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DisCut and DiscReT: MELODI at DISRPT 2023

This paper presents the results obtained by the MELODI team for the three tasks proposed within the DISRPT 2023 shared task on discourse: segmentation, connective identification, and relation classification. The competition involves corpora in various languages in several underlying frameworks, and proposes two tracks depending on the presence or not of annotations of sentence boundaries and syntactic information. For these three tasks, we rely on a transformer-based architecture, and investigate several optimizations of the models, including hyper-parameter search and layer freezing. For discourse relations, we also explore the use of adapters-a lightweight solution for model fine-tuning-and introduce relation mappings to partially deal with the label set explosion we are facing within the setting of the shared task in a multi-corpus perspective. In the end, we propose one single architecture for segmentation and connectives, based on XLM-RoBERTa large, freezed at lower layers, with new stateof-the-art results for segmentation, and we propose 3 different models for relations, since the task makes it harder to generalize across all corpora.

Introduction

Discourse analysis consists in building a discourse structure representing the organization of a document -a monologue or dialogue -, as the discourse tree in Figure 1. First, the document is split into minimal sub-units, called Elementary Discourse Units (EDU): the text in the example, consisting of two sentences, is divided into 5 EDUs (from 2 to 6). The EDUs are then attached together, forming larger discourse units -such as the pair (EDU2, EDU3) -that are recursively linked to form a tree or a graph, depending on the underlying framework. The links between the discourse units are semantic-pragmatic relations, such as CONCES-SION, EVIDENCE, SEQUENCE etc. These relations can be triggered by an explicit lexical item, a connective such as BECAUSE, WHILE, or WHEN for CONDITION in the example. Relations can also be "implicit", when no such marker is present, such as the CONCESSION between EDU2 and EDU3.

There are mainly three frameworks for discourse: Rhetorical Structure Theory (RST) [START_REF] Mann | Rhetorical Structure Theory: Toward a functional theory of text organization[END_REF]) -from which the example in Figure 1 is derived -, Segmented Discourse Theory (SDRT) [START_REF] Asher | Logics of Conversation[END_REF] -where structures are graphs -, and the Penn Discourse Treebank (PDTB) [START_REF] Prasad | The penn discourse treebank as a resource for natural language generation[END_REF], where discourse relations are sparsely annotated without constraints on the overall structure. Alternatively, there have been proposals to transform discourse structure into simpler dependency structures (dep), e.g. in RST [START_REF] Hirao | Singledocument summarization as a tree knapsack problem[END_REF][START_REF] Hayashi | Empirical comparison of dependency conversions for RST discourse trees[END_REF] or SDRT [START_REF] Muller | Constrained decoding for textlevel discourse parsing[END_REF]. Recently, this view has been taken to annotate directly new data in the SciDTB corpus [START_REF] Yang | SciDTB: Discourse dependency TreeBank for scientific abstracts[END_REF], proposing a set of relations and segmentation rules inspired by RST but producing trees of dependency relations between EDUs.

Several corpora have been annotated under each framework for different languages: however, even within the same framework, annotation guidelines and relation sets might be different for each corpus. The DISRPT shared task intends to provide a unified format for researchers to evaluate their systems against varied languages, domains, and frameworks. Three tasks were proposed: (1) discourse segmentation into EDUs, (2) identification of discourse connectives, and (3) classification of discourse relations based on attached units. The first two tasks are encoded with a BIO scheme over tokens, the latter corresponds to a multi-class classification between pairs of textual segments. The benchmark provided within DISRPT allows us to verify the robustness of our approach through 13 languages, 4 frameworks, and varied domains, including multi-party dialogues and speech transcriptions.

In this paper, we address the three tasks through two systems: DisCut1 for tasks (1) and ( 2) and DiscReT2 for task (3). These systems both rely on Transformer architectures and we thoroughly investigate different variations of the pre-trained model and the hyper-parameters values, while also varying the level of frozen layers. This latter parameter allows for lighter models, and also improvements in most cases. For task (3), we also investigate adapters [START_REF] Houlsby | Parameter-efficient transfer learning for NLP[END_REF] that provide a lightweight solution for transferring to new tasks. For all tasks, we favor multilingual pretrained models, in order to better generalize and experiment with corpus merging for relations, with the aim of providing a generic model that can be used for any corpus.

In the end, we ranked first on discourse segmentation on the treebanked track (+0.87 on the average, compared to the other system) but second for connectives (-0.47), and we are the only system with results on the plain track, with higher performance than the winner of DISRPT 2021. For relations, our system is the only one trying to mix all corpora, thus even if the performance are lower than other proposed approaches, it is possibly better at generalization.

