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Initial
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Conformational dynamics of biomolecules:
Link to biological function

Ribosomal dynamics

Koehn, ADME Encyclopedia, 2021

Dynamics of membrane 
transporters

Behrmann et al., Cell 2015
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Approaches to study conformational dynamics
Experimental (cryo-EM/ET), theoretical (simulation), hybrid (combination)



PART 1 : 

INTRODUCTION
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PART 1: INTRODUCTION

• Cryo-EM (Single Particle Analysis) vs. Cryo-ET

• Terminology

• Conformational heterogeneity in cryo-EM and cryo-ET data

• Conformational landscapes and Free-Energy landscapes

• A brief review on methods for extracting continuous conformational landscapes from data
• Based on machine learning

• Based on molecular conformational dynamics simulation (hybrid methods)

4



Cryo-EM (Single Particle Analysis) vs. Cryo-ET
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Principles, Advantages, Limitations



Cryo-EM Single Particle Analysis (SPA) – Principles

Image processingSample preparation and imaging

~106  particles
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Cryo-Electron Tomography (cryo-ET) - Principles

Aligned sub-tomograms

Subtomogram average

Subtomogram averagingSubtomogram picking
Tomogram

Subtomograms

Tomogram

3D reconstruction

Missing wedge

Image 
processing

Sample 
preparation 
and imaging
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Cryo-EM SPA advantages and limitations
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 No sample crystallization required
 Studying purified complexes
 Allows studying flexible complexes (multiple conformations can be 
obtained from the same sample)

 Heterogeneity of orientations
 Heterogeneity of conformations (continuous: uncountable states)

 Noise due to a low electron dose, used to minimize the sample damage
 Low SNR but still higher than with cryo-ET data

Different orientations ? 
Different conformations ?

DNA replication
DNA Pol α - B complex
Jin et al., Structure 2014

Reconstructed cryo-EM map 
from extracted particlesExtraction of “particles”

Electron
source

Detector

Sample



Cryo-ET advantages and limitations
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 Allows in situ studies of dynamic molecular complexes 

 But, crowded environment

 Low SNR (electron dose split over multiple tilts)

 “Missing Wedge” problem due to the limited range of the tilt angle

(induces deformations of the reconstructed object in real space)

 Heterogeneity of conformations and orientations of molecules

Eltsov & Leforestier
NAR 2018

Eltsov & 
Leforestier,
NAR 2018

Reconstructed
tomogram

Extracted
subtomograms

(“particles”)



~106  particles

Combined heterogeneity of conformations, orientations, and translations 
in highly noisy data (particle images or subtomograms)
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Single Particle Analysis (SPA)

Subtomogram average

Alignement and averagingTomogram

Subtomograms

Picking

Tomogram

3D reconstruction

Missing wedge

Electron Tomography (ET) 

Detector

Source of electrons

Heterogeneity analysis 
by discrete classification

Alignment and averagingPicking



Discrete-classification approaches

Principle
• Aim at sorting particles into a given number 

of homogeneous classes 
• Maximum likelihood-based classification 

(available in RELION, cryoSPARC, cisTEM, …)

Hoffman et al. Nature 2019

Advantages
• Achieve high resolution of a small number 

of conformational states
Limitations
• Discard many particles (low-resolution classes, 

heterogeneous, continuous heterogeneity)
• Rare states cannot be elucidated



Terminology

12

• Conformational changes/variability (related to biological function)
• Conformational heterogeneity (related to data) 
• Discrete vs. Continuous



Discrete vs. Continuous conformational changes/variability (Function)
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Substrate binding or unbinding
(GroEL–GroES vs. 

GroEL–GroES–rhodanese)
Elad et al, JSB 2008

DNA replication
(DNA Pol α - B complex)

Virus maturation
(Tomato Bushy Stunt Virus )

Protein synthesis 
(70S ribosome)

Continuous

80S ribosome elongation cycle
Behrmann et al., Cell 2015

Combination of discrete and continuous 
Discrete



Discrete vs. Continuous conformational heterogeneity (Data)

Discrete Continuous
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Conformational heterogeneity in cryo-EM and cryo-ET data
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Obstacle and Opportunity



Heterogeneity: Obstacle to high resolution reconstruction, 
but Opportunity to get multiple conformations from the same sample

• Low resolution
• Losing flexible domains
• Losing variability information
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AAA ATPase p97

