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Résumé

Nous explorons la génération d’explication pour des
préférences basées sur un modèle de somme pondérée or-
donnée (OWA) favorisant une répartition équilibrée des per-
formances relatives à différents points de vue. Nous pro-
posons des explications, correctes vis-à-vis du modèle, fon-
dées sur la composition par transitivité d’arguments élémen-
taires fondés sur la dominance de Pareto, des transferts de
Pigou-Dalton, et l’information préférentielle fournie par le
décideur. Nous proposons plusieurs approches heuristiques
permettant de calculer ces explications, validées par une
campagne expérimentale montrant que les explications ob-
tenues sont souvent de longueur optimale.

1 Introduction

Our aim is to propose explanation tools for recommen-
dations based on preference aggregation. The need for
decision-theoretic recommender systems–tools helping de-
cision makers to formalize and support their judgment in a
principled manner–has in turn given rise to a need for tools
allowing people–be they actors of the decision process, or
third parties impacted by it–to understand, scrutinize, va-
lidate or contradict the functioning of such recommender
systems.

Preference aggregation is the process of merging com-
parative judgments expressed from various points of view
into a single ranking. Points of view can represent various
aspects of a situation (such as in multiple criteria decision
aiding–MCDA), be expressed by various agents, or several
possible worlds when modelling uncertainty. In turn, the
aggregated judgment can be used as a basis for decision,
supporting tasks such as choosing the best alternative, com-
paring them, or sorting them into ordered categories [3].

The MCDA literature usually distinguishes three ap-
proaches to aggregation : “aggregate then compare”, where

judgments are normatively described as complete preor-
ders and described numerically with a score–the higher,
the better–and the aggregator is a multi-attribute utility
function [11] ; “compare then aggregate”, where the ag-
gregated judgment is represented by an outranking rela-
tion constructed from the preference profiles [16] ; and mo-
dels based on logic. Following the numeric approach, it is
customary to decide on several high-level features of the
aggregator–either technical, such as possessing an additive
form [12] , or decision-theoretic, such as being compa-
tible to Pareto-dominance, satisfying anonymity or idem-
potence, etc. Usually, these requirements are chosen so as
to define, either directly or indirectly via a representation
theorem, a parametric family of aggregators. When the de-
cision task requires to be able to compare any two alterna-
tives, the usual approach, called preference elicitation, is to
select a specific, precise value of the preference parameter.
It is common to use indirect elicitation techniques, where
the aggregator is fitted to preference information (PI) given
by the decision maker in the form of comparative state-
ments about alternatives, as opposed to statements concer-
ning the parameters [10]. Full elicitation is not mandatory,
though : skeptical recommendations can be derived consi-
dering the whole set of aggregators of the family that are
compatible to the PI.

In the context of MCDA, Belahcene et al. have recently
shown that, for the class of additive aggregators, it is pos-
sible to provide structured explanations where elementary
arguments are organized according to a specific scheme. In
[1], an explanation of a comparative statement is a decom-
position into elementary swaps linked together by transiti-
vity. In [2], an explanation is a decomposition into prefe-
rence statements committed by the decision maker, assem-
bled together by a high-order cancellation property.

When points of view are assessed on the same scale,
the Choquet integral is a convenient class of aggregators,



offering a good mixture of expressiveness, interpretabilty
and computational tractability [7]. We focus on the sub-
class of anonymous aggregators, where the respective iden-
tities of the points of view play no role into their aggre-
gation. Evaluations can be permuted, and the importance
of a given score is related to its rank in the ordering of
scores. These aggregators are thus named ordered weigh-
ted average (OWAs). Introduced in MCDA by Yager [18],
they form a family of function parameterized by a tuple
of weights, one per criteria, similarly to the weighted sum,
and encompass the minimum, maximum, median and mean
operators as particular cases. Moreover, by imposing the
weights to be non-increasing w.r.t. the rank, it is possible
to favour balanced scores over imbalanced ones, thus re-
presenting a sense of fairness. The explanatory engine des-
cribed in [1] relies on swaps between criteria and is inspi-
red by the notion of even swaps [9]. In the field of welfare
economy, many methods and criteria are used to rank sets
of incomes depending on the distribution of wealth among
agents. The Pigou-Dalton principle [17] provides a similar
notion of acceptable transfers in this context : the inequa-
lity between agents is reduced when a rich agent gives a
small portion ϵ of its wealth to a poorer agent.

Our contribution is the definition of structured expla-
nations for recommendations based on fairness-oriented
OWAs. We propose to arrange comparative statements ba-
sed on Pareto dominance, Pigou-Dalton transfers, and PI
into a transitive structure. We begin by introducing the
OWA operator, the Pigou-Dalton Principle and other de-
finitions we will use in Section 2. In Section 3, we deal
with the case where preference and explanations can be
constructed without relying on preference information, and
propose a heuristic to compute short explanations. In sec-
tion 4, we address the case where preference is inferred
from PI, and propose to find an additive decomposition of
a comparative statement as an intermediate step towards
finding a transitive explanation. Finally we will run an
example combining both in Section 5 and give some in-
sight about the performances of the method in Section 6.

2 Preliminaries

2.1 Ordered Weighted Averages

In this section we will introduce the decision problems
and the formulation of the OWA operator. The MCDA pro-
blem we consider is ranking alternatives over a set of n
criteria, defined on the same domain X, which can be [0, 1]
or R. The model of preference should then create an order
over the candidates represented by their vectors x ∈ Xn.

Definition 1 (Reordering function). We define the reorde-
ring function ↑ as the permutation function over Xn s.t.
x 7→ x↑ with x↑1 ≤ x↑2 ≤ · · · ≤ x↑n.
We denote by Xn↑ the domain of such vectors x↑.

