, . . . ,m}, with aj , bj alternatives.

Definition 5 (Robust OWA). We define a robust OWA operator the
set WP ⊆ W of OWA weights :

WP = {w ∈ W : ∀j ∈ M aj ⪰w bj}

And we note W↘
P = W↘ ∩WP

As we now have a set of models instead of a single vector of
weights, we have to adapt our process for producing preferences. We
can define two relations of preferences from the set WP , a necessary
and a possible preference relations [5]. In this paper we only focus on
the necessary preference.

Definition 6 (Necessary preference). We define the necessary prefer-
ence NOWA↘

PI of a robust FOWA with respect to preference informa-
tion P as :

aNOWA↘
P b ⇔ ∀w ∈ W↘

P , a ⪰w b

In order to compute the set WP and to reason with the necessary
preference relation NOWA↘

P , we can adapt the GRIP method [4] that
allows to decide whether a pair of alternatives belongs to the necessary
preference relation, given some PI, for the additive value model, by
solving a linear program2. In fact, to represent OWA operators, we
only need to feed the method with vectors already reordered by ↑,
and for the representation of FOWA operators we need to add n− 1
linear constraints wi ≥ wi+1

3, i ∈ {1, . . . , n− 1} to constraint the
weights of the additive value function to be decreasing. More details
about the linear program formulation are given in Appendix A.

2.2 Pigou-Dalton Principle and Dominance
relations

In this section we will first connect the OWA aggregators to the
Pigou-Dalton principle. To do so, we will introduce the dominance

2 Such a LP formulation could already be found in [8], but we opt to use the
more streamlined formalism of GRIP.

3 to follow the GRIP methods notations, the constraints are ui(βi) −
ui+1(βi+1) ≥ 0



relations and the Pigou-Dalton principle that we will use in our
explanation engine and its potential use cases.

The Pigou-Dalton Principle was first introduced in welfare
economic problem, where the components of the vector to compare
are the incomes of economical agents, ranked from bottom to top
[18]. In this context, the Pigou-Dalton Principle defines a relation
⪰PDP between two distributions over n agents.

Definition 7 (Pigou-Dalton Principle). Let x be the income vector of
n agents such that x = (x1, . . . , xn),
x1 ≤ x2 ≤ · · · ≤ xn.
The vector x′ is favoured to x by the Pigou-Dalton Principle, noted
x ⪯PDP x′ if there exists points of view i, j ∈ N, i < j and quantity
ϵ > 0 s.t. : 

∀k ∈ N, k ̸= i, k ̸= j, x′
k = xk;

x′
i = xi + ϵ ≤ xi+1; and

x′
j = xj − ϵ ≥ xj−1.

When these conditions are met, we also use the notation x
j→i

⪯
PDP

x′ to

account for the witnesses i and j.

The Pigou-Dalton Principle therefore favours vectors of incomes
where a ”rich” agent j gives a positive portion ϵ of its wealth to
a ”poorer” agent i in order to reduce the inequality. We also add
explicitly another constraint on ϵ which is not always clear in the
literature : the order in the distribution is preserved, xj − ϵ ≥ xj−1

and xi + ϵ ≤ xi+1. This principle of equity is respected by FOWA
operators as we discussed earlier after definition 3.

We will now introduce two preorders relations, compatible with
FOWA operators, which will be used by our explanation engine: the
Pareto and Lorenz dominance, denoted respectively as ⪰P and ⪰L.

Definition 8 (Pareto-dominance).

∀a, b ∈ Xn, a ⪰P b ⇐⇒ ∀i ∈ N ai ≥ bi

Pareto dominance embodies the desirable property of monotonicity
of a preference aggregator: if an alternative is better on every aspect
than another, then it should be preferred.

Definition 9 (Lorenz vector). We call the Lorenz vector of a candidate
a the cumulative vector L(a) of Rn whose components are defined
by :

L(a)i =

i∑
j=1

a↑
j

Definition 10 (Lorenz-dominance). We define the Lorenz-dominance
⪰L by :

a ⪰L b ⇐⇒ ∀i ∈ N L(a)i ≥ L(b)i

Example 2. (Example 1 continued) The Lorenz vector of the
three candidates {a, b, c} are L(a) = (0.5, 1.2, 2.2), L(b) =
(0.7, 1.4, 2.1) and L(c) = (0.7, 1.4, 2.1).
By comparing the Lorenz vectors we obtain the following Lorenz-
dominance relation statements : c ⪰L a and c ⪰L b.
We can note that the Lorenz-dominance is a partial preorder, as nei-
ther a or b Lorenz-dominates the other.

FOWA operators are highly linked to Lorenz Dominance as shown
by Golden and Perny [6].

