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ABSTRACT

This study aims at recovering above-ground biomass information
from ultra-high resolution UAV RGB-NIR orthophotos. We focus on
a realistic scenario where a limited number of training samples for a
landscape with heterogeneous herbaceous vegetation is given. Con-
sequently, we explore different machine learning methods explicitly
addressing the limitations of small training samples and compare
their predictions quantitatively and qualitatively. Our results show
that random forest models perform similarly well to deep learning
models. While simpler machine learning models may, therefore,
still be preferable, our study also points the way to promising archi-
tectures and regularisation techniques for deep learning approaches.
Beyond vegetation cover, accurate regression of other variables, in-
cluding vegetation height, volume and biomass remains a difficult
task regardless of the model choice.

Index Terms— vegetation biomass regression, random forest,
deep learning, semi-supervised learning, transfer learning, UAV

1. INTRODUCTION

Precise estimation of the amount of vegetation present in a given
ecosystem is vital for understanding its functioning, managing its
resources and predicting its evolution under different constraints in-
cluding global change. Therefore, many ecological studies mea-
sured different indicators of vegetation development (like vegeta-
tion cover or vegetation volume), the most precise one being vege-
tation biomass. However, traditional field campaigns for measuring
biomass are time-consuming, costly and destructive, making remote
sensing an attractive alternative. Unmanned Aerial Vehicles (UAVs)
have proven to be suitable platforms for performing data collection
at the field scale with high spatial resolutions in an efficient and non-
destructive manner. From a modelling perspective, UAV-based esti-
mations of biomass-related variables can be framed as a regression
task between orthophotos and a set of field measurements. The of-
ten limited availability of the latter may explain the prevailing use
of robust models based on traditional machine learning. While Con-
volutional Neural Networks (CNNs) have been applied to UAV data
for various tasks, their use for solving regression problems [1] and
especially biomass-related ones [2] is still underrepresented. In this
paper, we explore three possibilities for recovering biomass infor-
mation from ultra-high resolution (i.e., millimetric resolution) UAV
RGB-NIR orthophotos. We aim to compare different machine and
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deep learning methods which are explicitly addressing the limita-
tions of small training samples: Random Forest (RF) (Model A),
transfer learning (Model B) and data augmentation (model C). In ad-
dition to the above-ground biomass (AGB) itself, vegetation cover,
height and volume as related variables are also targeted. It should
be noted that in this study we focus on a particularly complex case:
our data campaign concerns post-mining stressed ecosystems, with
small, heterogeneous, herbaceous plant communities, characterised
by low values of AGB. This constraint makes a precise estimation of
biomass-related variables more challenging, especially from images
with a millimetric resolution.

2. RELATED WORKS

Today, most studies to estimate biomass still focus on classical para-
metric learning methods such as simple or multiple linear regres-
sions [2, 3, 4]. While the authors of [5] have pointed out that on-
site measurements are crucial for satellite-borne biomass missions,
the lack of in situ measurements also hinders the training of more
complex deep learning-driven models when the data is collected by
UAVs. So far, preprocessing, including the creation of 3D models
to derive structural information, is frequently carried out to allow
the usage of simpler models based on a few samples. For example,
in [6], the authors first calculate a crop surface model from UAV
data, then derive the plant height, and finally use regression models
from plant height to biomass. Also, multi-temporal data is used to
improve the quality of estimations [7], along with other complemen-
tary information such as meteorological features [8]. Meanwhile, the
problem of estimating biomass from monotemporal UAV orthopho-
tos without extensive preprocessing and/or auxiliary data remains an
open problem. Our paper is a contribution in this direction.