Hexamer formed of domains N, D1, and D2

Averaging different conformations



Continuous conformational heterogeneity SPA with MDSPACE

98% of the particles

2% of the particles

Manuscript in preparation (PhD thesis of Rémi Vuillemot 2023, Collab. Rouiller team, The University of Melbourne) 
17

MDSPACE analysis of p97 dataset of 
274,640 particles
• Initial model: Cα Gō model of PDB:5FTN 

(N domains up)
• 2 iterations of MDSPACE

• Iter 1: 5,000 particles, 5 NMs
• Iter 2: 274,640 particles, 10 PCs

• 50 ps NMMD simulations (time step : 1 fs)



Conformational heterogeneity subtomogram analysis with MDTOMO

Closed RBDOne-open RBD Intermediate
open RBD NTD lift

Vuillemot et al. Sci Rep 2023, data provided by B. Turonova, Max Planck Inst. Biophys, Germany 

MDTOMO analysis of SARS-CoV2 spike 
dataset of 20,080 subtomograms

• Initial model: Cα Gō model of PDB:6VXX 
(closed RBDs) 

• 1 iter of MDTOMO
• 100 ps NMMD simulations
• Force constant: 7000 kcal/mol

18



Conformational landscapes and Free-Energy landscapes

19

Terminology and Examples



Conformational space (also called landscape or manifold)

Jin et al. Structure 2014 Harastani et al. Front Mol Biosc 2021

Conversion from Point Density to 
Free-Energy difference:

Vuillemot et al. Sci Rep 2023

Δ𝐺𝐺/𝑘𝑘𝐵𝐵 𝑇𝑇 = −ln(𝑛𝑛/𝑛𝑛0)
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Relationship between Point Density and Free-Energy Difference

Δ𝐺𝐺/𝑘𝑘𝐵𝐵 𝑇𝑇 = −ln(𝑛𝑛𝑖𝑖/𝑛𝑛0)

∆G: Free-energy difference with respect to a reference state

with population 𝑛𝑛0
𝑛𝑛0 : Number of particles in the most populated region 

𝑛𝑛𝑖𝑖: Number of particles in region i

𝑘𝑘𝐵𝐵 : Boltzmann constant 

𝑇𝑇 : Temperature of the system

Vuillemot et al. Sci Rep 2023

exp(−
Δ𝐺𝐺
𝑘𝑘𝐵𝐵𝑇𝑇

) =
𝑛𝑛𝑖𝑖
𝑛𝑛0

⇒



22

Interpretation of the conformational space
HEMNMA, Jin et al. Structure 2014  SPA, DNA Pol α - B complex

D1 D2

Cryo-ET, SARS-CoV-2 spike protein
MDTOMO, Vuillemot et al. Sci Rep 2023

HEMNMA-3D
Harastani et al. 
Front Mol Biosc 2021

Cryo-ET,
Nucleosome in situ
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But, how to obtain 
conformational space from experimental data ?
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A brief review on methods for extracting
continuous conformational landscapes from data

• Methods based on machine learning (statistical or deep learning)

• Methods based on molecular conformational dynamics simulation (hybrid methods)

Both types of methods can be considered as data driven



Machine learning methods

• Linear, statistical machine learning methods (e.g., 3DVA in CryoSPARC, Punjani and Fleet 2021)

• Assume that each conformation can be represented with a sum of a reference conformation and a linear combination 

of principal conformations, as those that can be obtained by PCA of the covariance matrix

• Non-linear, statistical machine learning methods 

(e.g., Manifold Embedding, Dashti et al. 2014)

• Non-linear, deep learning methods 

(e.g., CryoDRGN, Zhong et al. 2021; 

3DFlex, Punjani & Fleet 2023)



Machine learning methods – Cont’d

Data Conformational space

Estimate 
conformations

• Often use pre-estimated angles and shifts 

• Produce density-map representations of 

the conformational spaces

• Deep learning methods produce models of 

density maps

• Prediction can be correct or incorrect 



Hybrid methods: Use a prior structural knowledge (e.g., atomic model)
Integrate dynamics simulation using this model into data analysis 

• Obtain a conformational model from each 

individual particle image or subtomogram

• By flexible fitting of a given model 

into each image or subtomogram

• Project the obtained models onto a low-

dimensional (conformational) space 27

Atomic
model

Both atomic & density 
representations are obtained

Estimate 
conformations 

using initial 
angles and 

shifts

Estimate 
alignment

Projection onto a low-
dimensional  space

Dynamics 
simulation

Subtomograms

…

Single particle 
images

or

Rigid-body align
(refine angles 

and shifts)