Related work

Discourse parsing is the task of building the full trees/graphs. Most work focuses on attachment or discourse relation identification, and on English. Recently, a multilingual RST discourse parser has been proposed [START_REF] Liu | DMRST: A joint framework for document-level multilingual RST discourse segmentation and parsing[END_REF], building on previous work (Braud et al., 2017a;[START_REF] Liu | Multilingual neural RST discourse parsing[END_REF] but proposing to jointly learn attachment and EDU segmentation and adding a cross-lingual strategy, rather than English only. It shows that multilingualism is a key component to improve performance, since data scarcity affects even English, and that good segmentation is crucial, with a loss of up to 8% with predicted EDUs for full parsing.

Discourse segmentation was considered a solved task, with scores as high as 94% [START_REF] Ngo | A reranking model for discourse segmentation using subtree features[END_REF], but it was later shown that performance drops for languages other than English, -linked to smaller corpora and lesser resources -, and when gold sentences are not given, due to sentence segmenters far from being perfect (Braud et al., 2017b). The first edition of the DISRPT shared task [START_REF] Zeldes | The DIS-RPT 2019 shared task on elementary discourse unit segmentation and connective detection[END_REF] also revealed the same trend with performance above 95% for some corpora, but also issues with others such as the Spanish SCDT (82.5% at best) or the Russian RRT (86.2%). The bestperforming system in 2019 [START_REF] Muller | ToNy: Contextual embeddings for accurate multilingual discourse segmentation of full documents[END_REF] was using a single model based on multilingual BERT for every corpus [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF], while in the second edition [START_REF] Zeldes | The DISRPT 2021 shared task on elementary discourse unit segmentation, connective detection, and relation classification[END_REF], the best system [START_REF] Gessler | Dis-CoDisCo at the DISRPT2021 shared task: A system for discourse segmentation, classification, and connective detection[END_REF] relied on varied language models, either mono-or multilingual, associated to hand-crafted features: best overall performance was around 91.5% on average, with a loss of about 2% when the sentences are not given.

Connective identification was first seen as a word disambiguation task, where the goal was, starting with a list of candidates, to decide whether each occurrence is used in a discourse reading or not [START_REF] Pitler | Easily identifiable discourse relations[END_REF]. It has been then recast as a sequence labeling one, where we need to decide whether a token starts, is within, or is outside a discourse connective [START_REF] Stepanov | UniTN end-to-end discourse parser for CoNLL 2016 shared task[END_REF]. As for segmentation, performance drops when existing systems are trained on new domains or languages [START_REF] Xue | CoNLL 2016 shared task on multilingual shallow discourse parsing[END_REF][START_REF] Scholman | Comparison of methods for explicit discourse connective identification across various domains[END_REF], but fewer studies investigated this task since implicit relations are more an issue for discourse parsing. The first two editions of DISRPT demonstrated rather high performance: between 92 -94 for the English and Turkish corpora, and 87 for the Chinese one, with only a small drop when sentences are not given.

Discourse relations are the main object of study within the domain, with a specific focus on implicit ones since the connective is considered a very strong clue for guessing the relation [START_REF] Pitler | Easily identifiable discourse relations[END_REF]. However, again, performance drops, even for explicit relations when data are scarce (Jo-hannsen and Søgaard, 2013). Moreover, a real-life scenario has to deal with both implicit and explicit relations, it is thus interesting to see results combining all types of relations, and for several languages. Only two systems were presented in 2021, and the winning model was based on Transformers, with a specific pretrained model depending on the target language and additional hand-crafted features: best overall performance is still low, with 61.8%.

Data

The 2023 DISRPT shared task, including suprise datasets, provides 26 corpora for 13 languages and 4 theoretical frameworks: 9 correspond to the PDTB framework (thus connective and relations), the others are either RST (12), dependency (3) or SDRT (2) (thus segmentation and relations). Among these, 10 new corpora are introduced in the 2023 edition: 6 are released as surprise datasets, with one new language (Thaï), and out-of-domain (OOD) data for English (COVID-DTB and TED), Portuguese (CRPC and TED) and Turkish (TED).

