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Highlights
Siamese KPConv: 3D multiple change detection from raw point clouds using deep learning
Iris de Gélis,Sébastien Lefèvre,Thomas Corpetti

• Siamese KPConv, the first deep architecture for multiple change detection at point scale over 3D point clouds
• Urb3DCD-V2, a novel simulated dataset to evaluate 3D point cloud change detection methods
• Pre-training Siamese KPConv on simulated data greatly speeds up the training on real data
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A B S T R A C T
This study is concerned with urban change detection and categorization in point clouds. In such
situations, objects are mainly characterized by their vertical axis, and the use of native 3D data
such as 3D Point Clouds (PCs) is, in general, preferred to rasterized versions because of significant
loss of information implied by any rasterization process. Yet, for obvious practical reasons, most
existing studies only focus on 2D images for change detection purpose. In this paper, we propose a
method capable of performing change detection directly within 3D data. Despite recent deep learning
developments in remote sensing, to the best of our knowledge there is no such method to tackle multi-
class change segmentation that directly processes raw 3D PCs. Thereby, based on advances in deep
learning for change detection in 2D images and for analysis of 3D point clouds, we propose a deep
Siamese KPConv network that deals with raw 3D PCs to perform change detection and categorization
in a single step. Experimental results are conducted on synthetic and real data of various kinds
(LiDAR, multi-sensors). Tests performed on simulated low density LiDAR and multi-sensor datasets
show that our proposed method can obtain up to 80% of mean of IoU over classes of changes, leading to
an improvement ranging from 10% to 30% over the state-of-the-art. A similar range of improvements is
attainable on real data. Then, we show that pre-training Siamese KPConv on simulated PCs allows us
to greatly reduce (more than 3,000×) the annotations required on real data. This is a highly significant
result to deal with practical scenarios. Finally, an adaptation of Siamese KPConv is realized to deal
with change classification at PC scale. Our network overtakes the current state-of-the-art deep learning
method by 23% and 15% of mean of IoU when assessed on synthetic and public Change3D datasets,
respectively.

1. Introduction
Because of the constant growth of the world population

and human activities, landscapes are continuously evolving,
in particular within cities. The past decades have seen a
regular increase in urban areas across the entire world. To
generate adequate and updated maps (Rottensteiner, 2008;
Champion et al., 2010), to help territorial planners in city
management (Sandric et al., 2007; Feranec et al., 2007)
and also to quickly identify damage in the case of natural
disasters (Sofina and Ehlers, 2016; Vetrivel et al., 2018),
change detection and categorization is a crucial issue.

In urban environments, most objects (buildings, vege-
tation, etc.) are mainly characterized by their vertical axis.
Therefore, we advocate for the use of 3-Dimensional (3D)
data such as 3D Point Clouds (PCs). While most exist-
ing studies concerning change detection only focus on 2-
Dimensional (2D) images (Shi et al., 2020), we propose to
concentrate on 3D data, which is better suited to urban ge-
ometry and avoids 2D image problems such as the difference
of viewing angles between distinct acquisitions, spectral
variability of objects over time, perspective and distortion
effects (Qin et al., 2016). Furthermore, it has been noticed
that radiometric information is not sufficient for accurate
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change detection and categorization (Waser et al., 2007;
Guerin et al., 2014; Erdogan and Yilmaz, 2019).

Thanks to photogrammetric acquisition or light detection
and ranging (LiDAR) acquisition, 3D PC data are becoming
more popular. Yet, as reported in a recent survey (de Gélis
et al., 2021b), most studies end up relying solely on 2D
rasterization of PCs onto a Digital Surface Model (DSM).
Indeed, dealing directly with 3D PCs involves more diffi-
culties due to PC characteristics: sparsity, disorder, irregular
point distribution. Furthermore, point locations and distri-
bution can vary significantly in unchanged areas making
the change detection task even harder. Therefore, rasterizing
PCs onto regular grids of pixels of height facilitates the
application of traditional 2D image processing approaches.
But the rasterization process involves a loss of possibly in-
teresting information, e.g. on building facades. Furthermore,
depending on the chosen grid size, points are aggregated
into a single value, leading to a potentially drastic loss of
information with too large steps. On the other hand, a too
thin grid size leads to plenty of empty pixels generally filled
with interpolation causing approximate data. Aside from 2D
DSM rasterization, 3D rasterization into a 3D voxel grid
is also a possibility and this facilitates the processing by
using, for example, convolutions with 3D kernels. However,
similarly to 2D rasterization, a large grid size also implies a
loss of information, and a too thin grid size quickly becomes
computationally expensive because of the sparse character-
istics of 3D environments. Lastly, it should be outlined that
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Figure 1: Different types of change detection results, at the
scale of PCs (a and b) or points (c and d) and with binary (a
and c) or multiple classes (c and d). In this study, we tackle
the multiple change issue (d). In addition, for the purpose
of comparison with the state-of-the-art, a method is also
proposed to address multiple change classification (b).

the computation of 3D meshes or specific features related to
PC is tricky with rasterized data, advocating for using raw
3D PCs.

Concerning 3D PCs change detection, binary (change/no-
change) or multiple (nature of change) information can
be extracted. In this study, change categorization refers to
identification of changes among multiple classes. Then,
similarly to 2D images, change detection methods can return
either classification or segmentation results. In a change
classification framework, results are obtained at the level
of the PCs, i.e., one label for one pair of PCs. Conversely,
change segmentation results are given at the point scale. The
different settings of the change detection and categorization
problem from 3D point clouds are summarized in Figure 1.
In this study, we mainly aim to tackle the multiple change
segmentation task (Figure 1d) giving a finer precision of
results. However, for the sake of comparison with state-
of-art methods, we will also address the multiple change
classification task.

While deep learning provides interesting results in re-
mote sensing images (Zhu et al., 2017; Ma et al., 2019) or 3D
PCs object detection and segmentation (Qi et al., 2017b; Shi
et al., 2019; Thomas et al., 2019; Guo et al., 2020), to the best
of our knowledge, there is no deep learning method for the
multiple change segmentation task dealing directly with raw
3D PCs. Therefore, in this paper, the following contributions
are proposed:

1. A 3D PCs Siamese Kernel Point convolution (KP-
Conv) network able to deal with multiple change
segmentation, the first deep method to provide results
at point scale1. This network is also adapted for a

1A preliminary version of this method was presented at the ISPRS
Congress 2021 (de Gélis et al., 2021a).

multiple change classification task in order to allow
comparison with the state-of-the-art;

2. Three new datasets for 3D change segmentation and
classification, publicly available to foster research in
the field and ease reproducibility.

