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Change detection needs change information:
improving deep 3D point cloud change detection

Iris de Gélis, Thomas Corpetti, Sébastien Lefèvre

Abstract—Change detection is an important task to rapidly
identify modified areas, in particular when multi-temporal data
are concerned. In landscapes with complex geometry such as
urban environment, vertical information turn out to be a very
useful knowledge not only to highlight changes but also to
classify them into different categories. In this paper, we focus on
change segmentation directly using raw 3D point clouds (PCs),
to avoid any loss of information due to rasterization processes.
While deep learning has recently proved its effectiveness for this
particular task by encoding the information through Siamese
networks, we investigate here the idea of also using change
information in early steps of deep networks. To do this, we
first propose to provide the Siamese KPConv State-of-The-Art
(SoTA) network with hand-crafted features and especially a
change-related one. This improves the mean of Intersection over
Union (IoU) over classes of change by 4.70%. Considering that
the major improvement was obtained thanks to the change-
related feature, we propose three new architectures to address 3D
PCs change segmentation: OneConvFusion, Triplet KPConv, and
Encoder Fusion SiamKPConv. All the three networks take into
account change information in early steps and outperform SoTA
methods. In particular, the last network, entitled Encoder Fusion
SiamKPConv, overtakes SoTA with more than 5% of mean of IoU
over classes of change emphasizing the value of having the net-
work focus on change information for change detection task. The
code will be made available at https://github.com/IdeGelis/torch-
points3d-SiamKPConvVariants.

Index Terms—Change detection, deep learning, 3D point
clouds

I. INTRODUCTION

IN an ever evolving world, it is of prime importance to be
able to sense landscape transformations. The change detec-

tion task aims at highlighting these modifications from two or
several successive observations. Either in urban or geosciences
domains, application are numerous. Change detection helps
for example to easily updates maps [1], to identify damaged
areas in case of natural disaster [2], [3], to help city managers
[4], [5], to highlight coastal modifications [6]–[8], to identify
glacier melting [9] or even to detect landslides [10].

Whether for urban application [11] or geosciences [12],
three-dimensional (3D) data such as Point Cloud (PC) appear
interesting since they provide additional vertical information,
not available in two-dimensional (2D) images, and allowing
to better characterize the geometry of complex landscapes.
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In practice, a PC is an unordered and sparse set of points
represented by their 3D coordinates in a frame of reference
(i.e. Cartesian coordinate system). In Earth observation pur-
pose, 3D PCs whether acquired via photogrammetric process
or Light Detection And Ranging (LiDAR) sensors (through
Aerial Laser Scanning (ALS) for example) are generalizing.
Because of their specific characteristics, PCs are often ras-
terized into 2.5D Digital Surface Model (DSM) to be easily
handled using traditional image processing methods. However,
the rasterization implies a significant loss of information that
can be prejudicial, thus more and more studies encourage
designing methods able to deal with raw 3D PCs [13], [14].

In a recent paper [14], we showed the possibilities brought
by deep learning network to perform change detection and
characterization into raw PCs. In particular, built upon 2D
image change detection deep learning methods [15] and 3D
PCs convolutions [16], the Siamese Kernel Point Convolu-
tion (KPConv) network outperforms traditional distance-based,
DSM-based or machine learning-based methods on both real
and simulated datasets for multiple change segmentation in
urban areas. Aside from this contribution, the literature is
still low in deep learning methods tackling change detection
task at point level, i.e., segmentation of each point of one
PC according to the different type of changes compared
to the other PC. Indeed, one can cite the work of [17],
[18] which apply deep models to retrieve changes, but they
only focus on 2.5D DSM. On the contrary, [19] propose to
process the raw 3D PCs thanks to graph convolutions [20].
However, their method is designed for change classification
task, i.e., retrieving changes at scene level as proposed by the
Change3D [19] or Urban 3D Change Detection Classification
(Urb3DCD-Cls) [14] datasets. This task is less precise than the
change segmentation one, since it allows identifying only the
main changed object in a scene without precisely localizing
it. Hence, the design of new methods able to enhance change
segmentation in raw 3D PCs constitute open perspectives.