All statistics are given in Table 1. The largest corpora are the English PDTB (1, 992 training documents), dep SciDTB (492 documents), and RST DT (309 training documents), and, for SDRT, the French Annodis (64 documents). In total, 8 corpora have less than 100 documents and are thus considered very small. The OOD corpora have no training set: the English COVDTB is rather large, with 150 in the dev set, but the other ones, based on TED talks for English, Portuguese, and Turkish are very small, their dev sets contain only 2 documents, around 100 connectives, and 200 relations to predict. For relations, label sets contain between 9 and 32 different relations, and we note that almost no corpus has the same set as another one.

We have 6 corpora for English [START_REF] Prasad | Penn Discourse Treebank Version 3[END_REF][START_REF] Zeldes | The GUM corpus: Creating multilayer resources in the classroom[END_REF][START_REF] Carlson | Building a discourse-tagged corpus in the framework of Rhetorical Structure Theory[END_REF][START_REF] Asher | Discourse structure and dialogue acts in multiparty dialogue: the STAC corpus[END_REF][START_REF] Yang | SciDTB: Discourse dependency TreeBank for scientific abstracts[END_REF][START_REF] Nishida | Out-ofdomain discourse dependency parsing via bootstrapping: An empirical analysis on its effectiveness and limitation[END_REF], 4 for Chinese [START_REF] Zhou | Chinese discourse treebank 0.5 ldc2014t21[END_REF][START_REF] Cao | The RST Spanish-Chinese treebank[END_REF][START_REF] Cheng | Zero-shot Chinese discourse dependency parsing via cross-lingual mapping[END_REF][START_REF] Yi | Unifying discourse resources with dependency framework[END_REF], 2 for Spanish [START_REF] Iria Da Cunha | On the development of the RST Spanish Treebank[END_REF][START_REF] Cao | The RST Spanish-Chinese treebank[END_REF], 2 for Portuguese [START_REF] Christina | CST-News -a discourse-annotated corpus for single and multi-document summarization of news texts in Brazilian Portuguese[END_REF][START_REF] Mendes | Crpc-db a discourse bank for portuguese[END_REF], 1 for German [START_REF] Stede | Potsdam commentary corpus 2.0: Annotation for discourse research[END_REF], 1 for Basque [START_REF] Iruskieta | The RST Basque TreeBank: An online search interface to check rhetorical relations[END_REF], 1 for Farsi [START_REF] Shahmohammadi | Persian Rhetorical Structure Theory[END_REF], 1 for French [START_REF] Afantenos | Developing a corpus of strategic conversation in the settlers of catan[END_REF], 1 for Dutch [START_REF] Redeker | Multilayer discourse annotation of a Dutch text corpus[END_REF], 1 for Russian [START_REF] Toldova | Rhetorical relations markers in Russian RST treebank[END_REF], 1 for Turkish [START_REF] Zeyrek | A discourse resource for Turkish: Annotating discourse connectives in the METU corpus[END_REF][START_REF] Zeyrek | TDB 1.1: Extensions on Turkish discourse bank[END_REF], 1 for Italian [START_REF] Tonelli | Annotation of discourse relations for conversational spoken dialogs[END_REF][START_REF] Riccardi | Discourse connective detection in spoken conversations[END_REF] and 1 for Thai. In addition, OOD datasets come from the multilingual TED Discourse Bank with data for English, Portuguese and Turkish [START_REF] Zeyrek | Multilingual extension of PDTB-style annotation: The case of TED multilingual discourse bank[END_REF][START_REF] Zeyrek | TED Multilingual Discourse Bank (TED-MDB): a parallel corpus annotated in the PDTB style[END_REF].

4 DisCut: segmentation and connectives 4.1 DisCut: Model architecture Identifying EDU boundaries and connectives (Tasks 1 and 2) corresponds to different corpora: PDTB-based datasets have connectives annotated, but not segmentation, while the others have no connectives. However, they can be both modeled as sequence labeling tasks (only "Beginning" labels for segmentation, "Beginning" and also "Inside" for connectives, to take into account multi-words markers). Our systems for these tasks are thus based on the same architecture with transformers pretrained models, fine-tuned on the task at hand.

The model is based on a pretrained language model (LM), with an additional linear layer for token classification. The LM is multilingual, allowing it to be used for all corpora. Contrary to systems proposed in 2019 and 2021 based on a similar architecture, we removed the CNN at the character level, and the LSTM outer layer, as additional experiments demonstrated no improvements.