After a presentation of related works in the following sec-
tion, we introduce in Section 3 both of our proposed net-
works, named Siamese KPConv and its Cls variant, for
3D point clouds change segmentation and classification,
respectively. Then, in Section 4 we propose the three new
datasets: the synthetic Urb3DCD-V2 dataset as well as its
classification version and Actueel Hoogtebestand Nederland
Change Detection (AHN-CD), a change detection version of
the real AHN dataset. Section 4 also presents Change3D,
a public dataset for change detection at PCs scale. We
conduct experiments on these datasets and report the results
in Section 5. Section 6 is devoted to discussion, and we show
that pre-training on simulated data greatly reduces the cost
of manual annotation on real data. Finally, we provide a
conclusion and perspectives in Section 7.

2. Related work
In the following section, we review existing works on 3D

PCs change detection. We also discuss some representative
works on Siamese architectures and deep learning for 3D
PCs.
2.1. 3D PCs change detection

Existing traditional methods dealing directly with 3D
PC change detection and categorization can be divided into
two groups. Post-classification methods firstly perform a
semantic segmentation of each PC and then compare ob-
tained labels in order to retrieve changes (Awrangjeb et al.,
2015; Roynard et al., 2016; Siddiqui and Awrangjeb, 2017;
Xu et al., 2015b; Dai et al., 2020; Voelsen et al., 2021).
Conversely, pre-classification methods immediately high-
light changes and then classify them (Xu et al., 2015a). Both
pre- and post-classification methods embed errors coming
from each step, thus leading to errors in the final results
(Xu et al., 2015b). To counter this issue, Tran et al. (2018)
suggest performing change detection and categorization in a
single step by using a Random Forest (RF) algorithm trained
on handcrafted features related to point distribution, geomet-
rical attributes, terrain elevation, multi-target capability of
LiDAR and a “between date” feature.

While numerous works dealing with feature extraction,
object detection, and segmentation in 3D PCs are available,
the change detection issue still remains largely unexplored
with deep learning (de Gélis et al., 2021b). Indeed, some
studies apply Siamese or Feed-Forward with early fusion
(EF) networks on 2.5D DSM. The results obtained sim-
ply consist of a binary classification at patch level (Zhang
et al., 2019). Another deep architecture has been reported
in Ku et al. (2021), namely Siamese Graph Convolutional
Network (SiamGCN). This architecture is designed in the
context of the Shape Retrieval Challenge 2021 (SHREC21)
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on Change3D dataset. This dataset was designed for multiple
change classification in a complex street environment, i.e., it
consists in recognizing the type of change between two PCs
centered on an urban furniture (e.g., road signs). Thus, the
expected result is provided at the PCs scale corresponding
to the multiple change classification task (Figure 1b).
2.2. Siamese architectures

Firstly developed in computer vision (Chopra et al.,
2005; Zagoruyko and Komodakis, 2015), Siamese networks
belong to the double-stream architecture family. In partic-
ular, a Siamese network encoder part is composed of two
similar branches extracting features from input data, which
will then be fed into a decision-maker component to high-
light changes. Thus, each input image is given separately to
a branch of the encoder acting as a feature extractor. Usually,
the two branches of the encoder share exactly the same
architecture. However, their weights may be shared for pure
Siamese networks (Zhan et al., 2017; Hedjam et al., 2019;
Jiang et al., 2020) or unshared in pseudo-Siamese networks
(Touati et al., 2020; Xu et al., 2020). The latter lead to more
flexibility even though the number of trainable parameters
is higher, yielding more complexity during the training
stage (Dong et al., 2018). In addition, in order to classify
changes, one can also use deep Siamese Fully Convolutional
Network (FCN). As in a conventional Siamese network, the
encoder part is composed of two branches. Each branch is a
succession of traditional convolution and pooling layers in
order to extract information at several scales. A particularity
of Siamese FCN remains in concatenating or fusing at each
pooling step the difference between extracted features of
the two encoder branches to the corresponding scale in the
decoder part (Daudt et al., 2018). Finally, Siamese FCNs
are inspired by the U-Net architecture with skip connections
between the encoder and decoder. However, in Siamese
FCNs, skip links come from a fusion (by concatenation or
differentiation) of information provided by each branch of
the encoder part.
2.3. Deep learning for 3D PCs

Recent years have seen an increasing interest in develop-
ing deep learning frameworks dealing with 3D PCs. Specific
PC characteristics (sparsity, continuity, etc.) in fact require
particular attention in order to define adapted networks and
associated operations.

To this end, existing techniques can be distinguished into
three categories, namely projection-based, discretization-
based or point-based methods. Projection-based methods
consist in projecting 3D PCs onto regular 2D grids (rasters,
spheres, etc.) in order to apply traditional existing 2D ap-
proaches (Boulch et al., 2018; Wu et al., 2018; Guiotte
et al., 2020). In a similar spirit, discretization-based methods
also transform 3D PCs into discrete representation in 3D
voxels (Tchapmi et al., 2017; Rethage et al., 2018). This
rasterization process, whatever the dimensions of the output
(2D or 3D), brings severe issues such as loss of information
through the aggregation of multiple points into a single cell,
and possible empty cells (especially in the 3D case) due to

the regular sampling. While being popular in the early years,
they are now most often neglected in favor of pure 3D PC
approaches, as will be also considered in this study.

Conversely, point-based methods are appealing since
they avoid rasterization or discretization steps and their
aforementioned drawbacks. As reported in a recent survey
(Guo et al., 2020), they have become the most popular
strategy to deal with 3D PCs. To this end, PointNet (Qi
et al., 2017a) allows learning per-point features using shared
Multi-Layer Perceptron (MLP) and global features using
symmetrical pooling function to deal with 3D PCs charac-
teristics (orderless and unstructured). Further, improved by
Qi et al. (2017b) to group points hierarchically and learn
features at different scales, PointNet is still the basis of
numerous works in deep learning for 3D PCs (Lang et al.,
2019; Shi et al., 2019). However, such a popular framework
shows its limitations when applied in a remote sensing
context, where large PCs could be acquired through Aerial
LiDAR Survey (ALS) surveys (Landrieu and Simonovsky,
2018) and where no prior assumption can reasonably be
made regarding the scene size (in terms of exact number of
points).