3. MATERIALS AND METHODS

3.1. Data Description

UAV and in situ measurements were taken for four sites in different
altitude zones (1850 to 2100 m) in the Pyrenees, France, from spring
to summer 2021 (Fig. 1). Due to a difficult environment for plant
growth in the surveyed areas, corresponding plant communities were
herbaceous and particularly small (<20 cm). UAVs were equipped
with R, G, B, NIR sensors and the obtained images post-processed
to derive orthophotos with a spatial resolution of 3 mm. In situ mea-
surements were taken for four variables: fractional vegetation cov-
erage, vegetation volume, vegetation height and AGB. About 30-35
measurements were taken per site leading to 160 measurements. For



Fig. 1. Site localisation, an example of UAV images along with the
in situ measurements locations and data description: (a) UAV tile
in RGB; (b) UAV tile in false-color; (c) distribution of AGB values
(g/m2) in the labelled dataset (the green line is the kernel density
estimation of the distribution); (d) vegetation height (cm); (e) vege-
tation volume (dm3); (f) vegetation coverage (%).

each point, all variables were recorded based on a 25x25 cm square
representative of the 1x1 m area centered around the point. Two
datasets have been generated from these data: a labelled dataset and
an unlabelled one. For the former, the UAV images were cropped
to the in situ measurement geolocations generating tiles with a 1x1
m extent centered around each point measurement, resulting in 160
couples of tiles and in situ measurements. 124 of them were splitted
in a spatially stratified random manner into train (75), validation (24)
and test (25) sets. Another 36 data points, all drawn from a single
site, are used as a spatially independent control site (CMB test site).
For the unlabelled dataset, the UAV images have been tiled at 1x1 m
with an overlap of 50%, resulting in 18,085 tiles of 256x256 pixels,
splitted in train (70%), validation (15%) and test (15%) sets.

3.2. Model A: Random Forest Model

Given our low amount of data points, an RF classifier [9, 10] with
manually engineered features has been used as a robust baseline ar-
chitecture. First, all tiles of the labelled dataset were segmented with
a Felzenszwalb segmentation [11] (Figure 2). The derived objects
were then evaluated with a simple automated tile cover classifica-
tion, distinguishing between vegetation, bare ground and shadowed
areas. To this aim, segmented tiles with mean NDVI values above a
given threshold were classified as vegetation. Shadowed areas clas-
sification was based on consistently low reflectance values across
the R, G and B channels. Given these classified tiles, two types of
features were engineered. First, spectral features and their derivates,
i.e. the share of vegetation, bare ground and shadow, were used. The
shares of vegetation were calculated for three different NDVI thresh-

Fig. 2. Schematic representation of the three models.

olds (0.3, 0.4, 0.5) to let the RF algorithm choose the most informa-
tive variable. Second, the spatial arrangement of these classes was
also considered: the size and shape properties of the segmented ob-
jects were used. Specifically, the mean value, standard deviation of
the size and shape index of all objects classified as vegetation were
taken into account as features. In order to represent multi-scale in-
formation, the features were calculated for two segmentation scale
levels (20, 200). This made a set of 40 features derived from the
images fed into the RF for the regression of vegetation parameters.

3.3. Model B: Transfer Learning

The underlying hypothesis of model B is that an Autoencoder (AE)
[12], trained on the unlabelled dataset, can generate a feature space
that can be easily adapted to the regression task on the labelled
dataset. To this end, the encoding part of an AE model was designed
to have a latent representation of size 32x42x42. This dimensional-
ity of the latent feature space allowed to create a simple regression
CNN with less than 10 K parameters in the second step. The regres-
sion CNN starts with a 1D convolutional layer intended to reduce
the number of feature maps to the ones needed for the task at hand.
Subsequently, three 2D convolutional layers are used again. Average
pooling is applied to the output, the features are flattened, fed into a
linear layer and sigmoid is applied to force the output to take values
between 0 and 1. Rescaling (100x) represents the final step to get
the common value range of the variables of interest.