Definition 2 (Ordered Weighted Average [18]). The OWA
operator is a function Xn → R+ defined by a vector of
weights w ∈ W s.t. ∀ i wi ∈ [0, 1] and

∑n
i=1 wi = 1 :

OWAw(x) =
n∑

i=1

wix
↑

i

Even if it is presented as a weighted sum, thanks to the
reordering function ↑ the weights are assigned to the rank
of the criteria, allowing to represent non linear preference
operators, such as the min operator wmin = (1, 0, . . . , 0),
the max operator wmax = (0, . . . , 0, 1), and in general any
quantile as well as the arithmetic mean operator wmean =

( 1
n , . . . ,

1
n ).

Definition 3 (Fairness-oriented OWA (FOWA)). An OWA
operator is fairness-oriented if its weight vector w also sa-
tisfy w1 ≥ w2 ≥ · · · ≥ wn. We note by W↘ ⊂ W the
domain of such weights.

A FOWA represents preferences oriented toward equity
because, with a higher emphasis put on the smaller va-
lues, it gives higher scores to vectors with balanced va-
lues than to vectors where modalities are concentrated on
a small subset of criteria. We can note that an increase
in a small variable has a bigger impact on the aggrega-
ted value than the same increase in a big variable, i.e.
∀ i < j OWAw(x↑ + k × ei) ≥ OWAw(x↑ + k × e j), with
el the vector that is one for its lth element and zero everyw-
here else.

Definition 4 (Ranking relation). We define the ranking re-
lation ⪰w induced by the operator OWAw by :

a ⪰w b ⇐⇒ OWAw(a) ≥ OWAw(b)

Example 1. The Decision Maker is asked to rank students
over their results (scaled between 0 and 1) in 3 main
courses {”Science”, ”Literature”, ”Language”}. She
prefers students who are balanced between the 3 courses,
and with an analyst the OWA with the following vector of
weights has been designed : w = (0.6, 0.3, 0.1).

If we consider three students a, b and c such that a =
(0.7, 1, 0.5), b = (0.7, 0.7, 0.7) and c = (1, 0.7, 0.8). Their
scores defined by the OWA w will be computed on their
reordered vectors a↑ = (0.5, 0.7, 1), b↑ = (0.7, 0.7, 0.7) and
c↑ = (0.7, 0.8, 1), and are :

OWAw(a) = 0.5 × 0.6 + 0.7 × 0.3 + 1 × 0.1 = 0.61
OWAw(b) = 0.7 × 0.6 + 0.7 × 0.3 + 0.7 × 0.1 = 0.7
OWAw(c) = 0.7 × 0.6 + 0.8 × 0.3 + 1 × 0.1 = 0.76

Therefore we obtain the preferences c ⪰w b ⪰w a.

In this example, we do not exactly know why the weight
vector was w = (0.6, 0.3, 0.1). The issue with determining



a specific set of weights is that it produces a total preorder
(with possible ties) and may produce knowledge that the
DM is not aware of and could potentially disagree with.
Furthermore, obtaining precise values is cognitively de-
manding and require strong efforts. To circumvent this pro-
blem of finding the right set of weights, we can robustify
our model using a set of models [14]. The set of OWA is
defined as the set which respects the information obtained
from the DM, her preferential information (PI), through
an interactive process. In our case of study, the informa-
tion collected is of the shape of m preference statements
a j ⪰PI b j, j ∈ {1, . . . ,m}, with a j, b j alternatives.

Definition 5 (Robust OWA). We define a robust OWA ope-
rator the set WPI ⊆ W of OWA weights :

WPI = {w ∈ W : ∀ j ∈ {1, . . . ,m} a j ⪰w b j}

And we note W↘PI =W
↘ ∩WPI

As we now have a set of models instead of a single vector
of weights, we have to adapt our process for producing pre-
ferences. We can define two relations of preferences from
the set WPI , a necessary and a possible preference relations
[5]. In this paper we only focus on the necessary prefe-
rence.

Definition 6 (Necessary preference). We define the neces-
sary preference NOWA↘

PI of a robust FOWA with respect to
preference information PI as :

aNOWA↘
PI b⇔ ∀w ∈ W↘PI , a ⪰w b

In order to compute the set WPI and to reason with the
necessary preference relation NOWA↘

PI , we can adapt the
GRIP method [4] that allows to decide whether a pair of
alternatives belongs to the necessary preference relation,
given some PI, for the additive value model, by solving a
linear program 1. In fact, to represent OWA operators, we
only need to feed the method with vectors already reor-
dered by ↑, and for the representation of FOWA opera-
tors we need to add n − 1 linear constraints wi ≥ wi+1

2,
i ∈ {1, . . . , n − 1} to constraint the weights of the additive
value function in the linear program to be decreasing.

2.2 Pigou-Dalton Principle and Dominance relations

In this section we will first connect the OWA aggre-
gators to the Pigou-Dalton principle. To do so, we will
introduce the dominance relations and the Pigou-Dalton
principle that we will use in our explanation engine and its
potential use cases.

1. Such a LP formulation could already be found in [8], but we opt to
use the more streamlined formalism of GRIP.

2. to follow the GRIP methods notations, the constraints are ui(βi) −
ui+1(βi+1) ≥ 0

The Pigou-Dalton Principle was first introduced in
welfare economic problem, where the components of
the vector to compare are the incomes of economical
agents, ranked from bottom to top [17]. In this context, the
Pigou-Dalton Principle defines a relation ⪰PDP between
two distributions over n agents.

Definition 7 (Pigou-Dalton Principle). Let x be the income
vector of n agents such that x = (x1, . . . , xn),
x1 ≤ x2 ≤ · · · ≤ xn.
The vector x′ is favoured to x by the Pigou-Dalton Prin-
ciple, noted x ⪯PDP x′ if there exists points of view i, j ∈
{1, . . . , n}, i < j and quantity ϵ > 0 s.t. :

∀k ∈ {1, . . . , n}, k , i, k , j, x′k = xk;
x′i = xi + ϵ ≤ xi+1; and
x′j = x j − ϵ ≥ x j−1.