Considering the limited literature of deep learning methods
for 3D PCs change detection, all the three studies [14], [18],
[19] rely on Siamese architecture given its ability to detect
changes in 2D images remote sensing field [15], [21]–[24].
Recent studies in 2D change detection have also shown that
data fusion is a crucial step in change detection. Indeed, paying
more attention on how to fuse information coming from the
two network inputs, and on how to incorporate this fused
information (i.e., change information), can improve change
detection results. It has for example been demonstrated that
multi-temporal fusion leads to better results when it is per-
formed at multiple scales [15], [25]–[27]. While [15] propose

ar
X

iv
:2

30
4.

12
63

9v
1 

 [
cs

.C
V

] 
 2

5 
A

pr
 2

02
3



2

to merge information from both branches either by concate-
nation or differentiation of features, other studies propose
more advanced fusion modules. For example, [28] propose
a network based on the three results of addition, subtraction,
and concatenation of features at multiple scales. The study in
[29] takes a step aside from the traditional Siamese network
with one input for each branch, by proposing to take in one
branch the concatenation of the images, and in the other the
difference, forming two sub-networks with different properties.
At the output of each layer, the features of the two branches
are summed and then concatenated at the corresponding scale
in the decoder thanks to skip connections. In [30], authors
propose to embed some fusion modules relying on multi-scale
features difference aggregation and attention on concatenation
of bi-temporal features. Note that according to [31], taking into
account both concatenation and difference of input images is
more efficient even in single-stream methods. As with multi-
scale consideration, another category of methods uses attention
mechanism to help the network focus on the most important
features for multi-temporal information fusion [28], [32]–[34].
When going back to 3D PCs data, the data fusion from both
input data is not immediate since no point-to-point corre-
spondence exists between two PCs even in unchanged areas.
To deal with this issue, Siamese KPConv include a nearest
point difference of features of the encoder at multiple-scale.
These feature differences are directly integrated in the decoder
part. Thereby, encoders are not processing change information
but only mono-date PC without any information on the other
PC. We believe that processing change information earlier in
the network will boost deep networks towards final change
detection and categorization at point level.

Based on the consideration that a particular attention should
be given to change information, i.e., both date data fusion, we
propose in this paper to enhance 3D PCs change segmentation
results. To do so, we i) experiment to provide additional hand-
crafted features and in particular a change-related feature as
input along with 3D point coordinates to the existing Siamese
KPConv network; ii) design three new deep learning architec-
tures for 3D change segmentation; iii) prove the effectiveness
of the two last items on the public dataset Urban 3D Change
Detection (Urb3DCD) [14].

The description of hand-crafted features and all the three
new architectures are presented in Section II. Then, assessment
of the methods is given in Section III and these results are
further discussed in Section IV. The conclusions of the paper
are given in Section V.

II. INCORPORATING CHANGE INFORMATION IN DEEP
MODELS

To incorporate change information in deep networks, we
first propose to add as input to the current state-of-the-art
methods for 3D PCs change detection some hand-crafted fea-
tures, and in particular one change-related feature (Sec. II-A).
Then we propose three new deep architectures (Sec. II-B) inte-
grating change information directly in the encoder, conversely
to Siamese KPConv [14].

A. Considering hand-crafted features

Even if not usual in deep learning, some studies showed
that combining deep and hand-crafted features improves final
results in computer vision [35] or even in remote sensing [36].
The study in [37] also showed that incorporating hand-crafted
features into a deep learning framework allows improving PCs
semantic segmentation. In particular, they evaluate the benefit
of giving some different types of features in addition to 3D
points coordinates for PointNet [38] and PointNet++ [39] 3D
deep frameworks. It is shown that depending on the dataset
(Mobile Laser Scanning (MLS) or ALS), PointNet basic
architecture can equalize or even outperform more complex
architectures such as PointNet++ or Kernel Point – Fully
Convolutional Neural Network (KP-FCNN) [16] when input
embeds hand-crafted features.

Therefore, we propose to study whether adding hand-
crafted features, and in particular a change-related feature,
in Siamese KPConv [14] deep network influences the change
segmentation results. As for hand-crafted features, we used the
following ones related to:

• Point normals (Nx, Ny , Nz)
• Point distribution represented by their organization in

their neighborhood (named Lλ, Pλ, Oλ);
• Height information (named Zrange, Zrank and nH);
• Change information (named Stability).