Proposition 1 (Reformulation from Lemma 2 in [6] ).

a ⪰L b ⇔ ∀w ∈ W↘ a ⪰w b ⇔ aNOWA↘
∅ b

Therefore, with proposition 1 we have that the Lorenz-dominance
is compatible to any FOWA operator, meaning that these results will
also appear in robust FOWA but are not depending on the DM prefer-
ential information. This first set of results makes up the core of our
explanatory engine described in Section 3.

3 Transitive explanations for Lorenz dominance
In this section we will present an algorithm which computes
efficiently an explanation for a Lorenz dominance in the form of a
transitive chain of transfers using the Pigou-Dalton Principle. The
former is only a small part of the results a robust FOWA can produce
and the rest will be addressed in section 4.

We saw from proposition 1 that some results, those corresponding
to the Lorenz dominance ⪰L, are compatible with every FOWA oper-
ator. It naturally follows that these results, will appear in the necessary
preferences of any robust FOWA operator. It has also be known since
the 1960s that the Lorenz dominance and the Pigou-Dalton Principle
are closely related.

Definition 11 (Transitive explanation (TE)). Given a set of binary
relations over alternatives Y , we call transitive explanation of a ⪰ b
using Y , a tuple (x0, . . . , xk+1) ∈ (Xn)k+2 such that

a = x0, b = xk+1, ∀i ∈ {0, . . . , k}xi Ri x
i+1, with Ri ∈ Y

Proposition 2 ([15], reformulation from Proposition 3.1 ). a ⪰L b
iff there exists a transitive explanation (x0, . . . , xk+1) ∈ (Xn↑)k+2

using Y = {⪰PDP ,⪰P }

In [15], Lorenz dominance is only considered over alternatives
which have the same last value in their Lorenz vectors, i.e. for
which the sum of all values is the same. As we want the scope
of our explanation engine to be as broad as possible, we imbue it
with the capability of inserting Pareto dominance statements in the
explanation sequence to overcome this limitation and deal with the
potential surplus.

From proposition 2, we can build a transitive sequence of
preferences, a transitive explanation, combining only progressive
Pigou-Dalton transfers and Pareto dominance to explain every pair
(a, b) such that a ⪰L b. Note that, because of the equivalence in
proposition 1, the Lorenz-dominated alternatives are exactly the ones
for which explanations can solely be based on Pareto and Pigou-
Dalton transfers and we will need other explanation mechanisms
to explain necessary preferences of a robust FOWA operator when
alternatives are not Lorenz-dominated. As Pigou-Dalton transfers
only redistribute a portion ϵ among candidates without breaking the
order of criteria, and as Pareto dominance is only here to remove the
surplus that can remain between the last intermediate candidate and b,
every intermediate candidate from (x0, . . . , xk+1) is within Xn↑.

Hence this sequence can be presented to the DM as an explanation
because :

• it is of finite length;
• the mechanisms are plausible, given the explainee adheres to the

principles of monotonicity and fairness they embody;



• the mechanisms used are of small cognitive load (Pareto dominance
does not require any trade-off, while a Pigou-Dalton transfer can
be described as occurring between two points of view, ignoring the
rest); and

• the intermediate candidates used are plausible, even though they
are not present in the set of candidates to rank.

The question of finding an algorithm to build a (not necessarily
unique) sequence of Pigou-Dalton transfers has been answered in a
close but not identical domain, on a problem called Majorization [13].
It is defined as a preorder over vectors using their values reordered in
a decreasing way, so if we take similar notations as in definition 1
we would be dealing with vectors x↓. Majorization a ⪰M b occurs
when, for each criterion k, we have

∑k
i=1 a

↓
i ≥

∑k
i=1 b

↓
i . The link

with our problem is therefore clear as a ⪰M b ⇔ b ⪰L a.

In this context, the majorization is explained using a sequence
of ”Robin Hood transfers”, which are Pigou-Dalton transfers,
produced with a polynomial time algorithm. Without going into
the mathematical details, we can give simply the idea of their
(Lorenz-revisited) algorithm. We have a ⪰L b, which means that
a is more balanced than b. Especially, we can find some index j
where b↑j > a↑

j , and some index k < j where a↑
k > b↑k. The idea

is to perform an exchange between these two points of view of a
quantity wich is as large as possible, i.e. ϵ = min(a↑

j − b↑j , b
↑
k − a↑

k).
Their idea for choosing suitable values for j and k is left vague;
it is usually the smallest j possible and for this j the biggest k possible.

We can pinpoint three possible drawbacks :

1. the value of ϵ does not guarantee the candidate built by the transfer
to be ordered;

2. it is limited to the case where
∑n

i=1 ai =
∑n

i=1 bi; and
3. the algorithm will find a sequence but does not aim at making it

short.