When these conditions are met, we also use the notation

x
j→i
⪯

PDP
x′ to account for the witnesses i and j.

The Pigou-Dalton Principle therefore favours vectors of
incomes where a ”rich” agent j gives a positive portion ϵ
of its wealth to a ”poorer” agent i in order to reduce the
inequality. We also add explicitly another constraint on ϵ
which is not always clear in the literature : the order in the
distribution is preserved, x j − ϵ ≥ x j−1 and xi + ϵ ≤ xi+1.
This principle of equity is respected by FOWA operators
as we discussed earlier after definition 3.

We will now introduce two preorders relations, compa-
tible with FOWA operators, which will be used by our ex-
planation engine : the Pareto and Lorenz dominance, deno-
ted respectively as ⪰P and ⪰L.

Definition 8 (Pareto-dominance).

∀a, b ∈ Xn, a ⪰P b ⇐⇒ ∀i ∈ {1, . . . , n} ai ≥ bi

Pareto dominance embodies the desirable property of
monotonicity of a preference aggregator : if an alternative
is better on every aspect than another, then it should be pre-
ferred.

Definition 9 (Lorenz vector). We call the Lorenz vector
of a candidate a the cumulative vector L(a) of Rn whose
components are defined by :

L(a)i =

i∑
j=1

a↑j

Definition 10 (Lorenz-dominance). We define the Lorenz-
dominance ⪰L by :

a ⪰L b ⇐⇒ ∀i ∈ {1, . . . , n} L(a)i ≥ L(b)i



Example 2. (Example 1 continued) The Lorenz vector of
the three candidates {a, b, c} are L(a) = (0.5, 1.2, 2.2),
L(b) = (0.7, 1.4, 2.1) and L(c) = (0.7, 1.4, 2.1).
By comparing the Lorenz vectors we obtain the following
Lorenz-dominance relation statements : c ⪰L a and c ⪰L b.
We can note that the Lorenz-dominance is a partial preor-
der, as neither a or b Lorenz-dominates the other.

FOWA operators are highly linked to Lorenz Dominance
as shown by Golden and Perny [6].

Proposition 1 (Reformulation from Lemma 2 in [6] ).

a ⪰L b⇔ ∀w ∈ W↘ a ⪰w b⇔ aNOWA↘
∅

b

Therefore, with proposition 1 we have that the Lorenz-
dominance is compatible to any FOWA operator, meaning
that these results will also appear in robust FOWA but are
not depending on the DM preferential information. This
first set of results makes up the core of our explanatory
engine described in Section 3.

3 Transitive explanations for Lorenz domi-
nance

In this section we will present an algorithm which com-
putes efficiently an explanation for a Lorenz dominance
in the form of a transitive chain of transfers using the
Pigou-Dalton Principle. The former is only a small part of
the results a robust FOWA can produce and the rest will be
addressed in section 4.

We saw from proposition 1 that some results, those cor-
responding to the Lorenz dominance ⪰L, are compatible
with every FOWA operator. It naturally follows that these
results, will appear in the necessary preferences of any ro-
bust FOWA operator. It has also be known since the 1960s
that the Lorenz dominance and the Pigou-Dalton Principle
are closely related.

Definition 11 (Transitive explanation (TE)). Given a set of
binary relations over alternatives Y , we call transitive ex-
planation of a ⪰ b using Y , a tuple (x0, . . . , xk+1) ∈ (Xn)k+2

such that

a = x0, b = xk+1,∀i ∈ {1, . . . , k}xi Ri xi+1, with Ri ∈ Y

Proposition 2 ([15], reformulation from Proposition 3.1
). a ⪰L b iff there exists a transitive explanation
(x0, . . . , xk+1) ∈ Xn↑ using Y = {⪰PDP,⪰P}

In [15], Lorenz dominance is only considered over
alternatives which have the same last value in their Lorenz
vectors, i.e. for which the sum of all values is the same. As
we want the scope of our explanation engine to be as broad
as possible, we imbue it with the capability of inserting

Pareto dominance statements in the explanation sequence
to overcome this limitation and deal with the potential
surplus.

From proposition 2, we can build a transitive sequence
of preferences, a transitive explanation, combining only
progressive Pigou-Dalton transfers and Pareto dominance
to explain every pair (a, b) such that a ⪰L b. Note
that, because of the equivalence in proposition 1, the
Lorenz-dominated alternatives are exactly the ones for
which explanations can solely be based on Pareto and
Pigou-Dalton transfers and we will need other explana-
tion mechanisms to explain necessary preferences of a
robust FOWA operator when alternatives are not Lorenz-
dominated. As Pigou-Dalton transfers only redistribute a
portion ϵ among candidates without breaking the order of
criteria, and as Pareto dominance is only here to remove
the surplus that can remain between the last intermediate
candidate and b, every intermediate candidate from
(x0, . . . , xk+1) is within Xn↑.

Hence this sequence can be presented to the DM as an
explanation because :

— it is of finite length ;
— the mechanisms are plausible, given the explainee

adheres to the principles of monotonicity and fair-
ness they embody ;

— the mechanisms used are of small cognitive load (Pa-
reto dominance does not require any trade-off, while
a Pigou-Dalton transfer can be described as occur-
ring between two points of view, ignoring the rest) ;
and

— the intermediate candidates used are plausible, even
though they are not present in the set of candidates
to rank.