Alternative point-based strategies have then been intro-
duced to counter weaknesses of PointNet and its variants.
Most often, they rely on a specific definition of the convolu-
tion operator, and/or on the underlying graph representation.
While the latter has led to various successful frameworks
(Landrieu and Simonovsky, 2018; Wang et al., 2019a,b), but
requires an initial mapping of the PC into a graph structure,
the former has the advantage of being more natural for
transferring existing deep learning know-how for 2D images,
including the well-explored problem of change detection in
remote sensing.

In our study, we aim to tackle the 3D PC change detec-
tion task through inspiring from previous success in deep
learning for change detection, that remains limited to the 2D
case. With this objective in mind, relying on point convo-
lutions is a relevant choice, and we now focus our review
of related work on point convolutions. Let us emphasize
that relying on point convolutions allows us to easily adapt
popular architectures, such as the encoder/decoder widely-
used for numerous tasks, including semantic segmentation
or change detection, the latter being successfully addressed
with Siamese networks (see Section 2.2).

Point convolution is defined for a point 𝑥 ∈ ℝ3 as:
( ∗ 𝑔)(𝑥) =

∑

𝑥𝑖∈3
𝑅,𝑥𝑖

𝑔(𝑥𝑖 − 𝑥)𝑓𝑖 (1)

where 𝑥𝑖 is a point in  ∈ ℝ𝑁×3, 𝑓𝑖 its corresponding
features in  ∈ ℝ𝑁×𝐷, with 𝐷 the number of input features,
3
𝑅,𝑥𝑖

=
{

𝑥 ∈ ℝ3𝑠.𝑡.‖𝑥 − 𝑥𝑖‖ ≤ 𝑅
} is the neighborhood of

size 𝑅 ∈ ℝ and 𝑔 is the kernel function.
A crucial issue remains in the definition of the kernel

function 𝑔. 𝑔 returns weight matrix inℝ𝑂, with𝑂 the number
of output features. A first category is based on MLP (Wang
et al., 2018; Li et al., 2018; Hermosilla et al., 2018; Boulch,
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2020) while another family relies on geometric kernels.
Convolutions involving MLP are more complex, require
more trainable parameters and exhibit limited performances.
Geometric kernels can be defined with linear functions on
k-Nearest Neighbors (kNN) (Groh et al., 2018), polynomial
functions (Xu et al., 2018), weights in voxels (Hua et al.,
2018) or even kernel points (Atzmon et al., 2018; Thomas
et al., 2019). Among these convolutions, Kernel Point Con-
volution (KPConv) (Thomas et al., 2019) achieved very good
results on segmentation and classification tasks, even on
large urban ALS datasets (Varney et al., 2020). KPConv
also outperforms numerous other traditional deep learning
methods such as PointNet++ (Qi et al., 2017b) or graph-
based methods. Based on these overall performances and its
intuitive principles, we chose to rely on KPConv to deal with
PCs.

We now recall the main ideas from KPConv, and refer the
interested reader to the original paper Thomas et al. (2019)
for more details. The kernel function 𝑔 defined in KPConv
makes it possible to apply different weights to different areas
inside the ball 3

𝑅,𝑥𝑖
of radius 𝑅 centered on a point 𝑥𝑖 of

the PC. These weights are defined for all points 𝑥𝑘 inside
the ball. These 𝐾 𝑥𝑘 points are called kernel points. This
domain definition inside a specific area ensures robustness to
density variation, which is an interesting property compared
to kernel functions based on kNN. Let {𝑊𝑘 | 𝑘 ≤ 𝐾

}

⊂
ℝ𝐷𝑖𝑛×𝐷𝑜𝑢𝑡 be the associated weight matrices that map fea-
tures of all kernel points 𝑥𝑘 from dimension 𝐷𝑖𝑛 to 𝐷𝑜𝑢𝑡.Thus, the kernel function 𝑔 is defined as follows for any
centered neighbors 𝑦𝑖 = 𝑥𝑖 − 𝑥 with 𝑥 ∈ 3

𝑅,𝑥𝑖
:

𝑔(𝑦) =
∑

𝑘≤𝐾
ℎ(𝑦, 𝑥𝑘)𝑊𝑘 (2)

where ℎ is the correlation function between 𝑥𝑘 and 𝑦, as
defined by equation (3). This correlation function makes
it possible to define how each kernel point impacts the
convolution results. Basically, it should be higher when 𝑥𝑘 is
closer to 𝑦 depending on the influence distance of the kernel
points 𝜎:

ℎ(𝑦, 𝑥𝑘) = max
(

0, 1 −
‖𝑦 − 𝑥𝑘‖

𝜎

)

(3)

Notice that the positions of kernel points are crucial to
define KPConv. Thomas et al. (2019) proposed two versions
of their convolution with rigid or deformable kernels. In the
rigid case, kernel points are distributed in order to be as far as
possible from each other. In the deformable case, positions
of kernel points are adapted to the PC. In fact, a local shift
of each kernel point is learned by the network to adapt
to the scene. In practice, deformable kernels considerably
increase the number of training parameters and give even
worst results than rigid kernels in outdoor scenes where the
variability is lower (Thomas et al., 2019).

Let us now introduce the Siamese network based on
KPConv proposed in this paper.

3. 3D point cloud change detection
The following section describes the proposed methods

for change detection between bi-temporal 3D PCs whether at
PC or points scale (see Figure 1). Based on the literature of
change detection in 2D images and on the state-of-the-art in
deep learning for processing 3D PCs, we propose a Siamese
FCN with Kernel Point Convolution (KPConv). In fact,
standard 2D convolution involved in Siamese FCN (Daudt
et al., 2018) is not directly suitable for 3D PCs. We therefore
combine Siamese FCN with specific 3D PC convolutions,
namely KPConv (Thomas et al., 2019). Indeed, as pointed
out in the Section 2.3, KPConv is chosen because of its high
performances against the state-of-the-art and its intrinsic
compatibility with the Siamese framework. We recall the
appealing properties of KPConv over the well-established
PointNet in our change detection context, i.e. its ability to
scale to large datasets and to deal with different number of
points from each of the input PCs.
3.1. Siamese KPConv network

To extend the Siamese principle to 3D PCs, we propose
here to embed the KPConv in a deep Siamese network, as
presented in Figure 2. We detail here the different parts of
our architecture. Both input PCs will pass through encoders
consisting of a stack of five layers containing two convolu-
tional blocks, the first one being “strided” except for the first
block.