Point #2 can easily be solved by allowing the explainer to use argu-
ments based on Pareto dominance. However, this increase in flexibility
makes point #3 even more prominent. Indeed, we have more flexibility
in finding the criteria k so that

∑k
i=1 a

↓
i ≥

∑k
i=1 b

↓
i as we have

”surplus” (non zero Pareto-dominance implies
∑n

i=1 ai >
∑n

i=1 bi).
We now present our (heuristic) Algorithm 1, which is similar to the
idea given above but tries to solve the three points mentioned. A
natural idea consists in minimizing the length of the explanation, but
this problem seems computationally hard, even though we were not
able to assess its theoretical difficulty. Consequently, we propose
a heuristic method to compute short transitive explanations for a
Lorenz dominance statement. In Section 6, we compare this heuristic
to a A* algorithm computing an explanation of proven minimal
length. Experiments tend to show we achieve nearly minimal length
in a fraction of the time required to perform the exact search.

By focusing on Pigou-Dalton transfers occurring between variables
which can receive (Step 1) or give (Step 3 (I)) the complete difference
with the loser we ensure that the candidate obtained after the transfer
is ordered. It also allows us to have a maximum length of explanation
of n. Indeed at each step we remove at least one criteria from the set
of criteria on which there is a non zero difference with the looser,
bounding the explanation by the cardinal of this set, itself bounded by
the number n of criteria.

Algorithm 1: Algorithm explaining Lorenz-dominance with
Pareto dominance and Pigou-Dalton transfers

Input: a, b ∈ Xn↑ s.t. a ⪰L b
Output: C
x = a; C = a

1 Compute J , the set of indices j s.t. xj < bj and s.t. we can
perform a trade ϵj = bj − xj

2 If J == ∅ go to Steps 5
3 For each j ∈ J :

(I) Compute K, the set of indices k < j s.t. xk > bk and s.t.
we can perform a trade ϵk = xk − bk
(II) Find the index k′ ∈ K allowing to perform the biggest
trade ϵ = maxk′∈K min(ϵj , ϵk′) (if draws take the largest
index)
(III) X = (x1, . . . , xk′ − ϵ, . . . , xj + ϵ, . . . , xn)
(IV) If we don’t have X ⪰L b, go back to (II) to find another
index in K \ {k′}

(V) x = X ; C = C
j→k′

⪰
PDP

x

4 Go back to Step 2
5 Compute K, the set of indices k s.t. xk > bk
6 If K ≠ ∅ : C = C ⪰P b

Once we cannot find a rank j for which the attribute value xj is
bigger than bj , we remove every surplus that could exists with a single
Pareto dominance statement. Unfortunately, our heuristic algorithm
does not always leads to the smallest explanation length as shown in
example 3.

Example 3. In the same context as example 1, we want to rank stu-
dents, this time over their grades in 5 courses. The two students at
hand are d = (0.6 0.7 0.5 0.7 0.8) and e = (0.8 1 0.6 0.4 0.4). It is
easy to compute that d ⪰L e, therefore we can apply our algorithm 1
and a A* search to have two explanations.
We reverse the explanation returned by the algorithm as it is easier to
read and understand when the Pigou-Dalton transfers are performed
in the reading direction. We note with i the criterion receiving and i
the criterion giving. We obtain for our algorithm the explanation :

e↑ = (0.4 0.4 0.6 0.8 1) ⪯P (0.4 0.5 0.6 0.8 1)
5→2

⪯
PDP

(0.4 0.6 0.6 0.8 0.9)
4→1

⪯
PDP

(0.5 0.6 0.6 0.7 0.9)
5→3

⪯
PDP

(0.5 0.6 0.7 0.7 0.8) = d↑ of length

4.
With the A* search we obtain a different explanation :

e↑ = (0.4 0.4 0.6 0.8 1) ⪯P (0.4 0.4 0.7 0.8 1)
5→2

⪯
PDP

(0.4 0.6 0.7 0.8 0.8)
4→1

⪯
PDP

(0.5 0.6 0.7 0.7 0.8) = d↑ of length 3.

In conclusion, our algorithm 1 computes in polynomial time a
chain of Pigou-Dalton transfers and Pareto dominance statement to
explain any Lorenz dominance statement with a bounded length of n
statements. The length of the explanation is unfortunately not mini-
mal, but the true minimal length can be computed for example with a
A* algorithm over a graph exponential in size in the number of criteria.

As we saw previously, Lorenz dominance statements form a subset
of the preference yielded by a robust FOWA aggregator, missing the
part entailed by the specific PI obtained from the decision maker. Thus



the idea we will develop in Section 4 is to complete Pigou-Dalton
transfers and Pareto dominance with a combination of statements
deduced from the PI to produce a sequence of preferences, or at least
a decomposition of preferences, to explain every necessary preference
statements obtained by a robust FOWA operator.

4 Additive and transitive decompositions of
necessary preference statements

In this section we introduce and justify the existence of decomposi-
tions for every necessary preference statement compatible with the
robust FOWA W↘

P ⊆ W↘ constrained by the PI matrix P . We start
by introducing the notion of decomposition, which is weaker than the
one of transitive explanation, and express the contributions of our
explanation mechanisms.