The question of finding an algorithm to build a (not
necessarily unique) sequence of Pigou-Dalton transfers
has been answered in a close but not identical domain, on
a problem called Majorization [13].
It is defined as a preorder over vectors using their values
reordered in a decreasing way, so if we take similar
notations as in definition 1 we would be dealing with
vectors x↓. Majorization a ⪰M b occurs when, for each
criterion k, we have

∑k
i=1 a↓i ≥

∑k
i=1 b↓i . The link with our

problem is therefore clear as a ⪰M b⇔ b ⪰L a.

In this context, the majorization is explained using a se-
quence of "Robin Hood transfers", which are Pigou-Dalton
transfers, produced with a polynomial time algorithm.
Without going into the mathematical details, we can give
simply the idea of their (Lorenz-revisited) algorithm. We
have a ⪰L b, which means that a is more balanced than b.
Especially, we can find some index j where b↑j > a↑j , and



some index k < j where a↑k > b↑k . The idea is to perform an
exchange between these two points of view of a quantity
wich is as large as possible, i.e. ϵ = min(a↑j − b↑j , b

↑

k − a↑k).
Their idea for choosing suitable values for j and k is left
vague ; it is usually the smallest j possible and for this j
the biggest k possible.

We can pinpoint three possible drawbacks :

1. the value of ϵ does not guarantee the candidate built
by the transfer to be ordered ;

2. it is limited to the case where
∑n

i=1 ai =
∑n

i=1 bi ; and

3. the algorithm will find a sequence but does not aim
at making it short.

Point #2 can easily be solved by allowing the explainer
to use arguments based on Pareto dominance. However,
this increase in flexibility makes point #3 even more
prominent. Indeed, we have more flexibility in finding the
criteria k so that

∑k
i=1 a↓i ≥

∑k
i=1 b↓i as we have "surplus"

(non zero Pareto-dominance implies
∑n

i=1 ai >
∑n

i=1 bi).
We now present our (heuristic) Algorithm 1, which is
similar to the idea given above but tries to solve the three
points mentioned. A natural idea consists in minimizing
the length of the explanation, but this problem seems
computationally hard, even though we were not able to
assess its theoretical difficulty. Consequently, we propose
a heuristic method to compute short transitive explanations
for a Lorenz dominance statement. In Section 6, we
compare this heuristic to a A* algorithm computing an
explanation of proven minimal length. Experiments tend
to show we achieve nearly minimal length in a fraction of
the time required to perform the exact search.

By focusing on Pigou-Dalton transfers occurring bet-
ween variables which can receive (Step 1) or give (Step 3
(I)) the complete difference with the loser we ensure that
the candidate obtained after the transfer is ordered. It also
allows us to have a maximum length of explanation of n.
Indeed at each step we remove at least one criteria from
the set of criteria on which there is a non zero difference
with the looser, bounding the explanation by the cardinal
of this set, itself bounded by the number n of criteria.

Once we cannot find a rank j for which the attribute va-
lue x j is bigger than b j, we remove every surplus that could
exists with a single Pareto dominance statement. Unfortu-
nately, our heuristic algorithm does not always leads to the
smallest explanation length as shown in example 3.

Example 3. In the same context as example 1, we want
to rank students, this time over their grades in 5 courses.
The two students at hand are d = (0.6 0.7 0.5 0.7 0.8) and
e = (0.8 1 0.6 0.4 0.4). It is easy to compute that d ⪰L e,
therefore we can apply our algorithm 1 and a A* search to
have two explanations.

Algorithm 1: Algorithm explaining Lorenz-
dominance with Pareto dominance and Pigou-
Dalton transfers

Input: a, b ∈ Xn↑ s.t. a ⪰L b
Output: C
x = a ; C = a

1 Compute J , the set of indices j s.t. x j < b j and s.t.
we can perform a trade ϵ j = b j − x j

2 If J == ∅ go to Steps 5
3 For each j ∈ J :

(I) Compute K , the set of indices k < j s.t. xk > bk

and s.t. we can perform a trade ϵk = xk − bk

(II) Find the index k′ ∈ K allowing to perform the
biggest trade ϵ = maxk′∈K min(ϵ j, ϵk′ ) (if draws
take the largest index)
(III) X = (x1, . . . , xk′ − ϵ, . . . , x j + ϵ, . . . , xn)
(IV) If we don’t have X ⪰L b, go back to (II) to
find another index in K \ {k′}

(V) x = X ; C = C
j→k′

⪰
PDP

x

4 Go back to Step 2
5 Compute K , the set of indices k s.t. xk > bk

6 If K , ∅ : C = C ⪰P b

We reverse the explanation returned by the algorithm as it
is easier to read and understand when the Pigou-Dalton
transfers are performed in the reading direction. We note
with i the criterion receiving and i the criterion giving. We
obtain for our algorithm the explanation :

e↑ = (0.4 0.4 0.6 0.8 1) ⪯P (0.4 0.5 0.6 0.8 1)
5→2
⪯

PDP

(0.4 0.6 0.6 0.8 0.9)
4→1
⪯

PDP
(0.5 0.6 0.6 0.7 0.9)

5→3
⪯

PDP

(0.5 0.6 0.7 0.7 0.8) = d↑ of length 4.
With the A* search we obtain a different explanation :

e↑ = (0.4 0.4 0.6 0.8 1) ⪯P (0.4 0.4 0.7 0.8 1)
5→2
⪯

PDP

(0.4 0.6 0.7 0.8 0.8)
4→1
⪯

PDP
(0.5 0.6 0.7 0.7 0.8 = d↑) of length

3.

In conclusion, our algorithm 1 computes in polyno-
mial time a chain of Pigou-Dalton transfers and Pareto
dominance statement to explain any Lorenz dominance
statement with a bounded length of n statements. The
length of the explanation is unfortunately not minimal,
but the true minimal length can be computed for example
with a A* algorithm over a graph exponential in size in the
number of criteria.