Convolutions are performed here with KPConv pre-
sented in Section 2.3. To mimic 2D “strided” convolutions,
“strided” KPConv operations reduce the number of points
to compute features at different scales. At each layer 𝑗,
the cell size 𝑑𝑙𝑗 corresponding to the minimum distance
between two consecutive points is recursively defined as
𝑑𝑙𝑗 = 2× 𝑑𝑙𝑗−1. As for the first layer, 𝑑𝑙0 is set according to
the dataset density and the level of detail in the changes we
aim to retrieve. KPConv radius 𝑅 also depends on the layer
and is set to 𝑅𝑗 = 2.5 × 𝑑𝑙𝑗 . The decoder part is composed
of a stack of five layers holding a nearest upsampling and
concatenation stage and a unary convolution. The unary con-
volution behaves like a fully connected layer. We can observe
that encoder and decoder architectures are very similar to
KP-FCNN used for semantic segmentation (Thomas et al.,
2019).

Equivalently to a typical FCN with skip connections, the
network enables the passing of information between inter-
mediate layers of the encoder and the decoder. In Siamese
networks however, a strategy should be used to fuse data
coming from both encoders. Daudt et al. (2018) showed that
a difference of features coming from both encoder layers
gives better results for change detection. The same conclu-
sion is made in SiamGCN (Ku et al., 2021): the difference
of features leads to more accurate results than concatenating
both sets of features into the decoder part. Inspired by
these results, we concatenate the difference of extracted
features associated with the corresponding encoding scale
(see Figure 2). In practice, computing such feature difference
is not obvious, since PCs do not contain the same number
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of points and are not defined at the same positions, even
in non-changed areas. To cope with this issue, we compare
each point of the second PC with its nearest spatial point
in the first PC. Thus, for two PCs 1 and 2, with their
corresponding features1 and2, the feature difference –○ is
computed between features 𝑓2𝑖 ∈ 2 of each point 𝑥2𝑖 ∈ 2of the second PC and features 𝑓1𝑗 ∈ 1 of the nearest point
𝑥1𝑗 ∈ 1. Thereby:

(1,1) –○(2,2) = 𝑓2𝑖 − 𝑓1𝑗|𝑗=argmin(‖𝑥2𝑖−𝑥1𝑗‖) (4)
Within the encoder, “strided” convolutions sub-sample

PCs at each layer, leading us to perform nearest neighbor
computation for the feature difference each time the PC is
sub-sampled.

Let us observe that while both our Siamese KPConv
network and the original KP-FCNN share the principle of
embedding KPConv into a deep neural network, they signif-
icantly differ to address their respective tasks: semantic seg-
mentation for KP-FCNN vs. multiple change segmentation
for our Siamese KPConv. Indeed, our model relies on two
encoders enabling to take two different PCs as input, before
fusing the encoded information through some subtraction
layers.

The network takes as input the 3D point coordinates
and, similarly to state-of-the-art deep models for 3D PCs,
is also flexible to any supplementary input features such
as Red-Green-Blue (RGB) information, LiDAR intensity,
etc. In practice, literature reports that there is no systematic
gain when using color information (Boulch, 2020). Fusion
of color and geometric information can lead to better re-
sults but remains an open problem (especially when they
come from two different data sources) (Widyaningrum et al.,
2021). Since this question is out-of-scope of our study, we
simply recommend following the usual practice in the field
(characterize each point by the geometric coordinates X,Y,Z
and any available supplementary features RGB, intensity,
etc.) as early done by the authors of PointNet (Qi et al.,
2017a). These supplementary features can be easily added as
inputs by modifying the input dimension of weights matrix
of kernel points of the first layer.

We propose two versions of this network: encoder with
shared or unshared weights (the latter being equivalent to a
pseudo-Siamese network). Let us notice that even if weights
are not shared in two encoders of the Pseudo-Siamese ver-
sion, other hyper-parameters remain similar. Both will be
evaluated in Section 5. Usually, pseudo-Siamese networks
are used when data to be compared come with different
characteristics.
3.2. Siamese KPConv network for classification of

change at PCs scale
In order to compare our proposed method to the state-of-

the-art which remains limited to PCs change classification,
we built a second version of Siamese KPConv dedicated
to this task (see Figure 1b), henceforth referred as Siamese
KPConv Cls. The architecture is presented in Figure 3. It is
composed of the same encoder part as in Siamese KPConv

Figure 2: Our Siamese KPConv network architecture. The
Pseudo-Siamese version of the network is the same without
shared weights symbolized by dotted purple arrows.

Figure 3: Our Siamese KPConv Cls network architecture for
classification.

network, except that a fully connected layer has been added
at the end of the last layer. Then, features coming from the
last layer of each encoder are fused through a difference
based on nearest neighbor as in the previous architecture,
before these feature differences are given as input to a fully
connected layer. A global average pooling is done in order
to downscale to the global PC scale. Finally, after a last
fully connected layer, PC change classification results are
obtained.

Notice that several configurations of this network have
been empirically tested to select the best architecture in
terms of number of layers or parameters at each layer.
Furthermore, the position of the average pooling has been
also assessed by testing to perform an average pooling after
each encoder and then perform a simple feature difference,
but this leads to worse results.

In the next section we present the datasets used to con-
duct our experiment.

4. 3D point clouds change detection datasets
To the best of our knowledge, there is no public dataset

with bi-temporal PCs annotated as a function of the change
that occurred between the two dates at the point level, except
for our recent Urb3DCD proposal (de Gélis et al., 2021b).
This dataset contains only 3 classes (related to ground and
buildings) where 2 different kinds of changes can be sim-
ulated. In order to assess our method in tougher and more
realistic conditions, we propose here a new version of this
dataset with up to 7 classes by adding vegetation and mobile
objects. The description of the enhanced simulator and of
this new Urb3DCD-V2 is given in sub-section 4.1. The latter
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also introduces Urb3DCD-V2-Cls, a simulated dataset for
multiple change classification. Then, to analyze the net-
work’s performances in real conditions, we also adapted the
Actueel Hoogtebestand Nederland (AHN) dataset to change
detection and categorization, leading to the new AHN-CD
dataset as described in sub-section 4.2. Finally, let us note
that in order to compare our method with other state-of-art
methods in change classification at PCs scale, we also use
the public Change3D dataset (Ku et al., 2021) that will be
briefly presented in sub-section 4.3.
4.1. Simulated urban change detection dataset

To evaluate the performances of our method in tougher
conditions than in de Gélis et al. (2021a), we have improved
our simulator of urban 3D PCs (de Gélis et al., 2021b) to
make it more realistic. Vegetation has been added thanks to
tree models created with Arbaro software (Diestel, 2003).
Three different models have been chosen and added to the
city in bare ground areas. Trees have been randomly scaled
and rotated around the vertical axis to add diversity to the
vegetation. Between each city model, changes have also been
introduced into vegetation: some trees have been added,
some have been deleted as if they have been cut and finally,
we simulated tree growth between time steps. Moreover,
some mobile objects (cars and trucks) have also been added
in streets. The size of mobile objects and in particular their
length, are also set randomly, within a realistic range. All
mobile objects are randomly placed in the 3D model so that
there is no collision between other objects. Because the aim
of our study is to retrieve long-term changes only, mobile
objects are assigned a single class in the change-related
annotations. We illustrate a pair of simulated bi-temporal
PCs in Figure 4. Based on this simulator, we generated
several datasets.