…



Hybrid methods: Use a prior structural knowledge (e.g., atomic model)
Integrate simulation of dynamics using this model into data analysis 

• Obtain a conformational model from each 

individual particle image or subtomogram

• By flexible fitting of a given model 

into each image or subtomogram

• Project the obtained models onto a low-

dimensional (conformational) space 28

Atomic
model

Both atomic & density 
representations are obtained

Estimate 
conformations 

using initial 
angles and 

shifts

Estimate 
alignment

Projection onto a low-
dimensional  space

Dynamics 
simulation

SubtomogramsSingle particle 
images

or

Rigid-body align
(refine angles 

and shifts)

…
Alternatively: Estimation of 

angles and shifts from scratch

…



Hybrid methods

• Advantages
• Use prior structural information if available
• Obtain conformational space at atomic level
• Elucidate rare states at atomic level

• Challenges
• Computational requirements 

• Realistic simulations (e.g., all atoms or longer simulations sometimes required) 
• Large number of particles should be analyzed

29



PART 2 : 

GOING FURTHER INTO DETAILS OF HYBRID METHODS

30

…. and combining simulation, image processing,
and even deep learning for analyzing conformational variability



PART 2: GOING FURTHER INTO DETAILS OF HYBRID METHODS

• Standard approaches to simulate conformational dynamics
• Molecular Dynamics (MD) simulation

• Normal Mode Analysis (NMA)

• Earlier hybrid approaches
• 3D-to-3D flexible fitting of an initial atomic model into a single EM map

• Using MD simulation or Normal Modes

• How to efficiently combine NMA and MD simulations ?
• Normal Mode Molecular Dynamics (NMMD) approach

• Use of NMMD in 3D-to-3D flexible fitting 

31



Standard approaches to simulate conformational dynamics

32

• Molecular Dynamics (MD) simulation

• Normal Mode Analysis (NMA)



Molecular Dynamics (MD) simulation

𝐹𝐹 = 𝑚𝑚𝑚𝑚

• Mimics the behavior of the atoms in the real world
• Integrates Newton‘s equations of motion

𝐹𝐹 = −∇𝑈𝑈 𝑥𝑥 𝑎𝑎 =
𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑

= −
1
𝑚𝑚
∇𝑈𝑈 𝑥𝑥

CHARMM forcefield

Solved using numerical
integrator (e.g. Verlet, 
Leapfrog, ...)

𝑈𝑈

33



Target

Initial

Potential energy
High 
energy

Low 
energy

Applications of MD simulations

MD simulation allows studying:
• Protein folding
• Protein interactions with other proteins
• Ligand binding 
• Conformational flexibility

P37
P97

MD simulation

𝑈𝑈

MD simulation of p97 
in complex with p37

Abolfazl et al. BMC Mol. 
and Cell Biol. 2022

1ns

Collab. Rouiller team, The University of Melbourne 34



Limitations of MD simulation 

• High computational cost :
• Small time step
• Large number of degrees of freedom

• Could be reduced with coarse-graining

All-atom vs. coarse-grained 
representation 

(MARTINI model)

35

Kmiecik et al. Chem. Rev. 2016



Brief conclusions on MD simulation

36

MD simulation
Newton‘s equations of motion

⇒High-quality atomic models

⇒Slow

Solved using numerical
integrator (e.g. Verlet, 
Leapfrog, ...)



Normal Mode Analysis (NMA)

𝑥𝑥 = 𝑞𝑞 � 𝐴𝐴 + 𝑟𝑟0

Total motion: Linear combination of normal-mode motions 

…

Low frequency High frequency

Target

Initial

Normal  mode #1

Normal  mode #2

0.8 × 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚1 + 0.2 × 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2

Low frequencies 
Collective motions

High frequencies 
Localized motions

Decomposes the total motion into harmonic oscillator motions

37



How to obtain normal modes ?