The problem we want to solve is finding an explanation for the
necessary preference statement c NOWA↘

P d, c, d ∈ Xn. We have
3 mechanisms at our disposal : PI statements provided by the DM,
Pigou-Dalton transfers and Pareto dominance. Trying to find directly
a valid transitive explanation (x0, . . . , xk+1) ∈ Xn↑ using {⪯P

,⪯PDP ,⪯P} is a difficult planning problem, so we begin by building
an additive decomposition of this statement.

Definition 12 (Decomposition). We call decomposition of a ⪰ b
by Y , Y a set of explanation mechanisms, the ”proto-explanation”
defined by :

∀i ∈ N ai − bi =
∑
y∈Y

γyi

γy is the contribution vector of explanation mechanism y to the pref-
erence a ⪰ b

Remark 2. If we take a transitive explanation (x0, . . . , xk+1) of
a ⪰ b using Y , we have a = x0, b = xk+1 and
∀j ∈ {0, . . . , k} xj Rj x

j+1, Rk ∈ Y .
We can rewrite the latter as xj − xj+1 = γRj . By summation we
obtain a − b =

∑k
j=0 x

j − xj+1 =
∑k

j=0 γRj . Therefore an only
decomposition based ”proto-explanation” is weaker than a transitive
explanation in the sense that any transitive explanation can always
be rewritten as a decomposition.

As we have seen, invoking the anonymity of the model, we rewrite
the statement aj ⪰P bj by aj↑ − bj↑ and build the m × n matrix
P from the (transpose) m PI statements. Each line can be seen as a
trade-off between criteria which is positive for the decision maker
and invoking the homogeneity (and the anonymity) of the model
we have ∀x ∈ Xn x↑+k×(aj↑−bj↑)NOWA↘

P x↑, as long as k > 0.

Let a, b ∈ Xn be two vectors such that aNOWA↘
P b, determined

by the GRIP method detailed in Appendix A. We show that for every
such couple of candidates, we always find at least one decomposition.

Theorem 1 (PI preference decomposition).

a NOWA↘
P b

⇔ ∃λ ∈ R+
mν, µ ∈ R+

n s.t. (a↑ − b↑) = PT × λ+ UT
B × ν + µ

⇔ ∀i ∈ N (a↑
i − b↑i ) =

m∑
j=1

(aj↑
i − bj↑i )× λj + νi − νi−1 + µi

Proof. We know from the GRIP method that the minimum of (a↑ −
b↑)T ×w is positive, entailing aNOWA↘

P b. Therefore we know that

adding the constraint (b↑ − a↑)T × w > 0 to the sets of constraints
(1), (2) and (3) will lead to an empty answer set.
From the Farkas lemma we can conclude that −(b↑ − a↑)T = (a↑ −
b↑)T can be expressed as a positive linear combination of constraints
(1), (2) and (3) :

∃λ ∈ R+
mν, µ ∈ R+

n s.t.

(a↑ − b↑)T = λT × P + νT × UB + µT

⇔ (a↑ − b↑) = PT × λ+ UT
B × ν + µ

By an easy identifying task with the origin of the GRIP constraints,
we have γP = PT ×λ, γPDP = UT

B ×ν and γP = µ as components
of the decomposition for aNOWA↘

P b. We see with the sum appearing
in the contribution of the PI that each PI statement contributes with
a coefficient λj . We define a new PI-based preference relation using
only one statement and its associated λ.

Definition 13 (PI dominance).

b↑
λj×Pj

⪯
P

a↑ ⇔ a↑ = b↑ + PT
j × λj

The values for λ, ν, µ are most of the time not unique and can be
computed with a simple linear program (n constraints corresponding
to the expression of (a↑

i − b↑i ) in Theorem 1 and the associated do-
mains for the variables). As our goal is to build a transitive explanation
as easy as possible we need to complexify the search of values to
answer the multiple objectives :

• minimize the number of PI statements involved (as it is the most
cognitively demanding mechanism)

• reduce the part of Pigou-Dalton in the decomposition, i.e. maximize
Pareto dominance

• find the nicest coefficients values required for the PI statements

To answer these objectives we decided to use a (single-)objective
function F and to introduce a slight change in the formulation by
applying an integer value α > 0 to the left-hand side of the equation
(a↑ − b↑) and setting lambdaj’s to integers. In this way we can
express the PI-coefficients as fractions and optimise their value. Our
objective function is F = ∥λ∥1 + α + 1

M

∥∥t−∥∥
1

to minimize, but
other approaches can be considered, such as minimising a norm L0

or canceling balancing effects between λ and α.