Information on the distribution of points contained in the
neighborhood are given by the three variables: linearity Lλ,
planarity Pλ and omnivariance Oλ. These variables repre-
sent respectively the likelihood of a point to belong to a
linear (1D), planar (smooth surface) (2D) or volumetric (3D)
neighborhood. These three attributes are common to extract
information into 3D PCs. They are computed from the three
eigenvalues (λ1 ≥ λ2 ≥ λ3 ≥ 0) obtained after applying a
Principal Component Analysis (PCA) to a matrix containing
3D coordinates of points contained in the neighborhood.
Formulas of Lλ, Pλ and Oλ are given in Equations 1 to 3:

Lλ =
λ1 − λ2
λ1

(1)

Pλ =
λ2 − λ3
λ1

(2)

Oλ = 3
√
λ1λ2λ3 (3)

In practice, if λ1 is large compared to λ2 and λ3, Lλ is near
to 1. In this situation, only one eigenvalue is meaningful, i.e.,
only one principal axis results from the PCA and points are
mainly distributed along a single axis. If λ1 and λ2 are large
regarding λ3, implying Pλ near to 1, points are spread in
a plan defined by eigenvectors corresponding to λ1 and λ2.
Lastly, Oλ is high if each of the three eigenvalues are of
equal importance. This implies the points are scattered along
the three axis, i.e., in a 3D volumetric space.
Zrange and Zrank give information on the height by pro-

viding the maximum height (Z coordinate) difference between
points in the neighborhood and the rank of the height of the
considered points within the neighborhood. The normalized
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height nH also completes height information by providing
the difference between the height of the considered points and
the local Digital Terrain Model (DTM) (rasterization of the
PC at the ground level).

Lastly, the Stability [40] feature is given to provide a bi-
temporal information on the considered point. It is defined as
the ratio of the number of points in the spherical neighborhood
to the number of points in the vertical cylindrical (oriented
along the vertical axis) neighborhood in the other PC. Thus,
in each point of the current PC, Stability is the ratio between
the 3D (n3D) and 2D (n2D) neighborhood in the other PC:

Stability =
n3D
n2D

× 100 (4)

Notice that looking only at the number of points in the 3D
neighborhood of each point of both PCs is enough to retrieve
changes on isolated buildings and trees. However, in dense tree
areas or when different objects are closed to each other, the
3D spherical neighborhood may still contain points coming
from some other unchanged entity. Thus, taking the ratio with
the 2D neighborhood is a way to take into account unchanged
points and to obtain an indicator of change and the instability
of the object. Thereby, the ratio will be near 100% if there is
no change, and it tends to 0% if changes occur. On vegetation,
we expect the Stability value to be lower. Thereby, most of
hand-crafted features presented in [40] are used except those
using LiDAR’s multi-target capability, because our dataset
does not contain such information. We recall that Siamese
KPConv architecture takes as many input features as desired,
by simply modifying the number of inputs of the first layer of
the encoders.

B. New models for 3D point clouds change detection

We now explore how to learn this change information
through novel deep networks. To do so, we build upon the
Siamese KPConv model and propose three original architec-
tures that emphasize change related features. All the three
presented architectures are based on Kernel Point Convolution
(KPConv) [16] as it has been proved efficient for change
detection task in 3D PCs. Then, in order to fuse features
coming from both PCs, the nearest point difference strategy
is used as in Siamese KPConv:

(P1,F1) –©(P2,F2) = f2i − f1j|j=argmin(‖x2i−x1j‖) (5)

Thus, for two PCs P1 and P2, with their corresponding
features F1 and F2, the feature difference –© is computed
between features f2i ∈ F2 of each point x2i ∈ P2 of
the second PC and features f1j ∈ F1 of the nearest point
x1j ∈ P1.

A first option is to lighten the network by fusing both PCs
information just after the first layer, as illustrated in Figure 1.
The following layer of the encoder takes as input only the
nearest point features difference (noted –©). Then, for the
following layers of the encoder and the decoder, they take
as input the output of the previous layer as in a classical fully
convolutional network (FCN). Here, the idea is to evaluate the
benefits of dealing with differences earlier in the process. This
architecture is named OneConvFusion.

Fig. 1. OneConvFusion architecture for 3D PCs change segmentation. Links
between successive layers are omitted for the sake of concision.

Fig. 2. Triplet KPConv architecture for 3D PCs change segmentation.