Atomic displacement 
with one normal mode

EM map and its two coarse-grained models 
(spheres: 3D Gaussian functions called pseudoatoms)

Jonic & Sorzano, IEEE J STSP 2016

Tirion’s Elastic Network Model (ENM)
Tirion, Phys Rev Lett 1996

• Allows obtaining normal modes of atomic structures or EM maps

• Before NMA, EM maps must be converted into “pseudoatoms” (3D Gaussians) 

• Initial conformation is assumed to be at the energy minimum

• Atoms or “pseudoatoms” are connected with elastic springs 

(within a given radius)

( ) ( )20
, ,,      

2a b a b a b
CE r r r r= −

( )
0
,

,
a b

p a b
r R

E E r r
<

= ∑
R: Radius of interaction (within which atoms are connected)
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Harmonic approximation of the potential energy and 
Diagonalization of the Hessian matrix

( )
3

0

7

N

i ij j i
j

x a q x
=

= +∑q

Hessian: 2nd derivative
of the potential
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Amplitudes (no physical units) can be 
obtained by correlating models with EM data
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Challenges and Limitations of the use of normal modes

𝑥𝑥 = 𝑞𝑞 � 𝐴𝐴 + 𝑟𝑟0
Target

Initial

Normal  mode #1

Normal  mode #2

0.8 × 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚1 + 0.2 × 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2

40

• How to select normal modes?
• Usual use of low-frequency collective normal modes (fitting of global, large-scale motions)  

• Validity of NMA for larger motion amplitudes around the initial conformation
• May generate structural distortions



Brief conclusions on NMA

41

NMA
Linear combination of harmonic oscillator motions
obtained by harmonic approximation of potential energy

⇒Fast

⇒Large amplitudes of normal modes may induce model distortions



Earlier hybrid approaches 
3D-to-3D flexible fitting of an initial atomic model into a single EM map

42

• Fitting using MD simulation

• Fitting using Normal Modes

Tama et al. 2004

Initial conformation
(given by 

the initial model)

Final conformation
(the final model)

Target  
conformation

(given by 
the EM map)



Use of MD simulation for 
3D-to-3D flexible fitting of an EM map with an atomic model

Initial

“biased” MD
simulation

Target

Adding a biasing potential using experimental data
(“biased MD” simulation) 𝑈𝑈

+ 𝑼𝑼𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃

𝑼𝑼𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 = 𝑘𝑘 (1 − 𝐶𝐶𝐶𝐶)

43

Force constant

CC =

Orzechowski & Tama 2008

Initial conformation
Target  

conformation
(given by 

the EM map)

CC : Pearson 
correlation 
coefficient

“3D biasing 
potential”



Use of MD simulation for 3D-to-3D flexible fitting of an EM map 
with an atomic model (Cont’d)

44

Orzechowski & Tama 2008

Initial conformation

Target  
conformation

(given by 
the EM map)

⇒High-quality atomic models

⇒Local motions

⇒Slow, especially for large complexes

Fitting using MD simulation :



Use of Normal Modes for 3D-to-3D flexible fitting of 
an EM map with an atomic model

Fast, but …
Challenges and Limitations:
• How to select normal modes?

• Usual use of low-frequency collective normal modes (fitting of global, large-scale motions)  
• Validity of NMA for larger motion amplitudes around the initial conformation

• May generate structural distortions

Optimizing 𝑞𝑞 to match the target data

𝑥𝑥 = 𝑞𝑞 � 𝐴𝐴 + 𝑟𝑟0

NMA-based fitting: M parameters, M << 3 N 
(compared to MD-based fitting: 3 N parameters)

45

Tama et al. 2004

Target  conformation
(given by the EM map)

Initial conformation



Brief conclusions on earlier hybrid approaches

Fitting using biased MD simulation Initial Final

⇒ High-quality atomic models
⇒ Local motions
⇒ Slow

+ Ubiasing

3 N parameters, N atoms

Ubiasing = 1 – CC

Initial Final

Fitting using normal modes

⇒ Fast
⇒ Global motions 
⇒ Not all conformations possible
⇒ Distortions for large amplitudes of 

conformational change

Target

Initial
mode2

mode3

0.8 × 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚1 + 0.2 × 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2

mode1

M parameters, M << N



How to efficiently combine NMA and MD simulations ?
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• Normal Mode Molecular Dynamics (NMMD) approach (Vuillemot et al. J Mol. Biol. 2022)

• Incorporates displacements along normal modes (NMs) into MD simulation (into the 

computation of the potential energy function for MD simulation)

• Simultaneously determines both NM and MD parameters

• Speeds up MD simulations using NMs while preserving high quality of the fitted models