5 An illustrative example
In this section we will run an example, close to a real-case study, to
illustrate Algorithm 1 for Lorenz dominance and our decompositions
to explain inferred preferences. Imagine taking part to a group
decision with 3 others colleagues to decide the activity for the
afternoon during the upcoming team-building event. As the directors
board has many opportunities, the chosen activity has to be taken
from a list of 7 activities : {airsoft, basketball, cycling, dancing,
equestrian walk, football, golf}, which will be abbreviated with their
first letters.

The idea for the team members is to provide their satisfaction rate
(on a scale from 0 to 20) on the 7 activities and the board committee
will chose the activity and will guaranty a sense of fairness between
members. As the team is competitive, even in sports, the members



will ask for an explanation of the chosen sport, especially the most
dissatisfied player who always want to know why his favorite activity
was not chosen. For all these reasons the board chose (without
explicitly telling the name) our robust FOWA operator.

The results of the opinion poll (reordered) for the activities to rank
are :

Student #1 #2 #3 #4
a↑ 5 13 14 18
b↑ 5 15 15 16
c↑ 6 13 16 16
d↑ 7 10 17 18
e↑ 8 9 16 20
f↑ 6 11 17 17
g↑ 7 11 16 17

To start our model with preferences, we asked the board to rank
two pairs of candidates and they replied that b ⪰PI c and d ⪰PI e.

We then compute the robust FOWA operator W↘
P and obtain the

necessary preference order which is : b NOWA↘
P c, b NOWA↘

P g,
b NOWA↘

P d, g NOWA↘
P a, d NOWA↘

P e and d NOWA↘
P f , and

all preferences deduced by transitivity. We can also compute the
Lorenz dominance for every pair of candidates, obtaining preference
statements b ⪰L a, g ⪰L a, c ⪰L a, c ⪰L f , d ⪰L f .

By comparing the two preference sets, we can see that adding the
preferential information b ⪰PI c and d ⪰PI e creates new prefer-
ences among candidates such as cNOWA↘

P g and cNOWA↘
P d and

transitive ones such as b NOWA↘
P g, b NOWA↘

P d, b NOWA↘
P e

and b NOWA↘
P f . To sum up, our robust FOWA produces 14

preference relations, including 2 PI from the user and 12 statements
to explain, 5 with Lorenz-dominance explanations and 7 with our
decomposition program.

We will not detail all of these 12 statements, only one based on
Lorenz-dominance such as g ⪰L a and two from our linear program
such as b NOWA↘

P e and c NOWA↘
P g. To present thing shortly

we will refer as P1 = (−1 2 − 1 0) and P2 = (−1 1 1 − 1) the
vectors corresponding respectively to the PI statements b ⪰PI c and
d ⪰PI e.

With Algorithm 1, we obtain as explanation for g ⪰L a :

a↑ = (5 13 14 18)
2→1

⪯
PDP

(7 11 14 18)
4→3

⪯
PDP

(7 11 16 16) = g↑.

We find two decompositions for bNOWA↘
P e and c NOWA↘

P g :

• b↑ − e↑ = (−3 6 − 1 − 4) = P1 + 2× P2 + ν+ + ν−

with ν− = (0 2 0 0) and ν+ = (0 0 − 2 0)
• c↑ − g↑ = (−2 4 − 1 − 1) = P1 + ν+ + ν−

with ν− = (0 1 0 0) and ν+ = (0 0 0 − 1)

We were also able to find through a brute force algorithm (testing
all permutation) a sequence of preferences using the decomposition
to produce a transitive explanation sequence, but it is not a general
result.

For b NOWA↘
PI e we found : e↑ = (8 9 16 20)

3→2

⪯
PDP

(8 11 14 20)
2×P2

⪯
P

(6 13 16 16)
1×P1

⪯
P

(5 15 15 16) = b↑

For c NOWA↘
PI g we found : g↑ = (7 11 16 17)

1×P1

⪯
P

(6 13 15 17)
4→3

⪯
PDP

(6 13 16 16) = c↑

We can note that if we tried to apply the decomposition in another
order, it would build intermediate candidates which are not valid
(ordered).

6 Experimental results

In this section we will present some results obtained from experi-
ments. We have generated randomly 1000 samples of 50 candidates
(non Pareto-dominated) over 8 criteria with 5 PI statements. To com-
pute these PI statements we draw from a Dirichlet distribution a set
of ground-truth FOOWA weigth w↘, and drew randomly 5 pairs
(aj , bj) of non Lorenz-dominated candidates and added to the robust
FOOWA the preference induced by w↘. For the rest of the experi-
ment the ground-truth will be hidden. From these sample we studied
two aspects of our method. In the first place, we computed for Lorenz-
dominated pairs of candidates the results of our algorithm 1 against
A* algorithm and we compared the obtained length to the true mini-
mal length and the computation times. In the second place, we tried
through several means to compute a transitive explanation from the
decompositions obtained in Section 4.