Let us recall that the simulator allows us to choose
the configuration of LiDAR. A first sub-dataset has been
simulated in very low density conditions (0.5 points/m2)
with a very low noise level. This low density should be chal-
lenging for detecting small objects such as cars. According
to de Gélis et al. (2021b), the most challenging data configu-
ration for change detection methods is the multi-sensor (MS)
setting. Thus, we decided to simulate another sub-dataset
with a first PC with low density, high noise (mimicking PCs
coming from satellite photogrammetry) and a second PC
with a higher density and very low noise (mimicking aerial
LiDAR acquisition). Acquisition configurations are summa-
rized in Table 4.1. Figure 9(a-b) and 11(a-b) give examples
of parts of input PCs over the same area. In Figure 11(a-
b), the difference of quality between the two input PCs is
clearly visible. Training, validation and test areas are similar
to the dataset presented in de Gélis et al. (2021b). Similarly
to the previous version of the dataset, we run 10, 1 and
3 simulations over each training, validation and test areas
respectively, in order to constitute a large enough dataset for
training and testing methods. Notice that the annotation is
given at the point scale. Thereby, 10 simulations over the
training area corresponds to about 1.5 million labeled points

(a) PC 1

Ground Building Vegetation Mobile Objects

(b) PC 2

Unchanged New Building
Demolition New Vegetation
Vegetation Growth Missing Vegetation
Mobile Objects

(c) Labeled changes on PC2

Figure 4: Sample PCs at two timestamps (a,b) with the
corresponding 7 types of changes simulated in (c).

for the low density sub-dataset and 20 times more for the MS
sub-dataset (as the labeled PC is the second one and it has a
finer resolution).

Another particularity of this simulated dataset is that
PCs contain occluded parts. Occlusions are very typical of
3D PCs data because of objects shadows. In dense urban
areas some parts could be very hard to sense using only
ALS campaigns. Hence, we decided to simulate these 3D
PCs artifacts to enhance the realism of our synthetic dataset
and challenge change detection methods on this particular
problem. Indeed, by varying the flight plan of the simulated
ALS, occluded areas differ between the two acquisitions. An
example of such occlusion is given in Figure 10(a-b) where
building facades without point (hidden facades) are not at
the same location in the two acquisitions.
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Parameters

Sub-datasets
LiDAR low dens. MS Urb3DCD-V2-ClsUrb3DCD-V2-1 Urb3DCD-V2-2

Both PCs PC1 PC2 Both PCs

Density (points/m2) 0.5 0.5 10 10
Noise range across track (◦) 0.01 0.2 0.01 0.01
Noise range along track (◦) 0 0.2 0 0
Noise scan direction (m) 0.05 1 0.05 0.05

Scan angle (◦) -20 to 20 -20 to 20 -20 to 20
Overlapping (%) 10 10 10

Height of flight (m) 700 700 700
Annotation level Point Point PC

Table 1
Acquisition configurations for the three sub-datasets of Urb3DCD-V2. Dens. stands for density.

Labels No change New building Demolition New vegetation Vegetation removed Total

Train set 2,395 (51.77 %) 865 (18.70 %) 660 (14.27%) 321 (6.94%) 385 (8.32%) 4,626
Validation set 412 (51.12 %) 173 (21.46 %) 158 (19.60%) 19 (2.36%) 44 (5.46%) 806

Test set 1,233 (51.10%) 554 (22.96%) 329 (13.63%) 160 (6.63%) 137 (5.68%) 2,413

Table 2
Class distribution for the Urb3DCD-Cls training, validation and testing splits. For each class, the number of samples along with
the class proportion (in %) is given.

In the following work, this dataset is referred to as
Urb3DCD-V2.

A third sub-dataset version has been created from the
simulated data. The aim here is to propose pairs of PCs
focused on mainly one type of change. The annotation is
given as a function of the majority change in the pair of PCs,
thereby this sub-dataset allows us to focus on the multiple
change classification task (Figure 1b). To build this dataset,
pairs of cylinders of 15 m in radius have been extracted in
simulated acquisitions over the train, validation and testing
areas presented in de Gélis et al. (2021b). The configuration
of acquisition of the PCs are given in Table 4.1 in Urb3DCD-
V2-Cls column. A label is given to the pair of cylinders as a
function of the majority class. Pairs of cylinders where too
many different classes were present are excluded from this
sub-dataset. Finally, pairs of cylinders are distributed into
five different classes: no change, new building, demolition,
new vegetation and vegetation removed. The class distribu-
tion of this dataset is given in Table 2.

Notice that Urb3DCD-V2 as well as its classification
variant are available at the following link: https://ieee-d

ataport.org/open-access/urb3dcd-urban-point-clouds-sim

ulated-dataset-3d-change-detection.
4.2. Change detection dataset from real ALS data

The Netherlands was the first country to have full cov-
erage of their country by ALS data (Sande et al., 2010).
Since 2003, a total of four surveys have been delivered,
making change detection possible. In addition to 3D data,
the third and fourth versions contain an annotation of points
into 5 categories: ground, buildings, water, civil engineering
structures (e.g. bridges) and clutter. The classification is first

made automatically as a function of the height and number
of echoes, then a manual correction is performed to enhance
the quality of the provided annotation.

We consider some bi-temporal data coming from AHN3
and AHN4 in order to establish a change annotation accord-
ing to the given classification. We call this new dataset AHN-
CD. Relying on the AHN classification, we define four labels
of change: unchanged, new building, demolition and new
clutter. Our choice was motivated by the relative imprecision
of labels for other possible classes of change. Notice that
the class “bridge” is fused with the class “clutter” since it
contains only a few points. Similarly, over selected areas,
there are almost no points concerning water and remaining
water points are thus deleted.