Normal Mode Molecular Dynamics (NMMD) approach

NM-based 
displacement

Atomic
displacement

𝑟𝑟 𝑡𝑡 = 𝑞𝑞 𝑡𝑡 � 𝐴𝐴 + 𝑥𝑥 𝑡𝑡 + 𝑟𝑟0

𝐹𝐹𝑥𝑥 = 𝑚𝑚𝑥𝑥𝑥̈𝑥

𝐹𝐹𝑥𝑥 = −
𝜕𝜕𝑈𝑈
𝜕𝜕𝑥𝑥

𝐹𝐹𝑞𝑞 = −
𝜕𝜕𝑈𝑈
𝜕𝜕𝑞𝑞

Incorporates NM-displacements in the computation of the potential energy function 𝑈𝑈 𝑟𝑟
during MD simulation 

𝐹𝐹𝑞𝑞 = 𝑚𝑚𝑥𝑥𝑞̈𝑞

𝐹𝐹𝑞𝑞 = 𝐴𝐴𝐹𝐹𝑥𝑥

Rémi Vuillemot
PhD, Oct 2023

(now Pdoc
INRIA, Grenoble)

Vuillemot et al. 
J Mol. Biol. 2022



NMMD approach – Cont’d

Vuillemot et al. J Mol. Biol. 2022

NMMD MD

49

Target

Initial

NMMD

Faster than MD alone

NM-based 
displacement

Atomic
displacement

𝑟𝑟 𝑡𝑡 = 𝑞𝑞 𝑡𝑡 � 𝐴𝐴 + 𝑥𝑥 𝑡𝑡 + 𝑟𝑟0



Use of NMMD in 3D-to-3D flexible fitting 
+40% in average

Vuillemot et al. J Mol. Biol. 2022 50

• NMMD uses MD simulation package

GENESIS 1.4 (Kobayashi et al., JCC 2017)

• Can be used with all-atom models 

(CHARMM and Go) or coarse-grained 

models (Cα Gō)

• Available in our ContinuousFlex software 

package 

Faster fitting with NMMD than with MD



PART 3 : NEW HYBRID APPROACHES 

Flexible fitting of large sets of 3D and 2D data

51

• Analysis of many volumes (cryo-ET subtomograms)

• Analysis of many images (cryo-EM single particle images)

For application in determination of the entire conformational space from a given data set
⇒ Fast approaches are required 



PART 3: NEW HYBRID APPROACHES (Flexible fitting of large sets of 3D and 2D data)

• Challenge of flexible fitting of a model into 2D data

• 3D-to-2D flexible fitting of large sets of cryo-EM images
• HEMNMA: First approach for 3D-to-2D flexible fitting (based on NMs)

• DeepHEMNMA: Recent approach for HEMNMA speed-up

• MDSPACE: First approach for 3D-to-2D flexible fitting based on MD simulation

• 3D-to-3D flexible fitting of large sets of cryo-ET subtomograms
• HEMNMA-3D, MDTOMO

• Open-source ContinuousFlex software package 

52



Challenge of flexible fitting of a model into 2D data 
(missing 3rd dimension and low SNR)

Simulation
(Starts from a given 
initial conformation)

2D projection
(Test conformation)

Given image 
(Target conformation)

• Going from 3D-to-3D flexible fitting to 3D-to-2D flexible fitting
• Fitting a large set of images with a given prior model (atomic model or EM map)
• At each fitting step, a 2D projection is calculated and compared with a given image

3D-to-2D flexible fitting 
of PDB 4AKE to 
a synthetic particle image

53



3D-to-2D flexible fitting of large sets of cryo-EM images

54



HEMNMA: First approach for 3D-to-2D flexible fitting (based on NMs) 
Obtains simultaneously orientation, position, and conformation from each image

Low-dimensional conformational space:
Image mapping in a low-dimensional space 
of normal-mode displacement amplitudes
Each point: 3 angles, 2 shifts, and M 
normal-mode amplitudes (conformation) 

For each single particle image: 
Iterative 3D-to-2D elastic and rigid-body 
alignment to find conformation, orientation, 
and translation quasi-simultaneously

Image     Reference

DNA polymerase Pol α – B 

Pseudoatoms and NMA

Determine ql through 
matching with EM images

3D reconstructions
Interactive grouping of 

images with 
similar conformations

Animated 
“trajectories”

Displacement of the 
reference in selected 

directions

Selection of a subset of normal modes 
(low frequency & high collectivity)

55Jin et al., Structure 2014



DeepHEMNMA: Recent approach for HEMNMA speed-up
Based on Deep Learning of rigid-body and elastic parameters