The LM is based on a Transformer architecture with several layers within the encoder. It has been shown that, broadly speaking, lower layers mostly encode morpho-syntactic information, while upper contain more semantic ones [START_REF] Rogers | A primer in BERTology: What we know about how BERT works[END_REF][START_REF] Kovaleva | Revealing the dark secrets of BERT[END_REF][START_REF] Bender | Climbing towards NLU: On meaning, form, and understanding in the age of data[END_REF]. We thus experiment with freezing some lower layers while continuing the fine-tuning on higher levels, in order to have lighter models. "Freezing a layer" is the process of disallowing the update of weights for the target layer during the finetuning process, meaning that the layer preserves its learned information from pretraining.

Models are fed with sentences, the documents being too long for the LMs. We detail below our setting when sentences are not given ('Plain' track).

Settings

We chose to focus on multilingual LMs and experimented with mBERT [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF] and XLM-RoBERTa [START_REF] Conneau | Unsupervised cross-lingual representation learning at scale[END_REF]. We present results using XLM-RoBERTa, as preliminary experiments demonstrated improvements over mBERT. We experimented with both base and large versions, and tested the freezing of lower layers, aiming at possibly improved performance, with a lighter training.

With XLM-RoBERTa base, we tested no freezing, or freezing of either the first 3 or 8 layers (out of 12); for the large version, we increased to 6 and 12 layers (out of 24). We tested several values for the learning rate ∈ [10 -5 , 2•10 -5 , 10 -4 ] and chose 10 -5 . We tested different batch sizes ∈ [1, 4, 8, 16] -only the value 1 fitted our GPU for the large version -, with a gradient accumulation of 4 and a maximum of 30 epochs with patience of 10 over the performance on the development set. The input size is limited to 180. Our implementation relies on and extends the Jiant library 3 [START_REF] Phang | jiant 2.0: A software toolkit for research on general-purpose text understanding models[END_REF].

After evaluation on the dev set, we found that most models perform better with RoBERTa-large and with freezing the first 6 layers. Small improvements could be observed for some corpora with either the base version or other freezing values, but the increase was limited to less than 1.2%, and in 3 https://jiant.info/ general less than .5%, and we thus decided to favor one single model in order to make it easier to use, and better at generalizing to new data.

Dealing with raw data: The DISRPT shared task proposes two tracks for tasks 1 and 2: you can either use data segmented into sentences and syntactically parsed (Treebanked) -either gold or obtained with Stanza -, or raw tokenized documents (Plain). As the LMs have limitations on the size of their input, we can not give directly the documents as input: we thus decided to split the raw documents into sentences.

However, having observed issues with Stanza segmentation, we tried alternatives: Ersatz [START_REF] Wicks | A unified approach to sentence segmentation of punctuated text in many languages[END_REF][START_REF] Wicks | A unified approach to sentence segmentation of punctuated text in many languages[END_REF]Trankit (Nguyen et al., 2021), and chose the latter based on better performance. Note that, with the evaluation being based on tokens, we had to realign tokens when the tool was modifying the tokenization. We were unable to obtain a correct sentence segmentation for the Italian ita.pdtb.luna, composed of speech transcripts, and thus cut every 120 tokens for this corpus.

Dealing with surprise and OOD data: Dealing with the surprise Thai (tha.pdtb.tdtb) and English (eng.dep.covdtb) datasets were straightforward: since our model configuration is the same across all corpora, we retrain new models using the training data made available. This year, the organizers also include out-of-domain (OOD) data as surprise datasets, for which data are only available for evaluation (dev and test sets only). The corpora have, however, corresponding datasets within the same framework and language: we use our model trained on these available data to make predictions on the OOD ones (e.g. training on eng.pdtb.pdtb to test on eng.pdtb.tedm).

Experiments and results

We present our results in Table 2 for segmentation and connective identification. Current comparison with 2021, considering only the corpora available in 2021, demonstrate general improvements for all tasks except connective for the Plain track were results are on par: for segmentation, the average on test sets for Treebanked is 91.77% (vs 91.48 for DiscoDisco 2021) and for Plain 91.22% (vs 89.79); for connective: 91.81% (vs 91.22) for Treebanked and 91.05% (vs 91.49) for Plain. Note that our approach uses a similar architecture with much simpler inputs (only tokens), and different optimizations. When comparing the reproduced results with the ones we produced, we observed a large variance between the scores, especially for small corpora, with for example a difference of about 2 to 5 points for the TEDm corpora, and about 2 to 3 points also for other small datasets such as the spa.rst.sctb, the zho.rst.sctb, demonstrating the importance for future work to make multiple runs and indicate variance. Interested readers can find our own results on the test sets in Appendix A.

As shown in Table 2, compared to 2021, we observe a large drop in mean performance of about 10% for connective detection, for which many new corpora were added, including several OOD datasets making the task more challenging.