As we saw previously, Lorenz dominance statements
form a subset of the preference yielded by a robust FOWA
aggregator, missing the part entailed by the specific PI ob-
tained from the decision maker. Thus the idea we will deve-



lop in Section 4 is to complete Pigou-Dalton transfers and
Pareto dominance with a combination of statements dedu-
ced from the PI to produce a sequence of preferences, or at
least a decomposition of preferences, to explain every ne-
cessary preference statements obtained by a robust FOWA
operator.

4 Additive and transitive decompositions of
necessary preference statements

In this section we introduce and justify a linear program-
ming model producing decompositions for every necessary
preference statement compatible with the robust FOWA
W↘PI ⊆ W

↘ constrained by the PI. We start by introducing
the notion of decomposition, which is weaker than the one
of transitive explanation, we then try to assemble them into
a transitive sequence of preferences. We will first introduce
notations for the problem, then we present the model and
finally we explain every variable and constraint and discuss
it.

The problem we want to solve is finding an explana-
tion for the necessary preference statement c NOWA↘

PI d,
c, d ∈ Xn. We have 3 mechanisms at our disposal : PI sta-
tements provided by the DM, Pigou-Dalton transfers and
Pareto dominance. Trying to find directly a valid transitive
explanation (x0, . . . , xk+1) ∈ Xn↑ using {⪯P,⪯PDP,⪯PI} is
a difficult planning problem, so we begin by building an
additive decomposition of this statement.

Definition 12 (Decomposition). We call decomposition of
a ⪰ b by Y , Y a set of explanation mechanisms, the "proto-
explanation" defined by :

∀i ∈ {1, . . . , n} ai − bi =
∑
y∈Y

γyi

γy is the contribution vector of explanation mechanism y to
the preference a ⪰ b

Remark 1. If we take a transitive explanation
{x0, . . . , xk+1} of a ⪰ b using Y , we have a = x0, b = xk+1

and ∀ j ∈ {0, . . . , k} x j R j x j+1, Rk ∈ Y .
We can rewrite the latter as x j − x j+1 = γR j . By summation
we obtain a − b =

∑k
j=0 x j − x j+1 =

∑k
j=0 γR j . Therefore

an only decomposition based "proto-explanation" is
weaker than a transitive explanation in the sense that any
transitive explanation can be rewritten as a decomposition.

As we have seen, invoking the anonymity of the model,
we rewrite the statement a j ⪰PI b j by a j↑ − b j↑. We can
then build a m× n matrix PI containing these m statements.
Abusing notations, we will use interchangeably the set of
statement PI and the matrix PI.
Previously, when we wanted to compute necessary and
possible preference statements (with the GRIP method),

we used the PI as a constraint to find the necessary rela-
tion, so we used (a j↑ − b j↑) × w ≥ 0⃗ as a constraint of
the model. Here however we will interpret the statement
a j↑ − b j↑ = PI j as a trade-off between ranks of attributes,
for which the DM agreed it increases the quality of a can-
didate. This positive trade-off could be interpreted ceteris
paribus as an argument in support of having x↑ + PI j pre-
ferred to x↑, for any alternative x ∈ Xn, provided x↑ + PI j

also defines an alternative belonging to Xn↑. Moreover, we
augment this argument by allowing it to invoke the positive
homogeneity of the model.

Definition 13 (PI dominance).

b↑
λ j×PI j

⪯
PI

a↑ ⇔ a↑ = b↑ + λ j × PI j

We note that this dominance is a refinement of a NOWA↘
PI j\∅

b

We can then compute the contribution of the PI as
γPI = PIT × λ with λ ∈ R+m.

Small reminder, a Pigou-Dalton transfer occurs between
two variables i, j with i < j and we remove a quantity
ϵ from criterion j to give it to criterion i. We obtain a
contribution γPDP = (ek − e j) × ϵ. As several Pigou-Dalton
transfer can occur in the decomposition, the total contri-
bution of the transfers can be written for each criterion
i as γPDP,i = τ with τ ∈ Rn. To be able to write linear
constraints over this type of transfers, we will divide this
vector τ in two vectors τ+ and τ−, with τ+i ∈ R

− (resp.
τ−i ∈ R

+) the quantity criterion i have to give (resp. receive).

Pareto-dominance between a and b can be simply
written as a vector µ ∈ R+n , so the contribution of Pareto-
dominance is γP = µ.

We now have the contribution of our 3 explanation me-
chanisms and we can sum them up for every criteria i ∈
{1, . . . , n} and obtain :

c↑i − d↑i = τ
+
i + τ

−
i + µi +

m∑
j=1

λ j × (a j↑
i − b j↑

i ) (1)

The set of equation we build from (1) and the domains
form a linear program, but unfortunately we have to intro-
duce some binary variables to constrain the Pigou-Dalton
variables τ+ and τ− left unconstrained. We will have to go
back to the definition of Pigou-Dalton transfers to build the
constraints.

First a Pigou-Dalton transfer is balanced, we only redis-
tribute ϵ between criteria. This can be written as a linear
constraint : ∥∥∥τ+∥∥∥1 − ∥∥∥τ−∥∥∥1 = 0 (2)

Then, we know that the transfers take from a criterion j
a positive quantity to give to a criterion i such that i < j.



We can then write ∀k ∈ {1, . . . , n}
∑n

i=k τ
+
i + τ

−
i <= 0 which

can be synthesized with the matrix constraint :

U × (τ− + τ+) ≤ 0⃗ (3)

with U the upper triangular matrix of size n × n with ones
in the upper triangle.