56

Ilyes Hamitouche
PhD, March 2023

(now Pdoc Curie, Paris)

Resnet 34 (34-layer residual net) followed by a 4-layer MLP
Regression learning:
- small number of conformational parameters

(normal-mode amplitudes)
- rotations and translations 

Reconstruction of 7 maps showing variable degree of inter-subunit 
rotation and presence/absence of the second tRNA

Hamitouche & Jonic, Front Mol Biosci 2022

Small subset 
of images

Large subset 
of images 1,018      1,148        1,461        1,816         1,771         975          949

DeepHEMNMA analysis of EMPIAR-10016 data

Yeast 80S ribosome-tRNA complexes
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DeepHEMNMA using cryo-EM data of yeast 80S ribosome-tRNA 
EMPIAR-10016 data (Svidritskiy et al., 2014)

Data available:

• Set of around 90,000 particle images was classified in 5 classes with FREALIGN

• Two classes with 23,726 and 22,369 images resulted in two 3D reconstructions 

(EMD-5976 & EMD-5977, about 6.3 Å resolution)

• EMD-5977: “non-rotated”, two tRNA in the classical P-P and E-E states

• EMD-5976: inter-subunit rotation of around 9°, one tRNA in a hybrid P/E state

• Two atomic models derived (PDB-3J77 from EMD-5976; PDB-3J78 from EMD-5977)
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Experiment with DeepHEMNMA using EMPIAR-10016 data: 

• Use of 46,095 images (mixture of 2 classes, with 1 tRNA and 2 tRNAs)

• Downscaling from 360 × 360 pixels (pixel: 1.05 Å) to 128 × 128 pixels (pixel: 2.95 Å) 

• Splitting images into 3 subsets: training (32,000), validation (2,000), and test (12,095)

• PCA space split quasi-uniformly to get at least 900 images per group 

• Reconstruction of 7 maps with variable degree of inter-subunit rotation and 

presence/absence of the second tRNA

1,018      1,148        1,461        1,816         1,771         975          949

Superposition with
reconstructions from
two FREALIGN classes

Hamitouche & Jonic, Front Mol Biosci 2022



Processing time (wall-clock):
DeepHEMNMA vs. HEMNMA 
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Training
4 NVIDIA V100 / 
5120 CUDA cores

6,000 images 14,000 images 50,000 images

256x256 pixels 15 h 28 h 75 h
128x128 pixels 11 h 19 h 55 h

HEMNMA
160 INTEL 2.6 GHz 

CPU cores 

1 image
1 core

20,000 images
160 cores

(time per core)

106 images
160 cores

(time per core)
256x256 pixels 8 min 15.6 h 800 h
128x128 pixels 4 min 7.7 h 400 h

Prediction
1 NVIDIA V100 / 
5120 CUDA cores

2 images 2,000 images 50,000 images 106 images

256x256 pixels 36 ms 0.3 min 7.5 min 2.5 h
128x128 pixels 6 ms 0.2 min 5 min 1.7 h

Synthetic data, 3 normal modes, DeepHEMNMA faster than HEMNMA more than 40 times

But, large amplitudes of NMs may 
induce model distortions
• NMs can be combined with MD 

simulation to avoid model 
distortions and accelerate 
simulations 
(NMMD in MDSPACE)

Hamitouche & Jonic, Front Mol Biosci 2022



DeepHEMNMA tests with synthetic data

Random parameters:
- 3 Euler angles and 2 shifts
- Amplitudes of 3 normal modes (modes 7-9):

: random uniform, between 0 and 1

Training: 14,000 images
Validation: 2,000 images
Prediction: 2,000 images  
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SNR=0.1,
Defocus = -0.5 µm

Adenylate kinase Chain A (PDB:4AKE)
Pixel size: 0.325 Å
Size: 256 x 256 pix

Amplitude error
Pred. vs. GT: 7.5
RMSD: 0.4 Å

128 x 128 pix images 

Hamitouche & Jonic, Front Mol Biosci 2022
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Errors

Normal-mode amplitudes Angles
[°]

Shifts X
[Å]

Shifts Y
[Å]Mean 

over
modes

7-9

Mode 7 Mode 8 Mode 9

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Predicted vs. 
Ground-truth

7.5 5.4 6.5 8.2 9.2 8.9 10.5 2.5 3.3 0.2 0.1 0.2 0.1

Predicted vs.
HEMNMA

6.9 5.4 6.7 7.3 9.0 7.9 9.6 1.9 3.4 0.2 0.1 0.2 0.1

HEMNMA vs. 
Ground-truth

6.6 5.7 8.4 6.2 7.2 7.8 7.2 1.0 0.9 0.2 0.2 0.2 0.2

RMSDs

Normal-mode 
amplitudes 

[Å]
Angles [Å] Shifts [Å]