As already mentioned, when dealing with 3D PCs, com-
parison of point labels is not obvious since there is no direct
corresponding pair of points between PCs. One could have
taken the nearest point in PC from AHN3 for comparison
with labels of points in AHN4, but this yields very noisy
results. As a consequence, a more complex processing chain
has been chosen, illustrated in Figure 5. In particular, to
obtain smoother annotation, a label is given to each 3D con-
nected component (CC) by majority vote when comparing
each point of the CC to the nearest 3D point in AHN3 for new
building and new clutter classes. Concerning demolition, a
first extraction of potential demolition points is made by
comparing to the 2D nearest point in AHN3. 2D nearest
points are found by removing the Z coordinate of points
in the search for the nearest neighbor. A first removal of
isolated points is made automatically by removing smaller
demolition CCs. Finally, a manual assessment is required to
distinguish between real demolition and building shadows.
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It will be shown in Section 6.1 that this annotation is unfor-
tunately still not perfect.

0: Unchanged

1: New
building

2: Demolition

3D CC extraction

 
Fusion of classes
bridge and clutter

 
Water points

removal

3D CC extraction

Building ClutterGround

3D nearest point
comparison

Majority vote over
the whole CC

Comparion with
nearest point in 2D

2D connected
component
extraction

Manual
checking

Label = Label ≠

Label ≠

Label ≠

Label = 

Label = 

AHN4

Nb Pts
<200

Nb Pts ≥200

 
Water points

removal

AHN3

 
Fusion of classes
bridge and clutter

Majority vote over
the whole CC

3D nearest point
comparison

3: New clutter

Figure 5: Flowchart for change detection annotation of AHN
pairs (a.k.a. AHN-CD) into four classes: unchanged, new
building, demolition and new clutter. CC stands for connected
component.

The density of AHN3 varies from 10 to 14 points/m2

while AHN4 varies from 20 to 24 points/m2. Height and
planimetric stochastic errors are 5 cm. In addition to point
coordinates, AHN data also includes RGB colors, LiDAR
intensity and the number of returns. Since we focus here on
raw 3D PCs only, we rely solely on the 3D point coordinates
to feed the network. As previously mentioned, AHN pro-
vides full coverage of the Netherlands. So we select some
tiles to define our training, validation and test sets. Selected
areas are shown in Figure 6. Tiles have been chosen in areas

where changes occurred between AHN3 and AHN4. In par-
ticular, we chose the following tiles: 31HN1_22, 31HN1_23,
31HZ1_04, 37FN1_06, 37EN1_08 and 37EN1_13 from the
divided AHN dataset provided by the website https://ge

otiles.nl/. Indeed, divided tiles are easier to manipulate
than original AHN tiles which cover large areas. Some of
these tiles are only partly taken to focus on places containing
changes.

Figure 6: Selected parts of AHN-CD dataset for training,
validation and testing.

4.3. Change3D dataset
Change3D is a dataset provided by CycloMedia Technol-

ogy for the SHREC21 track. This dataset consists of pairs
of PCs from 2016 and 2020 in street scenes acquired over
the city of Schiedam, The Netherlands. It aims at detecting
changes from bi-temporal PCs in a complex street environ-
ment (Ku et al., 2021). PCs are acquired thanks to LiDAR
sensors mounted on vehicles, and RGB information for each
point is also provided. In these 78 3D scenes, 741 urban
objects, also called points of interests, are identified by their
coordinates and an associated label (see Figure 7 for a scene
example). Urban objects correspond for example to road
signs, advertisements, statues or garbage bins. Each point
of interest is manually annotated into one of the following
classes: no change, removed, added, change or color change.
The distribution of annotated objects in the training and
testing split is given in Table 3. As it can be seen, one major
constraint when using this dataset for learning purposes is
its highly imbalanced settings, thus making the training set
on less represented class very restricted.

As only 3D coordinates of the center of objects of interest
are given, further preparation of the dataset is left to the
user. In particular, the authors suggest extracting a vertical
cylinder centered on the point of interest. As far as our study
is concerned, we decided to extract vertical cylinders of 3 m
in radius, as done by the SiamGCN deep learning method.
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Labels No change Removed Added Change Color change Total

Train set 351 (59.79 %) 54 (9.20 %) 100 (17.03%) 63 (10.73%) 19 (3.24%) 587
Test set 90 (58.44%) 25 (16.23%) 15 (9.74%) 17 (11.04%) 7 (4.55%) 154

Table 3
Class distribution for the Change3D training and testing splits. For each class, the number of samples along with the class
proportion (in %) is given.

Figure 7: Example of a scene from the Change3D dataset with
the points of interests and their corresponding labels.

5. Experimental results
In the following section, we present the experimental

results of our methods on both simulated and real datasets.
Before entering into detail, let us first introduce the experi-
mental protocol.
5.1. Protocol

To compare our approach with typical change detec-
tion techniques, we first compare our method for change
segmentation with a traditional machine learning approach
based on the Random Forest (RF) model and trained using
handcrafted features proposed by Tran et al. (2018). We
consider this technique as representative of the state-of-the-
art since it obtains the best results for change detection at
3D point level on Urb3DCD dataset (de Gélis et al., 2021b).
We re-implemented feature extraction of all features of Tran
et al. (2018) except those using LiDAR’s multi-target capa-
bility because Urb3DCD does not contain such information.
As mentioned above, to the best of our knowledge, there
is no deep learning method for change detection operating
directly on 3D PCs. Nevertheless, we have designed two
deep learning baselines illustrating the current performances
of existing networks for change detection. Inspired by the
work on 2D images by Daudt et al. (2018) or on 2.5D DSMs
(Zhang et al., 2019), we consider DSMs extracted from our
PCs as input 2D matrices to train a fully connected Siamese
network (DSM-Siamese) and a fully connected network with
early fusion (DSM-FC-EF). These networks rely on usual
2D convolutions performed on 2D rasterization of PCs.
Architectures are similar to those presented in Daudt et al.
(2018). DSM-Siamese decoder relies on features difference

to gather information from both encoder branches. 2D results
can be straightforwardly propagated back to original 3D PCs
to be compared with pure methods dealing with raw 3D PCs.
Finally, our proposed method as well as the DSM-Siamese
one are both tested using Siamese and Pseudo-Siamese
networks, i.e. with shared or unshared weights respectively,
between Siamese branches. To evaluate the variability of our
results, all tests have been conducted at least three times.