For segmentation, the results for the two settings, Treebanked and Plain are in general very similar, except for the Chinese zho.rst.sctb and English eng.sdrt.stac for which the Treebanked setting is clearly better (+3 to 5%). On the other hand, we have an important improvement for the French corpus fra.sdrt.annodis (almost +3%) using our new segmented files (Plain): these results are in line with the bad performance observed for Stanza. For the Russian corpus, we found that the segmentation of some parts of the documents was strange: bibliography entries were merged into very large EDUs that were split by all sentence segmenters, thus modifying the tool did not bring any improvement. For connective detection, results are rather high for large corpora already present in the previous campaigns, even if the Chinese corpus is still challenging. As expected, the Italian Luna is associated with low performance, because it is composed of speech transcriptions of dialogues. Note that the performance for the new Thai corpus is on par, but they drop on the out-of-domain TEDm corpora for which we used the model trained on a corpus with the same language and framework, but that corresponds to a domain shift. Interestingly, the use of Trankit for sentence segmentation (Plain track) leads to large improvements for Luna (almost +6%) and also allows a small increase for the Chinese zho.pdtb.cdtb (+1.4), with, on the other hand, a loss of about 2% for the English PDTB, and an impressive drop of about 16% for Thai for which the model of sentence segmentation is probably faulty. Overall, the Plain setting would lead to average results on par with the treebanked ones for connective identification, without the Thai dataset (80.54 on average for Plain against 80.59 for Treebanked, without Thai). These results indicate that the good performance of the sentence segmenter is a key component of a well performing discourse segmenter or connective identifier.

5 DiscReT: Discourse Relation Tagging

Introduction

For the third proposed task, Discourse Relation Classification across Formalisms, we submit a multilingual approach to discourse relation tagging that spans across frameworks, powered by transformerbased architectures. Our goal is to test the capacities and weaknesses of these models, given the large variety of languages and relation labels, without sacrificing the multilingual setting or the unique information captured in coarse-/fine-grained labels. Our results vary vastly between languages and frameworks but present interesting pointers for future work and model improvements.

Dataset

In order to stay faithful to the multilingual nature of the task, we decided to use all the datasets in parallel for training. Extensive earlier experiments with translations of the datasets to English, training with groups of corpora per language family, or training per annotation framework were not as successful or did not significantly outperform the accumulative approach.

We aimed to reduce label space and maximize label coverage, i.e. not having a label that only exists in one corpus if it can be rewritten as a more general one. First, we lower-cased all labels in all datasets (but preserved our modifications, in order to reverse them for the final results in accordance with the Shared Task data). Second, we manually merged labels that were either spelling variants or simplified versions of existing labels. For example, the label "qap" means "question-answer pair", which already exists as the label "question_answer_pair". Mean- while, the label "conjunction" is a simplified version of the label "expansion.conjunction" found in RST corpora in both forms, therefore by changing the label to its more verbose form, we are preserving its information and making the labels more uniform. However, we decided against the large-scale conversion of labels based on their meaning, e.g. merging the "conjunction" and "joint" labels.These conversions reduced the number of unique labels from 163 to 135; while the number was not significantly reduced, we wanted to make the results more interpretable without sacrificing important information. We present the implemented conversions in Table 3. We make use of the directional information of the relations, available in the datasets in the column "dir". We do not change the input in sentences with the direction "1>2", but we switch the input position of sentences with the direction "1<2" to "2>1". An example can be found in Table 4. Even though the models we use in this task are bidirectional, we observed an increase in performance when the direction of relations was unified.

We do not further process the text input, as the In the first example, the direction of the relation is 1>2, therefore the model input is in the same order as in the data. In the second example, the direction is 1<2, so the model input has the two sentences in reversed order.

necessary conversions (e.g. tokenization, lowercasing) are specified by each model. However, at the tokenization stage, we ensured that the input length complied with the restrictions of maximum input length that transformer-based models impose; each sentence is truncated to half of the maximum input length, if necessary.

DiscReT: Model architectures

We opted for transformer-based architectures for our experiments and tested several of them (mBERT, xml-RoBERTa, DistilBERT) in order to decide on which one to focus our research effort on. After preliminary tests, the multilingual BERT base cased model (mBERT) [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF] was the most successful overall and included all the languages of the Shared Task in its pretrained version available from Huggingface. 4As a "baseline" for our experiments, we trained an mBERT classifier built with PyTorch [START_REF] Paszke | Pytorch: An imperative style, high-performance deep learning library[END_REF], without frozen layers, and trained for a maximum of 5 epochs.