Mean SD Mean SD Mean SD

Predicted vs.
Ground-truth

0.4 0.2 0.9 1.0 0.3 0.2

DeepHEMNMA tests with synthetic data
Hamitouche & Jonic, Front Mol Biosci 2022



MDSPACE: First approach for 3D-to-2D flexible fitting based on MD simulation
Based on NMMD for the purpose of speed and obtaining high quality models

NM-based 
displacement

Atomic
displacem

ent

𝑟𝑟 𝑡𝑡 = 𝑞𝑞 𝑡𝑡 � 𝐴𝐴 + 𝑥𝑥 𝑡𝑡 + 𝑟𝑟0
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CC =

𝑈𝑈

+ 𝑘𝑘 (1 − 𝐶𝐶𝐶𝐶)

Biasing potential

Particle image

Force constant

Vuillemot et al., J Mol Biol 2023 

CC : Pearson correlation 
coefficient

“2D biasing potential”



MDSPACE: First approach for 3D-to-2D flexible fitting based on MD simulation
(Cont’d)
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• NMMD is faster than MD alone, thanks to normal modes 

• MDSPACE produces high-quality models (better than those obtained with normal modes only)

• Selection of normal modes is less critical in MDSPACE than in HEMNMA 

Vuillemot et al., J Mol Biol 2023 

“2D biasing potential”



Iterative MDSPACE procedure for refining conformational space 
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The initial rigid-body alignment parameters are refined during the fitting in each MDSPACE iteration 
and updated before each new iteration Vuillemot et al., J Mol Biol 2023 



MDSPACE validation with synthetic data of an ABC transporter
Synthetic dataset of 3 000 particle images of ABC transporter PDB-6RAF (Hoffman et al. Nature 2019) 

Vuillemot, et al. J. Mol. Biol. 2023 

RMSD between the 
ground truth models and 

the produced models



MDSPACE analysis of EMPIAR-10016 set (80S ribosome-tRNA complexes)

Green : 80S-tRNA (rotated, hybrid P/E tRNA) 
Red : 80S-2tRNA (nonrotated, P-P & E-E tRNAs)

Initial model : Cα Gō model of 80S-tRNA
Two iterations of MDSPACE 

• Iter 1: 10,000 particles, 10 NMs
• Iter 2: 46,095 particles, 3 PCs

30 ps NMMD simulations
Force constant: 10,000 kcal/mol

46,095 particles, 1802 pixels, 3 days on 640 CPU cores (Intel Xeon 6248 
processors, 2.5 GHz)

Vuillemot, et al. J. Mol. Biol. 2023 



MDSPACE analysis of ATPase p97 dataset

98% of the particles

2% of the particles
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MDSPACE analysis of p97 dataset of 
274,640 particles
• Initial model: Cα Gō model of PDB:5FTN 

(N domains up)
• 2 iterations of MDSPACE

• Iter 1: 5,000 particles, 5 NMs
• Iter 2: 274,640 particles, 10 PCs

• 50 ps NMMD simulations (time step : 1 fs)

Manuscript in preparation (PhD thesis of Rémi Vuillemot 2023, Collab. Rouiller team, The University of Melbourne) 



MDSPACE in brief
• First method for analyzing conformational variability of cryo-EM images using MD-based fitting

• Obtains the conformational space at atomic level

• Tested using synthetic and experimental data

HER2-Trastuzumab Fab-Pertuzumab Fab (164.51 kDa)
Collab. S. Bressaneli & R. Ruedas (I2BC, Gif-sur-Yvette)

Human 80S ribosome (3.2 MDa)
Collab. B. Klaholz & L. Fréchin (IGBMC, Strasbourg)

Rémi VuillemotOther examples of studies using MDSPACE ...