Concerning change classification, we propose to com-
pare our Siamese KPConv Cls with SiamGCN network (Ku
et al., 2021). This siamese network relies on graph convo-
lution, in particular edge convolution operator (EdgeConv)
(Wang et al., 2019b). From input PCs, graphs are constructed
from the kNN connections. Thus, points form graph vertices
and edges are set according to kNN relationships. Con-
versely to our method, the merging of the two branches of
the Siamese network is done after a max-pooling operation,
thus it does not imply a point-to-point subtraction of features.
This is an important difference with our Siamese KPConv
Cls architecture. Finally, our method is also compared on
the Change3D dataset to Point Cloud Change Detection with
Hierarchical Histograms (PoChaDeHH) and Hybrid Graph
Inception Change Detection (HGI-CD) algorithms. These
two methods competed with SiamGCN in SHREC21 chal-
lenge (Ku et al., 2021). PoChaDeHH is a fully handcrafted
method based on histogram clustering. HGI-CD relies on
both handcrafted and learned-based features. The learned-
based part relies on Graph Convolution Network (GCN).
The handcrafted parts of these two methods were specifi-
cally designed for the Change3D dataset experiments and
as such, cannot be applied to any other dataset, includ-
ing our Urb3DCDV2-Cls. Comparison with HGI-CD and
PoChaDeHH are then limited to the Change3D dataset.

As for quantitative parameters, for each class of change,
the Intersection over Union (IoU) is reported. Since in
change detection and categorization datasets are in general
largely imbalanced (i.e. most data belong to the unchanged
class despite this class not being the most interesting one),
we prefer to discard the overall accuracy or precision scores
that are not very indicative of method performance in such
settings. We therefore select the mean accuracy (mAcc)
and the mean of IoU over classes of changes (mIoU𝑐ℎ) for
reliable quantitative assessment of the different methods.
5.2. Experimental settings

Similarly to the segmentation task in KPConv experi-
ments, we do not feed entire PCs to the network for computa-
tional reasons. Indeed, the PCs are too large to be processed
as a whole. Thus, Thomas et al. (2019) have proposed to
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divide their dataset into small spherical sub-clouds. In the
context of urban PC change detection, we prefer to use cylin-
ders aligned to the vertical axis rather than spheres since
the vertical direction is of a different nature compared to the
two horizontal ones. By doing so, we also avoid empty sub-
clouds (note that the centers of the cylinders are the same
for both dates). Indeed, if a sphere is centered at the top of a
building that does not include any ground point, and if this
building is demolished, the sphere obtained in the second PC
will be free of points and this will disturb the training of the
network. To illustrate this, examples of two input cylinders
are given in Figure 8. Let us consider a point in the center of
the building’s roof (center of Figure 8b). In this case, the cor-
responding sphere at the second date could have been empty.
Indeed, depending on the radius, no ground points would
have been visible. By taking cylinders, we ensure that each
of the sub-clouds contains ground. At testing, cylinders are
chosen regularly with some overlap to ensure that all points
are seen at least once by the network. For points seen several
times, predicted probabilities are averaged to decide the final
label, similarly to voting schemes. It should be outlined
that classes are largely imbalanced in the change detection
problem. As a matter of fact, the unchanged area represents
up to 98% of points according to datasets. Thus, during
training, the centers of the cylinders are chosen thanks to
a weighted random drawing. Weights are set as a function
of dataset balance, in order to set the probability higher for
smaller classes. This allows our network to regularly observe
changes during the training phase. Moreover, we perform
data augmentation through both random rotation around the
vertical axis for each selected cylinder and random Gaussian
noise at point scale. Notice that a random rotation angle
is selected for each pair of cylinders and to keep valid the
registration, the same rotation angle is applied both PCs in
the pair.

(a) First cylinder (b) Second cylinder

Figure 8: Example of input cylinders with changes between
the first and the second cylinders (buildings have been added).
The two input PCs (a-b) are colorized based on their relative
elevation.

As mentioned in Section 3.1, a first sub-sampling rate
(𝑑𝑙0) has to be chosen to design the network. In practice,
this has been set to 1 m for experiments on a simulated
dataset. We have empirically set the radius of cylinders to 50
m, following the recommendation of KPConv authors who
set the radius to 50 × 𝑑𝑙0. For the real dataset AHN-CD, as
density is higher than in Urb3DCD-V2 datasets, we set 𝑑𝑙0 to
0.5 m, implying cylinders of 25 m in radius. According to our
experiments, a compromise should be made to use cylinders
as large as possible to take into account enough context and

the sub-sampling rate, to avoid losing too many available
points. Concerning Urb3DCD-Cls and Change3D, inputs
are already cylinders of 15 m and 3 m in radius. Thereby,
only the first sub-sampling rate should be chosen to run
experiments with our Siamese KPConv Cls architecture. It
has been set respectively to 0.3 m and 0.06 m for Urb3DCD-
Cls and Change3D dataset. As a matter of fact, the scales of
changes to retrieve are different and 𝑑𝑙0 has to be adapted to
expected changes.

Parameter settings (summarized in Table 4) have been
largely influenced by the original KPConv proposed values.
We thus use a Stochastic Gradient Descent (SGD) with a
momentum of 0.98, to minimize a point-wise Negative Log
Likelihood (NLL) loss, given by the following equation:

𝑁𝐿𝐿(𝑦𝑡, 𝑦𝑝) = −(𝑦𝑡 log(𝑦𝑝) + (1 − 𝑦𝑡) log(1 − 𝑦𝑝)) (5)
where 𝑦𝑡 and 𝑦𝑝 correspond to the target label and the
predicted label, respectively. As prediction is expected at
point scale on the second PC, the loss is applied for each
point 𝑥2𝑖 ∈ 2 and its corresponding predicted (𝑦2𝑖𝑝 ) and
ground truth (𝑦2𝑖𝑡 ) labels. A batch size of 10 is used. The
initial learning rate is set to 10−2 and scheduled to decrease
exponentially. Regarding Siamese KPConv Cls, the same
training parameters are used except for the learning rate
set to 10−3, as done in object classification experiment by
Thomas et al. (2019) in their KPConv study. As the results
are expected at pairs of PCs scale, the NLL loss is computed
for each pair of PCs target and prediction labels.