In order to inject additional information in the finetuning process of the classifier, without further changing the input data, we used adapters along-side our mBERT classifier. Adapters [START_REF] Houlsby | Parameter-efficient transfer learning for NLP[END_REF] are an alternative lightweight method to finetuning with equivalent good results on most NLP tasks. An adapter is a transformer architecture with layer-specific pretrained parameters Θ l which are frozen and a small set of new parameters Φ l (where l is the transformer layer). During finetuning, only the adapters' Φ l parameters are updated from the loss function L on dataset D (see Equation 1). This enables efficient parameter sharing between tasks, languages, etc.

Φ * l ← arg min Φ l L(D; {Θ l , Φ l }) (1) 
We are using the tool AdapterHub [START_REF] Pfeiffer | AdapterHub: A Framework for Adapting Transformers[END_REF] which allows for easier finetuning and integration of adapters to transformer-based models. After several experiments, we observed that the finetuning process of an adapter is quite different than that of a model; the adapter set of parameters learns most effectively with more finetuning epochs than a normal model and the training process per epoch is longer. Additionally, we experimented with freezing the parameters of certain layers for the models and the adapters, in order to determine the best model.

We trained multiple mBERT adapters, out of which the most successful were:

1. mBERT adapter trained on the entire dataset for 15 epochs and with frozen layer 1 (A1)

2. mBERT adapter trained on the entire dataset for 15 epochs and with frozen layers 1-3 (A1-3)

Results

Shared Task results

While evaluating our models, we observed that the best accuracy in each development set was not always achieved by one model. Our final submission is composed of three models:

1. the "baseline" finetuned mBERT model without adapter with multiple epochs (B)

2. the finetuned mBERT model for 3 epochs with an mBERT adapter trained for 15 epochs and layer 1 frozen (A1)

3. the finetuned mBERT-cased model for 4 epochs with an mBERT adapter trained for 15 epochs and layers 1-3 frozen (A1-3)

The results on the test set, as recreated and reported by the organizers of the Shared Task, are found in Table 5. Our poor performance is, to some extent, due to the problems we faced to convert the lower-cased and converted labels back to their upper-cased format, which was required for the Shared Task evaluation. This dramatically lowered the test results reproduced and published for the Shared Task. For clarity, we are reporting the Shared Task results from the organizers, but also include the results on the dev and test sets that were produced before converting the labels to their original in Tables 6 and7 respectively. These results were calculated with scikit-learn [START_REF] Curran Associates | Scikit-learn: Machine learning in Python[END_REF] and the process of calculating them is transparent in our code.

Our goal was to create a truly multilingual approach for discourse relation parsing. We did not aim to establish a new state-of-the-art, but to observe whether multilingual word embeddings can work in synergy (to learn common labels) and specialize at the same time (to learn corpus-unique labels). We also deliberately focused and submitted a combination of three models, instead of proposing the best model for each dataset, thus sacrificing performance for reproducibility. During our experiments, there were other combinations of adapters and models with frozen layers that yielded slightly better results on specific corpora, however, the training times for multiple models would be problematic for a Shared Task entry.

Given that our results are not much worse than approaches with a combination of monolingual models and independent training, it is possible to derive benefits from joint training and evaluating multiple languages. Our multilingual models showed strengths (e.g. in the spa.rst.rstsb dataset) and weaknesses (e.g. in English, Turkish and Chinese datasets) that cannot be pinpointed directly to a specific framework, the size of the corpus, or the size of the specific language data, and will need to be further explored. Our submission was marred by implementation issues, but we are hopeful that in future work we will tackle these issues and implement improvements on our multilingual approach.