6.1 Algorithm 1 against A* algorithm

Our goal is to compare the explanation length and the computation
time our polynomial heuristic algorithm 1 with a method guaranteeing
to find the “true” minimum length. As introduced in Section 3 we
do so by the means of a A* search. Indeed, the idea underlying
the A* algorithm is to find the shortest path between the winning
candidate to the loosing candidate using Pigou-Dalton transfers and
Pareto-dominance. The heuristic we use to estimate the distance to
the loosing candidate is the number of positions which need to receive
from a Pigou-Dalton transfer, plus 1 if there are more variables in a
position to give than to receive. This estimate is indeed a lower bound
of the number of remaining trades.

We represent in table 1 the difference between the length found
by the A* algorithm and our algorithm 1. Each row i of the

Length #Values % identical values Max difference
1 82 334 100 % -
2 160 431 96.97 % 4
3 162 967 89.83 % 5
4 135 623 80.61 % 4
5 91 777 71.46 % 3
6 45 148 66.09 % 2
7 13 120 68.53 % 1
8 1539 100 % -

Table 1. Length difference between algorithm 1 and A* algorithm.

table corresponds to a true length of i Pigou-Dalton transfers and
Pareto-dominance. We can see that overall the results obtained by
our algorithm 1 do not differ from the A* algorithm, except in some
cases where up to 34% (in line 6) of the results are worst. But still,
our algorithm is of interest, especially when comparing computation



times from table 2 and keeping in mind that during the process of
finding a transitive explanation we can call for Pigou-Dalton transfers
several times.

Length #Values Whisker Q1 Median Q3
1 82 334 1.37% 5.26% 6.54% 7.85%
2 160 431 11.74% 12.53% 20.10% 23.5%
3 162 967 -3.92% 20.6% 28.5% 33.61%
4 135 623 39.94% 26.54% 33.79% 39.21%
5 91 777 1.09% 38.00% 46.57% 62.05%
6 45 148 53.12% 79.18% 86.16% 91.23%
7 13 120 7.55% 93.47% 96.59% 97.96%
8 1 539 58.20% 98.10% 99.26% 99.6%

Table 2. Percentage of reduction of compute time between algorithm 1 and
A* algorithm.

We have represented in table 2 the percentage of reduction in the
computation time by using algorithm 1 instead of the A* algorithm.
We can see that only very little data (in line 3) are corresponding to
the A* algorithm performing better, and with high number of criteria
we see a strict dominance of algorithm 1. Therefore, for the rest of
the study combining the resolution of finding a concise explanation
for Lorenz-dominance and PI dominance, we will be using algorithm
1 for its benefits in computational cost.

6.2 Feasibility of transitive explanation for
decomposition computed by the MILP
formulation

Our goal is to study the availability of an explanation from the decom-
positions defined in Section 4 for a necessary preference statement.
We recall that a valid explanation is a sequence of progressive transfers
from the winner to the looser, using our 3 explanation mechanisms
{⪯P ,⪯PDP ,⪯PI}, while verifying that each intermediate candidate
used in the explanation is valid, i.e. with values of criteria ordered and
belonging to the domain. We will use several methods of increasing
complexity to solve this problem and express the theoretical length of
the explanation in terms of k the number of PI statements with a non
zero associated λj and of l the length of Pigou-Dalton transfers to be
split with Algorithm 1.

Permutation Knowing the values (λ, µ, ν), we search for a
permutation verifying our validity constraints. We allow to permute
each individual PI statement with the Pareto dominance and the
”resulting total” Pigou-Dalton transfers. This algorithm does not try
to divide any of this statements, therefore the maximum theoretical
length for the explanation is k + l + 1. We obtain some encouraging
results on the length of explanation, displayed in table 3, unfortunately
too many preferences fail to have a valid permutation: we found
179 407 cases where we cannot build the transitive explanation,
meaning that 74% of our explanations cannot be interpreted into valid
sequences.

A first hypothesis to explain the bad results could be linked to
pathological cases caused by our data sampling. Indeed, for alterna-
tives close to the bounds of the domain Xn, making the use of the
PI statements hard without fragmentation. We therefore performed
the experience again with candidates sampled over Xn = [0.1; 0.9]n

instead of [0; 1]n, leaving this space for the explanations. The results

PI involved #Explanations Q1 Median Q3
1 57 235 4 6 7
2 5 299 6 8 9
3 415 7 9 10
4 18 9 10 11

Not found 179 407 - - -

Table 3. Distribution of explanation length by quantity of PI involved for
permutation.

are indeed better, improving the ratio to 63% of non valid sequences,
but also meaning that this shape of explanation is not sufficient and
should be enlarged.