Finally we need to introduce some auxiliary binary va-
riables t+ and t− used to avoid useless Pigou-Dalton trans-
fers. Their goal is to ensure that a criterion k is used only
as a receiver or a giver in the transfers (otherwise we will
perform useless trades using k as an unnecessary interme-
diate). We obtain the mixed integer linear equations using
M a big constant we will discuss after :

M × t+ + τ+ ≥ 0⃗ (4)

M × t− − τ− ≥ 0⃗ (5)

t+ + t− ≤ 1⃗ (6)

Our big M has to be scaled as an upper bound of
the maximum width that can be used in a Pigou-Dalton
transfer (as receiver or giver). Its computation is fairly
easy, in the normalised and general case. In the normalized
case we can use M = 1 as the maximum value we can
add or retrieve to a criteria is 1. In the general case, we
can only redistribute values through criteria, so if we take
M = ∥c∥1 + ∥d∥1, we are sure to cover every case.

Example 4. We take a small illustrative example. We sup-
pose that the DM has expressed her preferences over two
candidates a1 and b1, resulting into the statement PI =
(−0.05 0.1 − 0.05 0).
The problem is then of ranking two candidates a↑ =
(0.5 0.5 0.7 0.9) and b↑ = (0.3 0.7 0.8 0.8). As L(a) =
(0.5 1 1.7 2.6) and L(b) = (0.3 1 1.8 2.6) there is no Lorenz
dominance between them but the GRIP method finds that
a NOWA↘

PI b.
For the statement a↑ − b↑ = (−0.05 0.1 0 − 0.05) a decom-
position can be :

— PI = 1 × (−0.05 0.1 − 0.05 0)
— τ+ = (0 0 0 − 0.05)
— τ− = (0 0 0.05 0)
— µ = 0⃗

Theorem 1 (Characterization of the necessary preference
with decomposition).

aNOWA↘
PI b⇔ ∃ µ, τ+, τ−, λ s.t. (a↑−b↑) = PIT×λ+µ+τ++τ−

Démonstration. Proving that if we have such a decompo-
sition for (a↑ − b↑) then we have a NOWA↘

PI b is obvious.
Proving the converse will require the use of Farkas’ lemma.
First, we suppose that the polytope obtained inW↘ by the

intersection of PI statements, i.e. the intersection of the hy-
perplanes (a j↑ − b j↑) × w = 0, is consistent, meaning that
the robust FOWA W↘PI is non-empty.

Then, we have aNOWA↘
PI b, meaning that it is not possible

to find a set of weights w ∈ W↘PI such that b ≻w a, i.e.
(a↑ − b↑) × w < 0.
Therefore by using Farkas’ lemma, we can write (a↑−b↑)×
w as a linear combination of our constraints, i.e. PI state-
ments, Pigou-Dalton transfers and Pareto dominance. □

To complete our linear program we have to define our
objective. We want to provide an explanation, as easy and
as short as possible. Our goal is then first to minimize the
contribution of our explanation mechanisms in the decom-
position. But our explanation mechanisms are not on the
same scale of complexity for the user. Pareto dominance
is natural and easy to understand. Pigou-Dalton transfers
are a little harder to interpret but as it is the reason we use
fairness-oriented OWA and are binary exchanges, it is still
easy to understand, with a small cognitive cost. However,
using a positive linear combination of PI statements is
hard to understand, as it is performed with the anonymized
variables and not the base variables, especially if the
computed coefficients are complicated and the statements
include multiple variables, so it should be limited as much
as possible.

We represent this complex situation with multiple objec-
tives :

— minimize the number of PI statements involved
— reduce the part of Pigou-Dalton in the decomposi-

tion, i.e. maximize Pareto dominance
— find the nicest coefficients values for the PI state-

ments
The idea of finding the nicest coefficients is that when

we use the PI dominance
λ j×PI j

⪯
PI

, we want the λ j displayed

to be at least rational 3, and preferably integer. To do so
we will introduce in equation 1 an integer coefficient α,
corresponding to the denominator of our λ j which becomes
also an integer. We obtain :

α × (c↑i − d↑i ) = PIT × λ + µ + τ+ + τ− (7)

with λ ∈ Nm and α ∈ N∗.

Subsequently, we used the (single-)objective function
F = ∥λ∥1 + α +

1
M
∥t−∥1 to minimize, but other approaches

can be considered, such as minimising a norm L0 or
canceling balancing effects between λ and α.

To summarize our mixed integer program is represented
in figure 1.

3. This is always possible, because the constraints are expressed using
integers.



F.ob j : Min F

subject to

α × (c↑i − d↑i ) = PIT × λ + µ + τ+ + τ−

M × t+ + τ+ ≥ 0⃗

M × t− − τ− ≥ 0⃗

t+ + t− ≤ 1⃗∥∥∥τ+∥∥∥1 − ∥∥∥τ−∥∥∥1 = 0

U × (τ− + τ+) ≤ 0⃗
λ ∈ Nm µ ∈ Rn

+, τ
+ ∈ Rn

−, τ
− ∈ Rn

+

α ∈ N∗, t+ ∈ {0, 1}n, t− ∈ {0, 1}n.

FIGURE 1 – A linear program allowing to find an additive decom-
position of a comparative statement.

5 An illustrative example

In this section we will run an example, close to a
real-case study, to use our algorithm and linear program
to explain inferred preferences. The decision maker is
the person in charge of the recruitment of students in a
large french University. Her University has a large variety
of formations but the policy is to form students toward
general knowledge with specialisation in the last year.
Therefore her preferences are oriented toward students
with balanced overall good results instead of students
specialised in some field only.

She is asked by the University her preferences over a
set of 7 students, represented by their grades (on a scale
from 0 to 20) in 4 important subjects : {”Mathematics”,
”Philosophy”, ”Biology”, "English" }. This small subset
of students corresponds to students from "classes prépara-
toires" and is fundamentally smaller that the set of students
she will receive later in the year from students which just
obtained their baccalaureate exam. Therefore she wants to
automatize the process of building her preferences, even if
it returns incomplete rankings, as long as she can have non
technical explanations of the results, both for her personal
use and for answering questions coming e.g. from rejected
students or from a supervising regulatory institution. For
all these reasons we presented her (without explicitly tell
her the name) our robust FOWA operator.