3.4. Model C: Data augmentation/Semi-supervised approach

Another possibility to exploit the great number of unlabelled tiles
is to consider their image similarity to the labelled ones, following
the semi-supervised setting from [13]. Therefore, model C (Figure



2) uses a one-shot pixel-wise pseudo-label generator for unlabelled
tiles. With a ResNet-18 [14], pre-trained on ImageNet and without
the last layer, 512 features were calculated for each UAV tile. The
proximity of two vectors in this feature space is assumed to indicate
the structural similarity of images and can be exploited to assign
the pseudo-labels. To circumvent the issues arising from the high
dimensionality of the feature space, vectors were mapped to a 2D
space with t-Distributed Stochastic Neighbour Embedding (t-SNE)
[15], before performing the assignment. In detail, the dataset was di-
vided into small batches of 150 tiles, containing an equal number of
labelled training tiles and unlabelled tiles. The mean nearest neigh-
bour (NN) distance between all points was calculated and used as
a distance threshold for assigning values to unlabelled tiles. If the
distance between an unlabelled point and one or multiple labelled
ones was lower than the mean NN distance, a pseudo-value was cal-
culated for the unlabelled one using the weighted average of the val-
ues of all the labelled tiles being considered. This procedure was
repeated for all unlabelled tiles. To handle t-SNE inherent stochas-
ticity, multiple trials were conducted for each batch. The one with
minimum Kullback-Leibler divergence and root mean squared error
(RMSE) calculated between labelled point pairs less than the mean
NN distance apart was chosen to be the best one used for pseudo-
value assignment. Afterwards, the datasets were balanced, ensuring
a uniform quantile spacing for each variable using a random over-
sampling technique. Finally, the number of generated pseudo-values
was capped at 5000 to limit the amount of data and to speed up the
subsequent training. The regression was then performed by placing
a regression block (as described in Section 3.3) in place of the last
layer of a pre-trained EfficientNet-b0 [16].

3.5. Validation strategy

For all models, hyperparameter tuning has been performed by mea-
suring the model performance on the validation set. For model A,
the number of features considered when looking for the best split
at a given tree node and the minimum number of samples required
to be at a leaf node were tuned as hyperparameters. They were op-
timised using the RMSE. For models B and C, the learning rate,
optimiser (Adam vs. SGD) and loss (L1 vs. L2) were considered
as relevant hyperparameters and chosen based on the mean absolute
error (MAE). The stratified sampling splits as described in Section
3.1 were created ten times to perform cross-validation of the results.
Only for the AE training within model B, cross-validation was not
necessary due to the large number of unlabelled tiles.

4. RESULTS AND DISCUSSION

The quantitative comparison between the models using MAE,
RMSE and Person’s correlation coefficient (r) is presented in Ta-
ble 1. Across all metrics, the three models have similar accuracy.
For AGB, model A performs slightly better, while for all other
variables model C produced the most accurate results. For each
singular variable, the r coefficient is coherent between models. It
varies considerably between variables: while predictions and in
situ measurements are strongly correlated for coverage, volume and
height exhibit intermediate values. For AGB lowest correlations are
observed. This reflects the increased difficulty of estimating more
complex structural-morphological variables based on 2D UAV data.
Interestingly though, the increased complexity of the regression
tasks for these structural variables is not handled better by the deep
learning models compared to the RF model. A correlation between