Single PI Another cause could be that a part of the results are
outside our validity domain, for example by the ordering constraint,
due to the PI itself being highly not linear over the criteria (whereas
Pigou-Dalton transfers and Pareto dominance do). Maybe some state-
ments are required to be performed but cannot be taken separately.
They could be performed in sequence but without looking into the
intermediary result. Therefore our second idea is to build a unique
”whole PI” statement to recompute permutation with. Even if the
resulting explanation is of lesser quality, we can still advocate that
its length being l + 2 is smaller and the harder contribution of the
PI being minimized in one statement, the explanation is better for
the user. Unfortunately new sequences are found but their number
represent less than 1% increase in the ratio, meaning that we need to
increase the complexity of our explanation pattern by splitting ν and
µ to gather more explanations.

Splitting Pigou-Dalton & Pareto contributions We want to
allow for more generality of the transitive pattern we want to match,
in order to do so we will use the Pigou-Dalton transfer and Pareto
dominance as an adjustment between uses of the PI statements. In
other words we will split those transfers in order to allow for more
intermediate candidates in the transitive explanation. Instead of using
scheduling and planning methods directly we will step by using a
intermediate MILP formulation for the chain. Indeed if we note k the
number of non-zero λj in the decomposition, the total possible length
for such a transitive explanation is k + k ∗ l+ 1 with k + 1 Pareto or
Pigou-Dalton transfers. To catch some more generality, we allow for
the PI statements to be used twice in the chain, therefore the total
theoretical length is 2k + 2k ∗ l + 1 preferences in the explanation.
The details of the MILP formulation are given in Appendix B.

The results in table 4 in conjunction with the results from the
permutation are excellent, leaving only 16 918 explanations not found,
so around 7% of the number of preferences to explain. The pattern we
used here is still restrictive but with planning methods we can hope to
recover almost every transitive explanation from a decomposition.

PI involved #Explanations Q1 Median Q3
1 116 804 6 8 10
2 15 456 10 12 14
3 900 12 14 16
4 22 13 14.5 15.75

Not found 16 918 - - -

Table 4. Distribution of explanation length by quantity of PI involved for
splitting transfers.



7 Conclusion and future works
In this paper we looked into the problem of producing explanations
for the robust fairness-oriented OWA. The explanations are designed
to be the least technical possible to be shared with external users
which are possibly not involved in the conception of the system and
have very little knowledge about it. To understand our explanations, it
is only required to know why the model is used, preferring candidates
with a balanced profile and therefore agrees with the Pigou-Dalton
principle of transfers on the ordered profile of the candidate.

We presented an algorithm which builds a transitive chain for
Lorenz-dominance as an explication. The existence of the chain is
known from a long time [15] as a result in welfare economy and
also the link with the OWA operator [6]. This algorithm works in
a polynomial time in the number n of criteria, with a length of
maximum n transfers. It can be used to explain Lorenz dominance
in general and not only in the fairness-oriented OWA setting, where
it corresponds to the results obtained by the necessary preference
relation NOWA↘

∅ .

We then presented a linear program formulation to compute an
additive decomposition of a preference in NOWA↘

PI , composed by
a positive linear combination of the preference statements given
by the DM, Pigou-Dalton transfers and Pareto-Dominance. This
decomposition is not a transitive explanation, and the existence
of the latter for a given decomposition is still unknown yet, even
though we can always build such a decomposition (Theorem 1).
However, with our experimental campaign we obtained up to 93% of
available transitive explanation from the computed decomposition.
We plan to adopt planning tools to reduce even further the number
of non available transitive explanation (for a huge increase in
computational cost) and also investigate whether guiding this search
by the pre-computation of an additive decomposition is efficient or
not.

REFERENCES
[1] Khaled Belahcene, Christophe Labreuche, Nicolas Maudet, Vincent

Mousseau, and Wassila Ouerdane, ‘Explaining robust additive utility
models by sequences of preference swaps’, Theory and Decision, 82(2),
151–183, (2017). Number: 2 Publisher: Springer.

[2] Khaled Belahcène, Christophe Labreuche, Nicolas Maudet, Vincent
Mousseau, and Wassila Ouerdane, ‘Comparing options with argument
schemes powered by cancellation’, in Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, IJCAI 2019,
Macao, China, August 10-16, 2019, ed., Sarit Kraus, pp. 1537–1543.
ijcai.org, (2019).

[3] Denis Bouyssou, Thierry Marchant, Marc Pirlot, Alexis Tsoukiàs, and
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A GRIP implementation
The GRIP method described by Figueira et al. [4] allows to represent
any additive utility function of a vector x by U(x) =

∑n
i=1 ui(xi)

with ui the non decreasing marginal utility function of criterion i.
The framework allows the marginals to be piece-wise linear.

From a learning set AR ⊆ Xn ×Xn corresponding to inequality
constraints between the utilities of vectors, a set of inequalities
to guaranty the piece-wise linear shape and non decreasingness
of the marginals and a constraint on the domain of U (i.e. sum of
weights equals to one), they define a set of constraints (E(x, y))
for any pair (x,y) of candidates. If when optimising the function
d(x, y) = min{U(x)− U(y)} we obtain a positive value, then we
can conclude that x ⪰N y, x is necessarily preferred over y (section
5 of [4].