To avoid any biases based on the names of candidates,
we randomized them and assigned them a capital letter in
{a, b, c, d, e, f , g}. The results of the candidates (reordered)
to rank are :

Student #1 #2 #3 #4
a↑ 5 13 14 18
b↑ 5 15 15 16
c↑ 6 13 16 16
d↑ 7 10 17 18
e↑ 8 9 16 20
f ↑ 6 11 17 17
g↑ 7 11 16 17

To start our model with preferences, we asked the
decision maker to rank two pairs of candidates and she
replied that b ⪰PI c and d ⪰PI e.

We then compute the robust FOWA operator W↘PI with a
linear program inspired from the GRIP method [4] and ob-
tain the necessary preference order which is : b NOWA↘

PI c,
b NOWA↘

PI g, b NOWA↘
PI d, g NOWA↘

PI a, d NOWA↘
PI e and

d NOWA↘
PI f , and all preferences deduced by transitivity.

We can also compute the Lorenz dominance for every pair
of candidates, obtaining preference statements b ⪰L a,
g ⪰L a, c ⪰L a, c ⪰L f , d ⪰L f .

By comparing the two preference sets, we can see

that adding the preferential information c
1×PI1
⪯
PI

b and

e
1×PI2
⪯
PI

d creates new preferences among candidates such

as c NOWA↘
PI g and c NOWA↘

PI d and transitive ones such
as b NOWA↘

PI g, b NOWA↘
PI d, b NOWA↘

PI e and b NOWA↘
PI f .

To sum up, our robust FOWA produces 14 preference
relations, including 2 PI from the user and 12 statements
to explain, 5 with Lorenz-dominance explanations and 7
with our decomposition program.

We will not detail all of these 12 statements, only one
based on Lorenz-dominance such as g ⪰L a and two from
our linear program such as b NOWA↘

PI e and c NOWA↘
PI g. To

present thing shortly we will refer as PI1 = (−1 2 −1 0) and
PI2 = (−1 1 1 − 1) the vectors corresponding respectively
to the PI statements b ⪰PI c and d ⪰PI e.

With algorithm 1, we obtain as explanation for g ⪰L a :

a↑ = (5 13 14 18)
2→1
⪯

PDP
(7 11 14 18)

4→3
⪯

PDP
(7 11 16 16) = g↑.

With linear program (1) we find two decompositions for
b NOWA↘

PI e and c NOWA↘
PI g :

— b↑ − e↑ = (−3 6 − 1 − 4) = PI1 + 2 × PI2 + ν
+ + ν−

with ν− = (0 2 0 0) and ν+ = (0 0 − 2 0)
— c↑ − g↑ = (−2 4 − 1 − 1) = PI1 + ν

+ + ν−

with ν− = (0 1 0 0) and ν+ = (0 0 0 − 1)

We were also able to find through a brute force algorithm
(testing all permutation) a sequence of preferences using
the decomposition to produce a transitive explanation
sequence, but it is not a general result.



For b NOWA↘
PI e we found : e↑ = (8 9 16 20)

3→2
⪯

PDP

(8 11 14 20)
2×PI2
⪯
PI

(6 13 16 16)
1×PI1
⪯
PI

(5 15 15 16) = b↑

For c NOWA↘
PI g we found : g↑ = (7 11 16 17)

1×PI1
⪯
PI

(6 13 15 17)
4→3
⪯

PDP
(6 13 16 16) = c↑

We can note that if we tried to apply the decomposition
in another order, it would build intermediate candidates
which are not ordered.

6 Experimental results

In this section we will present some results obtai-
ned from experiments. We have generated randomly 1000
samples of 50 candidates (non Pareto-dominated) over 8
criteria with 5 PI statements. To compute these PI sta-
tements we draw from a Dirichlet distribution a set of
ground-truth FOOWA weigth w↘, and drew randomly 5
pairs (ai, bi) of non Lorenz-dominated candidates and ad-
ded to the robust FOOWA the preference induced by w↘.
For the rest of the experiment the ground-truth will be hid-
den. From these sample we studied two aspects of our me-
thod. In the first place, we computed for Lorenz-dominated
pairs of candidates the results of our algorithm 1 against A*
algorithm and we compared the obtained length to the true
minimal length and the computation times. In the second
place, we tried through several means to compute a transi-
tive explanation from the decompositions obtained by our
MILP formulation detailed in figure 1.

6.1 Algorithm 1 against A* algorithm

Our goal is to compare the explanation length and the
computation time our polynomial heuristic algorithm 1
with a method guaranteeing to find the “true” minimum
length. As introduced in Section 3 we do so by the
means of a A* search. Indeed, the idea underlying the A*
algorithm is to find the shortest path between the winning
candidate to the loosing candidate using Pigou-Dalton
transfers and Pareto-dominance. The heuristic we use to
estimate the distance to the loosing candidate is the number
of positions which need to receive from a Pigou-Dalton
transfer, plus 1 if there are more variables in a position to
give than to receive. This estimate is indeed a lower bound
of the number of remaining trades.

We represent in table 1 the difference between the
length found by the A* algorithm and our algorithm 1.
Each row i of the table corresponds to a true length of
i Pigou-Dalton transfers and Pareto-dominance. We can
see that overall the results obtained by our algorithm
1 do not differ from the A* algorithm, except in some

Length #Values % identical values Max difference
1 82 334 100 % -
2 160 431 96.97 % 4
3 162 967 89.83 % 5
4 135 623 80.61 % 4
5 91 777 71.46 % 3
6 45 148 66.09 % 2
7 13 120 68.53 % 1
8 1539 100 % -

TABLE 1 – Length difference between algorithm 1 and A* algo-
rithm.

cases where up to 34% (in line 6) of the results are worst.
But still, our algorithm is of interest, especially when
comparing computation times from table 2 and keeping in
mind that during the process of finding a transitive expla-
nation we can call for Pigou-Dalton transfers several times.