the models’ capacities, the quality of their predictions and the com-
plexity of the task is not apparent.
Importantly, a large uncertainty is attached to all metrics introduced
by the small training dataset. To investigate the statistical signifi-
cance of the results, a Bayesian correlated t-test [17] was conducted.
The advantage of this framework is the ability to calculate a posterior
distribution of performance differences between the models, which
can be interpreted as an actual probability distribution. This allows
to evaluate if the observed differences exceed a level for which
we would consider two algorithms to obtain practically equivalent
results. The regions of practical equivalence (aka ROPEs) were set
to 0.05 times the standard deviation of the respective variable of
interest. As Figure 3 shows, most of the model comparisons obtain
non-significant differences and the models are more likely to differ
only for vegetation volume.
To evaluate the results qualitatively, predictions for each model were
created for the independent CMB test site using a dense sampling
interval of 0.5m. Subsequently, the predicted values were linearly
interpolated to obtain spatially continuous representations (Fig. 4).
As can be seen in these maps, there is a high correlation between
the predictions of the models and the different variables. For all
variables and models, the predicted distributions generally match
the spatial patterns as emergent from the true and false-color visu-
alisations of the site. Differences between the individual models
concern a stronger tendency of model C towards high-frequent noise
and less accurate predictions of intermediate values especially for
vegetation cover and height. At the same time, the predictions across
variables seem to be better correlated for model C. While spots may
appear to be densely vegetated based on predicted vegetation cover
and height, they may counter-intuitively have low biomass and
vegetation volume values at these locations for models A and B.

Variable Model MAE RMSE r
AGB A 160.83 (± 26.99) 220.99 (± 50.36) 0.58 (± 0.17)

B 176.94 (± 33.29) 234.54 (± 55.87) 0.55 (± 0.18)
C 164.21 (± 29.09) 235.43 (± 47.00) 0.61 (± 0.17)

coverage A 8.60 (± 1.43) 11.07 (± 2.06) 0.93 (± 0.03)
B 9.36 (± 1.13) 11.47 (± 1.36) 0.93 (± 0.03)
C 8.07 (± 1.84) 10.45 (± 2.94) 0.94 (± 0.04)

height A 5.93 (± 0.97) 8.00 (± 1.40) 0.68 (± 0.07)
B 5.56 (± 1.08) 7.74 (± 1.36) 0.70 (± 0.09)
C 5.46 (± 1.00) 7.32 (± 1.34) 0.76 (± 0.09)

volume A 42.76 (± 7.63) 65.94 (± 14.84) 0.77 (± 0.08)
B 37.71 (± 9.84) 62.60 (± 16.23) 0.79 (± 0.09)
C 36.66 (± 8.12) 58.15 (± 12.16) 0.83 (± 0.06)

Table 1. Test accuracy measured for the 25 samples of the test set.
Mean values and standard deviations across 10-folds are specified.
Best models for each variable and metric are highlighted.

5. CONCLUSIONS

In this paper, we proposed learning-based methods to derive bio-
physical parameters (AGB, vegetation height, volume and cover-
age) from ultra-high resolution UAV imaging (i.e., millimetric res-
olution). We explored approaches that are explicitly addressing the
limitation of sparse training data: the first one relied on a robust ma-
chine learning algorithm, the second one exploited the large quantity
of unlabelled UAV data and the last one additionally considered the
statistical distribution of the in situ measurements (pseudo-label gen-



Fig. 3. Posterior distributions for mean absolute differences between
models. Red bars enclose the ROPEs.

Fig. 4. Mapped predictions for CMB test site.

eration). Strikingly, the considerable uncertainty in predictions did
not allow any model to be identified unequivocally as superior or in-
ferior to another. This is another consequence of the lack of in situ
measurements but also due to their distribution and intrinsic mea-
surement precision. We note that the study of the uncertainties (via
the t-test in our study) is a crucial step to compare the models in such
cases, even if a cross-validation approach is already used. Despite
the existing uncertainties, it has to be noted that the two deep learn-
ing models were not significantly worse than the RF model. The
performances of model C were even promising. Even if the liter-
ature on AGB’s regression from UAV data is still focused mainly
on machine learning approaches, this exploratory study was able to
pave the way for novel deep learning methods to study biophysical
parameters in the case of sparse training data. A transfer to and test
with other data sets such as GrowliFlower [18] remains to be done
in the future. Finally, from an ecological perspective, the most in-
teresting parameters to study degradated ecosystems are AGB (also
the most challenging with height) and vegetation cover. With this in
mind, we can affirm that the good performances on the latter variable

puts this study in an interesting position for pratical applications.
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