However, mono-date features of the first layer might not
be sufficient for accurate change identification. Therefore,
we designed the Triplet KPConv network. It contains two
encoders to extract mono-date information (as in the Siamese
KPConv network) and an additional encoder whose goal is to
extract change related features. The “change encoder” takes
as input the nearest point difference computed after the first
layer of mono-date encoders. Then, the following layers of
the change encoder take as input the concatenation of the
output features of the previous layer and the result of the
nearest point features (from mono-date encoder) difference
of the corresponding scale. Thereby, multi-scale mono-date
information is taken into account as well as multi-scale change
information. The decoder uses features extracted by the change
encoder as input. Notice that mono-date encoders can share
weights or not (leading to pseudo-Triplet KPConv), as for
Siamese KPConv and Pseudo-Siamese KPConv. This network
is shown in Figure 2.

The third version of the architecture is designed to directly
fuse mono-date and change features in a same encoder.
This network is called Encoder Fusion SiamKPConv. A first
encoder extracts mono-date features of the older PC using
convolution layers (top of Figure 3), as in all previous archi-
tectures. Then, as illustrated in the bottom of Figure 3, the
second encoder is more specific to combine output features
from the newer PC and the nearest point difference of features.
In particular, each layer of this second encoder takes as input
the concatenation of output features of the previous layer and
the difference of features from this encoder and the mono-
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Fig. 3. Encoder Fusion SiamKPConv architecture for 3D PCs change
segmentation.

date encoder of the older PC. Thereby, both mono-date and
change features can be combined in convolutional layers. As
with Triplet KPConv and OneConvFusion architectures, the
idea is to encode the differences earlier in the process, but
here they are combined with features of the second PC.

These proposed new architectures are in line with recent
developments for 2D image change detection concerning the
importance of data fusion [25], [29], [30] for change detection
task. Indeed, by convolving change features in the encoder, we
expect that the network will put more attention on changes and
also better combine multi-scale change features.

In the following section, we illustrate the performances of
the three proposed networks.

III. RESULTS

In the following section, we present the experimental results
of our methods on a public simulated in order to quantitatively
evaluate our networks. Before describing them into detail, let
us first introduce the experimental settings.

A. Dataset

In order to conduct our experiments, the public dataset
Urb3DCD [41] is used. This dataset is composed of various
situation of semantic changes inside cities, based on real
information (related to the organization of streets, areas, ...)
on which buildings, vegetation, or cars have been added. It
then simulates point clouds derived from laser pulses issued
from airborne with real flight plans.

Among the different versions, the second one, with a LiDAR
low density (around 0.5 points/m2), is assessed here as it
contains more classes of changes, and it relies on PCs more
realistic than the first version of the dataset [14].

B. Experimental settings

Concerning experimental settings, the same hyperparame-
ters as those used by [14] for Siamese KPConv are used. In
particular, some pairs of cylinders of a radius of 50 m are
extracted from both PCs. The first sub-sampling rate dl0 is set
to 1 m. For training purpose, we minimize a negative log-
likelihood (NLL) loss using a Stochastic Gradient Descent
(SGD) with a momentum of 0.98. A batch size of 10 is
used. The initial learning rate is set to 10−2 and scheduled
to decrease exponentially. Still for the training, as change
detection dataset are generally largely imbalanced, we rely

on a random drawing of training cylinders as function of the
class distribution as in [14]. For each training epoch, 6,000
training pairs of cylinders are seen by the network. During
the validation, 3,000 pairs from the validation set are used.
The loss is also weighted according to class distribution to be
sure to learn also less-represented classes. Data augmentation
is performed during the training: random rotation of cylinders
around the vertical axis (both cylinders of a pair are rotated
according to the same angle to keep coherence inside the pair)
and addition of a Gaussian noise at point level.

The whole development of these architectures are imple-
mented in PyTorch and relies on KPConv implementation
available in Torch-Points3D [42]. Concerning the nearest point
feature difference (Equation 5), the nearest point is determined
thanks to the k-Nearest Neighbors (kNN) implementation
available in PyTorch Geometric, which is graphics processing
unit (GPU) compliant for faster computation.

For the hand-crafted feature extraction, the computation is
made before the cylinder extraction to limit border effects.
Neighborhood sizes are set at 5 m for the Stability. Concern-
ing other neighborhoods, they are based on the 10 nearest
neighbor points. Point normal and DTM computations are
performed using Point Data Abstraction Library (PDAL)1.