The GRIP method is very general and allows to represent complex
shape for the utility function but in our OWA case some of them are
unnecessary :

• our marginal utility functions are linear, therefore the second set of
constraints described collapses into the non negativity of the OWA
weights wi

• in Section 6 of [4] they propose to implement intensity of
preferences, thing we won’t use in this paper

We will also add new constraints on the decreasingness of w as
explained in Section 2. The resulting linear program is composed by
sets of contraints (1)-(3) :

∑n
i=0 wi = 1

w ≥ 0

}
⇔ w ∈ W (1)

UB × w ≥ 0 ⇔ w ∈ W↘ (2)

∀j ∈ {1, . . . ,m} (aj↑)T × w ≥ (bj↑)T × w

⇔ P × w ≥ 0 ⇔ w ∈ W↘
PI (3)

with UB the upper diagonal matrix equal to
1 −1 . . . 0

0
. . .

. . .
...

...
. . .

. . . −1
0 . . . 0 1

 and P the m × n matrix containing

(aj↑ − bj↑)T .

The objective function d(x, y) is simply

d(x, y) = min{(x− y)T × w}

and if we obtain a positive result, we can deduce xNOWA↘
P y

B MILP formulation for transitive explanation
reconstruction

The idea of this third method to reconstruct the transitive explanation
is to alternate Pigou-Dalton & Pareto with the use of a PI statement.
As we also know the number k of PI statement, we know the total
number of intermediate candidate we have to put inside our linear
program : 4k + 1, corresponding to the alternating 2k PI statements
with 2k Lorenz dominance (regrouping Pigou-Dalton and Pareto
dominance as presented in Section 3. We decided not to impose the
use of either Pigou-Dalton transfer or Pareto dominance at each step
to reduce the use of binaries and therefore the complexity of the
MILP to solve.

To keep the notations from the transitive explanation, we will have
intermediate candidates (x0, . . . , x4k), with x0 = a and x4k = b.
From the alternating sequence we have :

1. ∀j ∈ {0, . . . , 4k − 2}, j = 2m, xj ⪰L xj+1

2. ∀j ∈ {1, . . . , 4k − 1}, j = 2m+ 1, xj
λi×Pi

⪰
P

xj+1

3. x4k−1 ⪰L x4k

Before giving the constraints for this set of constraint, we will first
ensure with equation (4) that each intermediate candidate is ordered
and belongs to Xn.

∀j ∈ {0, . . . 4k} xj ∈ Xn, UT
B × xj ≥ 0 (4)

Item (1) and (2) are composed by a part of the right-hand in the
equation in Theorem 1, and give the sets of equations (5) and (6)-(9).

∀j ∈ {0, . . . , 4k − 2}, j = 2m, (xj − xj+1) = UT
B × νm + µm

(5)

ν, µ ∈ Mn,2k(R+)

The equations for the PI statement formatting are harder and require
the use of binary variables.

∀j ∈ {1, . . . , 2k − 1}, j = 2m+ 1, ∀i ∈ N

(xj
i − xj+1

i ) =
∑
j∈M

Pj
i × λj × γm

j (6)

∀j ∈ {1, . . . , k}Γj − γj ≥ 0 (7)

∀j ∈ {1, . . . , k}
∥∥∥Γj

∥∥∥
1
≤ 1 (8)

∀i ∈ N,

k∑
j=1

Γj
i ≤ 1 (9)

γ ∈ Mm,k([0, 1]), Γ ∈ Mm,k({0, 1})

In equation (6), we recall that λ is given and is no more a variable
in this problem, so the constraint is linear. The γm

j variable is the
fragment of the PI statement j that will be used in the preference

x2m+1
γm
j λj×Pj

⪰
P

x2m+2. By using a binary Γm we ensure with

equation (8) that at most one PI statement is used for this preference
m and with equation (9) one statement j is used only once in the first



half of possible PI statements.

We need to write the same equations (6)-(9) with j ∈ {2k +
1, . . . , 4k − 1} to constrain the PI statements for the second half
of the possible PI statements and add equation (10) to use each λj

completely.

∀i ∈ N,

2k∑
j=1

γj
i = 1 (10)

To complete our mixed integer linear programming formulation
we need to discuss the objective function. Our goal is to limit at most
the split of the PI statement, as their number and their use is fixed.
Limiting the use of Pigou-Dalton statements could not be performed
with a MILP formulation as the true length hidden behind the Lorenz
dominance is given by Algorithm 1. To conclude the function we want
to minimize is :

2k∑
j=1

∥∥∥Γj
∥∥∥
1
+

2k∑
j=1

∥∥∥νj
∥∥∥
1

even if the second part should be improved and coefficients introduced
to break the symmetry of answers and help the overall convergence.