Conclusion

In this paper, we presented our submissions for the three tasks of the DISRPT Shared Task. Our main goals were to rely on only a few architectures variants for generality, and experiment with parameter efficient methods. For Tasks 1-2, we employed multi-task, multi-corpora approaches; however, at this stage of our research our results are not opti- mal. In future work, we aim to further explore this strategy, as it seems promising for lower-resource languages. Additionally, we are interested in approaches beyond the scope of this campaign, such as domain transfer. Furthermore, it was possible to perform segmentation and connective detection on datasets without training data, as shown by the surprise TEDm test sets. It would be interesting to examine whether the DISRPT framework could be transferred to new languages, for which there are no training data for segmentation or connective detection, such as the rest of the TEDm corpus. As for Task 3, our focus was on a unified, purely multilingual approach with parameter optimization, as well as dataset preprocessing for unification. Even though we faced problems on the Shared Task submission results, our approach showed promising results compared to language-specific models. In parenthesis is the number of epochs for which the model was trained. 'DiscoDisco' was the best-performing model of DISRPT 2021 [START_REF] Gessler | Dis-CoDisCo at the DISRPT2021 shared task: A system for discourse segmentation, classification, and connective detection[END_REF] and 'Diff.' is the comparison with our models. MEAN (all) provides the mean for the currently available datasets, while MEAN (2021) averages only DISRPT 2021's corpora.
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 1 Figure 1: Example of an RST tree (Source: RST website -Common Case Analysis)
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 3 List of label conversions that we implemented (apart from lower-casing). Underlined labels were found exclusively in the surprise datasets.

	Original Label	Conversion
	alternation alternative bg-general causation cause-result conditional conjunction correction disjunction evidence exp-evidence expansion.genexpansion expansion expansion.alternative expansion.alternative background cause cause-effect condition expansion.conjunction expansion.correction expansion.disjunction explanation-evidence explanation-evidence expansion.level expansion.level-of-detail findings result goal purpose-goal joint-disjunction expansion.disjunction justify explanation-justify list joint-list motivation explanation-motivation otherwise adversative qap question_answer_pair qap.hypophora hypophora repetition restatement-repetition restatement expansion.restatement sequence joint-sequence temporal.synchrony temporal.synchronous textual-organization organization unconditional expansion.disjunction unless contrast
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	course relation classification (Task 3), evaluating the test sets and reporting accuracy in %. 'DiscoDisco' was the best-performing model of DISRPT 2021 (Gessler et al., 2021) and 'Diff.' is the comparison with our mod-els. MEAN (all) provides the mean for the currently available datasets, while MEAN (2021) averages only DISRPT 2021's corpora.

Table 6 :

 6 Results on the dev set for discourse relation classification, before converting labels to their original form. In parenthesis is the number of epochs for which the model was trained.