3D-to-3D flexible fitting of large sets of cryo-ET subtomograms
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Extension of new hybrid approaches to large volumetric datasets 
3D-to-3D fitting of large sets of EM maps or subtomograms
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D1

D2

Nucleosomes in situ

HEMNMA-3D: Extension of HEMNMA method to 3D-to-3D flexible fitting 
(fitting of an atomic model or an EM map to sets of subtomograms using normal modes)

Harastani et al., Front Mol Biosci 2021

Recalling that :
• NMs are fast
• But, large amplitudes of NMs may induce 

model distortions
• NMs be combined with MD simulation to 

avoid model distortions and accelerate 
simulations (NMMD in MDTOMO)

Mohamad Harastani
PhD, Oct. 2022
(now Pdoc IGBMC, Illkirch)

Collaboration with A. Leforestier (LPS) & M. Eltsov (IGBMC)



MDTOMO : NMMD simulation integrated into analysis of subtomograms

NMMD 
fitting

Atomic 
models

Subtomogram
averages

Vuillemot, et al. Sci Rep 2023 
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The same strategy of refining the initial rigid-body alignment as in MDSPACE



occluded

outward-
facing

inward-
facing

MDTOMO validation using synthetic dataset of an ABC transporter
3 synthetic datasets of 3,000 subtomograms of ABC transporter PDB-6RAK (Hoffman et al. Nature 2019)

SNR 0.05 SNR 0.03 SNR 0.01

Vuillemot, et al. Sci Rep 2023 72



MDTOMO analysis of EMPIAR-10453 set (SARS-CoV-2 spike subtomograms)

One-open
RBD

NTD liftIntermediate
open RBD

Closed
RBDs

20 080 subtomograms (B. Turonova, Max Planck Inst. Biophys)
Cα Gō model of PDB:6VXX (closed RBDs), 100 ps NMMD 
simulations, Force constant: 7000 kcal/mol, 1 iter of MDTOMO,
17.8 h on 320 CPU cores (Xeon 6248 processors), 1283 voxels

Vuillemot, et al. Sci Rep 2023 
73
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Vuillemot, et al. 
Sci Rep 2023 

MDTOMO analysis of 
EMPIAR-10453 data



Open-source ContinuousFlex software package (GitHub, Scipion) 
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SPA:
HEMNMA / DeepHEMNMA

MDSPACE

Cryo-ET:
HEMNMA-3D

MDTOMO
TomoFlow

• Automated tests
• Automated 

workflow 
templates

• Open test data 
(Zenodo)

MD/NMA:
Genesis for MD (Kobayashi et al., JCC 2017)
ElNemo for NMA (Suhre et al., NAR 2004)



Take-home messages

• Several methods developed for analyzing conformational variability in cryo-EM single 

particle images and cryo-ET subtomograms

• Hybrid methods integrate dynamics simulation into data analysis 

• Reference model required (atomic model or EM map)

• For NMA-based methods, the reference can be an EM map (HEMNMA, HEMNMA-3D)

• For MD-based methods, the reference should be atomic model (MDSPACE, MDTOMO)

• Advantage of using a reference atomic model: atomic-scale conformational landscape

• Require less data to interpret conformational heterogeneity than other methods

• Can be used in combination with supervised deep learning to speed up analysis (e.g., 

DeepHEMNMA)
76



Summary: 3D-to-2D flexible fitting of each particle image with a given model

77

HEMNMA (Jin et al., Structure 2014)

• First approach for analyzing continuous conformational heterogeneity in large sets of particle images, 

which integrates simulated motion directions of a given model into image analysis

• Simulations performed using NMA

DeepHEMNMA (Hamitouche & Jonic, Front Mol Biosci 2022)

• First approach integrating motion simulation into deep learning (training data obtained with HEMNMA)

• Accelerates HEMNMA

MDSPACE (Vuillemot et al., J Mol Biol 2023)

• First approach integrating MD simulation into SPA for continuous conformational heterogeneity analysis,  

where each image is analyzed independently of others 

• Uses NMMD (MD simulation empowered with normal modes to speed up the analysis while preserving 

high quality resulting models)



Summary: 3D-to-3D flexible fitting of each subtomogram with a given model
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HEMNMA-3D (Harastani et al., Front Mol Biosc 2021)

• First approach for analyzing continuous conformational heterogeneity in a set of cryo-ET subtomograms, 

which integrates simulated motion directions of a given model into subtomogram analysis

• Extension of HEMNMA (simulations performed using NMA)

MDTOMO (Vuillemot et al., Sci Rep 2023)

• First approach integrating MD simulation into subtomogram analysis for continuous conformational 

heterogeneity studies

• Uses NMMD (MD simulation empowered with normal modes to speed up the analysis while preserving 

high quality resulting models)
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