Since in change detection and categorization datasets are in
general largely imbalanced (i.e., most data belong to the un-
changed class despite this class not being the most interesting
one), we prefer to discard the overall accuracy or precision
scores that are not very indicative of method performance
in such settings. We therefore select the mean of accuracy
(mAcc) and the mean of Intersection over Union (IoU) over
classes of changes (mIoUch) for reliable quantitative assess-
ment of the different methods. IoU formula is indicated by:

IoU =
TP

TP + FP + FN
(6)

where TP, TN, FP and FN respectively stand for True Pos-
itive, True Negative, False Positive and False Negative. The
accuracy is given in the following formula:

Acc =
TP + TN

TP + TN + FP + FN
(7)

C. Experimental results

1) Results on the addition of hand-crafted features to
Siamese KPConv network: Quantitative results are given in
Table I. Note that results given with zero input features
corresponds to results reported in the original publication of
Siamese KPConv [14]. First, we can observe that providing
as input hand-crafted features in addition to point coordinates
considerably improves both Siamese KPConv and Pseudo-
Siamese KPConv. Then, we assessed the importance of the
unique change-related hand-crafted feature (Stability). As
visible, it seems that point distribution and height hand-
crafted features have only a slight beneficial impact (+0.37%
of mIoUch) on change segmentation results. On the oppo-
site, the Stability feature seems to have a major impact
(+3.67% of mIoUch) on both metrics mAcc and mIoUch.

1https://pdal.io/en/2.5-maintenance/index.html, accessed on 27/02/2023.

https://pdal.io/en/2.5-maintenance/index.html
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TABLE I
COMPARISON OF OUR ARCHITECTURES WITH DIFFERENT INPUT

FEATURES ON URB3DCD-V2 LOW DENSITY LIDAR DATASET. RESULTS
ARE GIVEN IN %. THE TEN INPUT FEATURES ARE: Nx , Ny , Nz , LT , PT ,

OT , Zrange , Zrank , nH AND Stability.

Method # of input features mAcc mIoUch

Siamese KPConv

0 91.21 ± 0.68 80.12 ± 0.02
10 93.65 ± 0.16 84.82 ± 0.58
9 w/o Stability 91.44 ± 0.47 80.49 ± 0.64
1 Stability only 92.92 ± 0.47 83.80 ± 0.89

More specifically, when looking at the per class gain in IoU,
the Stability feature on its own principally helps for ‘new
building’, ‘demolition’ and ‘missing vegetation’ classes (see
Figure 4).

2) Results on the evolution of Siamese KPConv: Quan-
titative results of the evaluation of the three architectures
are presented in Tables II and III. It is worth noting that
each of the three architectures outperforms Siamese KPConv
network. In particular, the best architecture is Encoder Fu-
sion SiamKPConv nearly followed by Triplet KPConv, while
OneConvFusion is only slightly better (1.5% of mIoUch) than
Siamese KPConv. When looking at per class results (Table III
and Figure 5), Encoder Fusion SiamKPConv network provides
a significant improvement for ‘new building’, ‘demolition’,
‘new vegetation’, ‘missing vegetation’ and ‘vegetation growth’
classes. Qualitative results are shown in Figures 6 and 7.
As can be seen, the three architectures provide very similar
results to the ground truth. In Figure 7, each of the three
Siamese KPConv evolution show results more accurate than
Siamese KPConv in the new building facades. These facades
are particularly hard to correctly detect, because in the first
PC (Figure 7a), the neighbor facade was not visible. Thereby,
identifying the new facade in the class ‘new building’ while
neighboring facades are unchanged is not obvious. In this
situation, the network should understand that if the roof is
new, the facade is probably new also. In the same way, if
the roof has not changed, the facade also should be identical.
Another difference with Siamese KPConv results is visible
in Figure 6, where a part of the church roof is identified
as new vegetation for Siamese KPConv while not for the
other architectures. The misclassification is probably due to
the shape of the dome roof that looks like a tree in simulated
data. Indeed, even if tree models are not totally spherical (in
particular the Arbraro software [43] was used to obtain OBJ
models of trees, see [14]), LiDAR simulation on these models
render a quite spherical object with only a few points inside the
foliage of the tree unlike real LiDAR acquisition. Therefore,
aside from the shape, the main way to distinguish between
the vegetation and the dome is that trees are generally on the
ground. These examples, highlight the fact that the network
should be able to understand the PC at multiple scales and
predict changes with regard to surrounding objects.