	Corpus	B (1)	B (2) B (3)	B (4) B (5) B (6) A1-3 (4) A1 (3)
	deu.rst.pcc eng.rst.gum eng.rst.rstdt eus.rst.ert fas.rst.prstc nld.rst.nldt por.rst.cstn rus.rst.rrt spa.rst.rststb spa.rst.sctb zho.rst.gcdt zho.rst.sctb	25.31 29.46 26.97 31.54 31.54 29.88 48.03 51.66 52.46 53.31 53.76 53.69 46.33 49.85 44.97 47.25 48.49 47.62 41.53 43.65 43.16 44.95 42.18 44.46 53.31 50.1 52.1 51.3 49.5 51.9 43.5 40.79 46.53 41.09 46.53 42.9 54.8 59.51 55.15 60.38 60.56 58.12 57.41 58.84 60.04 60.04 58.77 59.61 51.44 54.31 55.61 62.4 60.05 61.62 47.87 62.77 56.38 58.51 62.77 67.02 53.98 55.57 56.86 57.55 57.75 58.05 40.43 50 46.81 46.81 42.55 50	29.05 55.79 51.02 45.44 52.91 45.92 62.48 61.16 60.31 59.57 58.85 47.87	30.71 56.67 50.28 47.07 52.71 45.32 61.43 60.91 59.01 64.89 59.34 46.81
	eng.sdrt.stac fra.sdrt.annodis	45.5 30.3	55.02 44.32 47.16 53.8	55.28 55.55 54.15 46.4 49.81 47.92	57.82 48.3	56.59 47.54
	* eng.dep.covdtb 40.39 42.81 35.22 36.64 36.18 42.93 eng.dep.scidtb 59.39 59.34 66.48 66.06 70.2 66.17 zho.dep.scidtb 47.33 61.57 62.99 59.79 60.85 62.63	43.56 70.56 66.19	43.1 71.03 65.48
	eng.pdtb.pdtb * eng.pdtb.tedm 10.67 14.04 67.32 67.44 71.39 70.85 70.43 69.41 19.1 15.73 15.17 14.04 ita.pdtb.luna 45.93 53.59 51.67 50.72 54.07 54.07 * por.pdtb.crpc 65.76 66.69 67.39 67.16 67.16 65.29 * por.pdtb.tedm 50 45.79 47.37 49.47 48.95 46.32 * tha.pdtb.tdtb 92.68 93.56 93.08 93.97 93.64 92.76 tur.pdtb.tdb 42.95 39.1 42.95 40.06 39.42 41.67 * tur.pdtb.tedm 42.72 42.72 44.13 42.25 41.31 46.48 zho.pdtb.cdtb 73.8 75.09 76.37 74.62 73.8 74.15	72.4 20.79 54.55 68.25 54.21 93.72 41.03 43.66 75.44	71.09 19.1 56.46 67.94 51.05 93.97 39.1 43.66 73.92
	MEAN		49.18	52.6	52.93 53.24	53.5	53.96	55.42	55.2
	Corpus	B (1)	B (2)	B (3)	B (4)	B (5) B (6) A1-3 (4) A1 (3) DiscoDisco	Diff.
	deu.rst.pcc eng.rst.gum eng.rst.rstdt eus.rst.ert fas.rst.prstc nld.rst.nldt por.rst.cstn rus.rst.rrt spa.rst.rststb spa.rst.sctb zho.rst.gcdt zho.rst.sctb	25.77 30.77 26.54 32.31 32.31 33.08 50.49 54.72 55.96 57.09 57.36 55.69 46.91 50.16 46.73 47.94 48.54 48.77 40.56 43.66 44.99 47.94 46.17 48.97 47.47 47.13 48.31 50.84 47.47 49.16 43.38 42.46 43.38 42.46 43.38 40.31 64.34 65.44 65.07 64.34 63.97 64.71 59.44 60.11 60.75 60.96 60.11 59.41 48.83 51.17 53.76 57.04 54.69 53.76 58.49 64.15 64.78 69.81 64.15 63.52 47.32 49.32 49.32 52.78 53.2 52.47 45.28 53.46 55.35 57.86 44.03 48.43	33.85 58.56 49.84 50.44 50.51 46.15 65.44 62.29 57.75 65.41 53.73 47.8	33.08 58.41 49.88 51.33 49.66 47.38 65.07 61.98 59.15 61.64 54.67 50.31	39.23 66.76 67.1 60.62 52.53 55.21 64.34 66.44 54.23 66.04 -64.15	-5.38 -8.2 -16.94 -9.29 -1.69 -7.83 1.1 -4.15 4.92 3.77 --6.29
	eng.sdrt.stac fra.sdrt.annodis	40.99 50.46 50.73 52.52 52.32 51.19 31.68 42.56 45.92 44 44.8 45.12	55.76 46.88	55.17 45.12	65.03 46.4	-9.27 0.48
	* eng.dep.covdtb 38.09 41.38 33.37 35.11 35.77 39.44 eng.dep.scidtb 59.45 61.38 67.29 67.09 69.65 68.18 zho.dep.scidtb 53.02 61.86 64.19 56.28 60.93 60.93	41.14 69.81 64.65	40.87 70.38 64.19	---	---
	eng.pdtb.pdtb * eng.pdtb.tedm ita.pdtb.luna * por.pdtb.crpc * por.pdtb.tedm * tha.pdtb.tdtb tur.pdtb.tdb * tur.pdtb.tedm zho.pdtb.cdtb	64.91 10.83 12.25 18.23 15.67 12.54 15.67 64.2 68.41 68.01 65.62 64.82 45.53 52.11 52.11 52.37 56.32 53.68 69.15 67.71 70.59 71.07 70.67 68.51 58.24 54.12 58.52 56.04 55.49 56.04 94.12 95.16 95.24 95.39 95.16 94.79 51.9 48.1 48.82 48.58 46.92 50.95 45.33 45.05 44.51 45.33 44.23 46.7 68.34 71.24 73.61 67.41 66.75 65.17	68.85 20.8 57.63 71.07 56.32 94.94 51.42 49.18 68.6	68.63 19.94 57.63 72.04 58.52 95.31 50.71 50.55 66.89	74.44 -----60.09 -86.49	-5.59 ------8.19 --12.88
	MEAN (2021) MEAN (all)	49.3 50.38 53.08 52.49 53.32 54.32 52.41 52.69 54.1 54.47 53.56 53.83	54.97 56.11	54.65 56.1	61.82 -	-7.17 -

Table 7 :

 7 Results on the test set for discourse relation classification, before converting labels to their original form.

Code at https://github.com/phimit/jiant/

Code at https://gitlab.irit.fr/melodi/andiamo/ discret_ST3

https://huggingface.co/bert-base-multilingua l-cased
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A Additional results

The table 8 corresponds to the scores we obtain on the test sets, that can be compared to the ones obtained by the organizers when reproducing our system, as given in Table 2.