Length #Values Whisker Q1 Median Q3
1 82 334 1.37% 5.26% 6.54% 7.85%
2 160 431 11.74% 12.53% 20.10% 23.5%
3 162 967 -3.92% 20.6% 28.5% 33.61%
4 135 623 39.94% 26.54% 33.79% 39.21%
5 91 777 1.09% 38.00% 46.57% 62.05%
6 45 148 53.12% 79.18% 86.16% 91.23%
7 13 120 7.55% 93.47% 96.59% 97.96%
8 1 539 58.20% 98.10% 99.26% 99.6%

TABLE 2 – Percentage of reduction of compute time between al-
gorithm 1 and A* algorithm.

We have represented in table 2 the percentage of reduc-
tion in the computation time by using algorithm 1 instead
of the A* algorithm. We can see that only very little data (in
line 3) are corresponding to the A* algorithm performing
better, and with high number of criteria we see a strict do-
minance of algorithm 1. Therefore, for the rest of the study
combining the resolution of finding a concise explanation
for Lorenz-dominance and PI dominance, we will be using
algorithm 1 for its benefits in computational cost.

6.2 Feasibility of transitive explanation for decompo-
sition computed by the MILP formulation

Our goal is to study the availability of an explanation
from the decomposition found by our MILP formulation
in figure 1 for a necessary preference statement. We recall
that a valid explanation is a sequence of progressive trans-
fers from the winner to the looser, using our 3 explanation
mechanisms {⪯P,⪯PDP,⪯PI}, while verifying that each
intermediate candidate used in the explanation is valid,
i.e. with values of criteria ordered and belonging to the
domain.



To compute such a sequence from a set of values
( 1
α
×λ, µ, ν+, ν−), we search for a permutation verifying our

validity constraint. We allow to permute each individual
PI statement with the Pareto dominance and the total
Pigou-Dalton transfers. This algorithm does not try to
divide any of this statements. We obtain some encouraging
results on the length of explanation, displayed in table 3,
unfortunately too many preferences fail to have a valid
permutation : we found 192 436 cases where we cannot
build the transitive explanation, meaning that 73% of our
explanations cannot be interpreted into valid sequences.

PI involved #Explanations Q1 Median Q3
1 64 450 4 6 8
2 5 941 7 8 9
3 491 8 9 10
4 16 9.75 11 12

Not found 192 436 - - -

TABLE 3 – Distribution of explanation length by quantity of PI
involved.

A first hypothesis to explain these results outside our
valid domain could be that, because the PI itself is not
linear and does not guarantee to stay inside the domain
(where Pigou-Dalton transfers and Pareto dominance do),
maybe some statements are required to be performed but
cannot be taken separately. They should be performed
in sequence but without looking into the intermediary
result. Therefore we build a unique "whole PI" statement
to recompute permutation with. New sequences are found
but their number, 914, is not sufficient to conclude for the
significance of the hypothesis.

Another cause for the unfeasibility of scheduling the
decomposition into a valid transitive explanation could
be the proximity of candidates to the boundaries of the
domain Xn, making the use of the PI statements hard
without fragmentation. We therefore performed the expe-
rience again with candidates sampled over Xn = [0.1; 0.9]n

instead of [0; 1]n, leaving this space for the explanations.
We obtain the results in table 4.

PI involved #Explanations Q1 Median Q3
1 84 347 4 6 8
2 8 315 7 8 9
3 596 8 9 10
4 22 10 11 11

Not found 161 797 - - -

TABLE 4 – Distribution of explanation length by quantity of PI
involved for candidates sampled over [0.1; 0.9]n.

We obtain better results, even adding 1 229 more with
the "one PI statement" augmentation, but we still have a
humongous quantity (161 797 so around 63%) of non va-
lid sequences. Finally, it could be worthwhile to consider
a finer-grained scheduling of PI statements, where a state-
ment λk×PIk could be split into δkλk×PIk and (1−δk)×λk×

PIk. We could use these statements in different locations in
the explanation to build a sequence which could seem like
c↑ ⪰

PI
c↑ − δ × λ × PI ⪰L d↑ + (1⃗ − δ) × λ × PI ⪰

PI
d↑.

7 Conclusion and future works

In this paper we looked into the problem of producing
explanations for the robust fairness-oriented OWA. The
explanations are designed to be the least technical possible
to be shared with external users which are possibly not in-
volved in the conception of the system and have very little
knowledge about it. To understand our explanations, it is
only required to know why the model is used, preferring
candidates with a balanced profile and therefore agrees
with the Pigou-Dalton principle of transfers on the ordered
profile of the candidate.

We presented an algorithm which builds a transitive
chain for Lorenz-dominance as an explication. The exis-
tence of the chain is known from a long time [15] as a
result in welfare economy and also the link with the OWA
operator [6]. This algorithm works in a polynomial time
in the number n of criteria, with a length of maximum
n transfers. It can be used to explain Lorenz dominance
in general and not only in the fairness-oriented OWA
setting, where it corresponds to the results obtained by the
necessary preference relation NOWA↘

∅
.

We then presented a mixed integer linear program to
compute an additive decomposition of a preference in
NOWA↘

PI , composed by a positive linear combination of
the preference statements given by the DM, Pigou-Dalton
transfers and Pareto-Dominance. This decomposition
however is not a transitive explanation, and the existence
of the latter for a given decomposition is still unknown
yet, even though we can always build a decomposition
(Theorem 1). We plan to adopt planning tools to further
investigate the problem of computing transitive explana-
tions, and the question whether guiding this search by the
pre-computation of an additive decomposition is efficient
or not.
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