IV. DISCUSSION

On the importance of learning change information

An immediate observation from our experiments is that the
addition of hand-crafted features related to both input data

TABLE II
GENERAL RESULTS IN % OF THE THREE SIAMESE KPCONV

EVOLUTIONS ON URB3DCD-V2 LOW DENSITY LIDAR DATASET.

Method mAcc (%) mIoUch (%)
Siamese KPConv [14] 91.21 ± 0.68 80.12 ± 0.02

Siamese KPConv (+10 input features) 93.65 ± 0.16 84.82 ± 0.58
OneConvFusion 92.62 ± 1.10 81.74 ± 1.45
Triplet KPConv 92.94 ± 0.53 84.08 ± 1.20

Encoder Fusion SiamKPConv 94.23 ± 0.88 85.19 ± 0.24

as input to Siamese KPConv network does not bring any
significant change on the results (see Table II, third line –
addition of features– compared to the first one).

However, even though looking at the results presented in
[14], Siamese KPConv architecture is able to recover the
change on its own, it seems that giving a hand-crafted feature
related to the change specifically as input helps the network
to focus on the change with a significant improvement (see
Table II, fourth line –addition of a change feature– compared
to the first one).

This strengthens the fact that encoding change information
is important. On this basis, the proposed evolutions of Siamese
KPConv show the relevance of applying convolution also
on the nearest point features difference at multiple scale to
obtain change-related features, as illustrated in Table III (three
last lines, without the introduction of change features but
by encoding them directly). Lower results of OneConvFusion
network exhibit that it is important to keep multi-scale mono-
date features in the architecture (note that it is in line with deep
learning for change detection literature in 2D [15], [25]–[27]).
Then, the fact that Encoder Fusion SiamKPConv provides bet-
ter results than the Triplet network shows that combining both
mono-date semantic features and change features as input to
convolutional layers can extract useful discriminative features
for the change segmentation task. Both Triplet KPConv and
Encoder Fusion SiamKPConv are closer to results on the bene-
fit of adding hand-crafted features as input to Siamese KPConv
network. More specifically, Encoder fusion SiamKPConv gets
better results than the Siamese KPConv with the 10 hand-
crafted features.

Finally, we tried to add hand-crafted features as input to
Encoder Fusion SiamKPConv network, results are only very
slightly improved (less than 1% of mIoUch,). This shows that
an architecture more specifically designed for change detection
is capable of extracting discriminative features on its own.
This is especially true for change-related features such as
the Stability which is no longer required in Encoder Fusion
SiamKPConv architecture.

V. CONCLUSION

In this paper, we proposed to enhance change detection
into raw 3D PCs using deep networks. To do so, we suggest
introducing change information earlier in the network in order
to better detect and categorized changes into 3D PCs. A first
proposition to enhance the existing method is to provide some
hand-crafted features as input along with 3D point coordinates.
In particular, we demonstrated that a single addition of a
change-related feature input to Siamese KPConv existing
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Input: XYZ (baseline)
Input: XYZ + 10 hand-crafted features
Input: XYZ + 9 hand-crafted features
Input: XYZ + Stability

Fig. 4. Influence on per class IoU of adding hand-crafted features along with 3D point coordinates as input to Siamese KPConv. For classes ‘new
building’, ‘demolition’ and ‘missing vegetation’, the high disparity in IoU shows that adding hand-crafted features to the input has a greater influence than
on classes where results are grouped around a same value.

Unchanged New building Demolition New vegetation  Vegetation growth Missing vegetation Mobile Object
Classes

60

65
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75

80

85

90

95

100

Io
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[%
]

Siamese KPConv
SKPConv (+10 input features)
OneConvFusion
Triplet KPConv
Encoder Fusion SiamKPConv

Fig. 5. Influence on per class IoU of the three Siamese KPConv evolutions, namely OneConvFusion, Triplet KPConv and Encoder Fusion SiamKPConv.
For comparison purpose, results of Siamese KPConv with 10 hand-crafted input features are also shown.

method allows enhancing of about 3.70% of mean of IoU over
classes change. Then, we propose three new architecture for
change segmentation into raw 3D PCs that encode also change
information conversely to the current state-of-the-art that was
only incorporating change information in the decoder step.
All these three architectures out-perform the current state-of-
the-art methods up to 5.07% of mean of IoU over classes of
change. Thereby, in this paper, we showed the importance of
encoding change information.
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