Unlike KP-FCNN, we included a probability dropout of
0.5 in the last classification layers. Conversely, no dropout
is used for Siamese KPConv Cls. In addition, in order to
prevent over-fitting, we set a 𝐿2 loss regularization balanced
by a coefficient of 10−6. Concerning Kernel Point Convo-
lution, experiments were conducted with rigid kernels of
25 points. Finally, and as already indicated, input cylinders
are randomly chosen in training. Thus, the number of in-
put cylinders is another hyper-parameter to be set. After
experimenting with several configurations, best results were
obtained when 6,000 pairs of cylinders were seen by the net-
work per epoch, which corresponds to 600 optimizing steps
with a batch size of 10. As for the validation, 3,000 and 500
pairs are used for Urb3DCD-V2 and AHN-CD datasets, re-
spectively. As datasets for classification are smaller, Siamese
KPConv Cls network is trained on 1,000 examples of pairs
of cylinders per epoch. Batch size is also set to 10 for
the classification task. For experiments over the Change3D
dataset, RGB information is needed to distinguish the class
“color change”. Thereby, for these experiments, our Siamese
KPConv Cls network takes as input both RGB information
and 3D coordinates.

The whole development is implemented in PyTorch
and relies on KPConv implementation available in Torch-
Points3D (Chaton et al., 2020).2 Concerning the nearest
point feature difference (Equation 4), the nearest point is

2The implementation will be made available upon acceptance of this
paper.
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Optimizer Initial LR LR scheduler Dropout Loss Batch size Convolution

Siamese KPConv SGD 10−2 Exponential Yes NLL 10 Rigid KPConv
Siamese KPConv Cls SGD 10−3 Exponential No NLL 10 Rigid KPConv

SiamGCN (Ku et al., 2021) Adam 10−3 Step No NLL 16 EdgeConv
DSM-based deep learning Adam 10−3 Exponential No NLL 32 2D convolution

Table 4
Summary of training parameters for deep learning methods. Notice that training parameters for DSM-based deep learning methods
are all the same for the three different networks experimented. LR stands for learning rate.

Deep learning 3D Deep learning 2D RF
Siamese KPConv (Cls) DSM

resolution (m)
Neighboring
radius (m)Input cylinders

radius (m)
𝑑𝑙0
(m)

Input samples
Train Val

Urb3DCD-V2-1 50 1 6,000 3,000 0.5 5
Urb3DCD-V2-2 50 1 6,000 3,000 0.5 4

AHN-CD 25 0.5 6,000 500 0.3 3
Urb3DCD-Cls 15 0.3 1,000 all - -

Change3D 3 0.06 1,000 all - -

Table 5
Summary of input parameters according to the five datasets and the three families of methods.

determined thanks to the kNN implementation available in
PyTorch Geometric, which is Graphic Process Unit (GPU)
compliant for faster computation.

For the RF comparison, let us remark that some features
are dependent on the neighboring radius size. To choose this
radius we tested several values. We then set it to 5 m, 4 m
and 3 m respectively for the low density simulated dataset,
the MS simulated dataset and AHN-CD.

Concerning deep learning methods dealing with DSM,
the same architectures as Daudt et al. (2018) are set up. DSM
resolution is set to 0.5 m for Urb3DCD-V2 and 0.3 m for
AHN-CD.

A summary of parameters according to methods and
datasets is given in Table 5.

Finally, regarding comparisons on the classification task,
results for PoChaDeHH and HGI-CD are directly taken from
the publication of Ku et al. (2021). For SiamGCN, exper-
iments have been done using the implementation provided
by the authors, training parameters are given also in Table 4.
Let us note that the difference between our results and the
original SiamGCN paper Ku et al. (2021) come from the
methodology used for train/validation/test data splitting. In
our experiments, we have followed the standard approach
in machine learning, i.e. put apart the test set and divide
the train set into training and validation splits according to
the ratio 80/20 % as it was also done by authors of HGI-
CD. Notice that for fair comparison, the same training and
validation split is used for the training of Siamese KPConv
Cls.

Concerning all experiments using deep learning, a single
GPU (Nvidia Tesla V100 SXM2 16 GB) is used to perform
training and inferences.

5.3. Results
5.3.1. Semantic change on synthetic datasets

Quantitative results concerning the Urb3DCD-V2 dataset
for low density LiDAR are presented in Table 6 and 8
and qualitative results are shown in Figures 9 and 10. As
can be observed, the Siamese KPConv method with both
shared or unshared weights for encoders largely improves
global results when looking at mAcc or mIoU𝑐ℎ. Indeed, an
enhancement of about 30% of mIoU𝑐ℎ can be seen between
the traditional machine learning method with handcrafted
features and our proposed method. Also, focusing on deep
learning-based methods in Table 6, we can notice that the
direct processing of 3D PC instead of rasterizing data into
DSM highly improves scores. When looking at DSM-based
methods, the Siamese and the FC with early fusion are quite
comparable though the Siamese is not very stable. Let us
emphasize that, when rasterizing PCs into DSM, the size of
the training set is considerably diminished, from one label
per point to one label per cell/pixel (a 2D pixel gathers
multiple 3D points). Since DSM-based networks rely on
smaller training sets, we assume they are more prone to
over-fitting. Pseudo-Siamese networks have more trainable
parameters than their Siamese counterpart because the two
encoders need to be trained, thereby there might be not
enough data to train them properly. And this leads to high
variation observed within the results.

Concerning per-class performance in Table 8, very high
scores are reached by our method, especially on new build-
ings, new vegetation, mobile objects and unchanged classes
as can also be seen in Figure 9f. In particular, results are
very impressive for mobile objects. To explain this, with
an average density of 0.5 points/m2, mobile objects are
represented by only a few 3D points. This leads to very
low scores for DSM-based methods since the rasterization
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Method mAcc mIoU𝑐ℎ

Siamese KPConv (ours) 91.21 ± 0.68 80.12 ± 0.02
Pseudo-Siamese KPConv (ours) 91.31 ± 2.34 77.80 ± 1.69

DSM-Siamese 80.91 ± 5.29 57.41 ± 3.77
DSM-Pseudo-Siamese 75.17 ± 10.03 55.30 ± 8.17

DSM-FC-EF 81.47 ± 0.55 56.98 ± 0.79
RF (Tran et al., 2018) 65.82 ± 0.05 52.37 ± 0.10

Table 6
General results in % on Urb3DCD-V2 low density LiDAR
dataset. DSM-based methods are adaptation of Daudt et al.
(2018) networks to DSM inspired by Zhang et al. (2019) works.

process implies a loss of information that is even more
visible on small objects. The vegetation growth class seems
to be the hardest to predict for all methods. This is logical,
since this category is more related to an evolution than
an abrupt change. Furthermore, on vegetation, points are
not regularly distributed on the surface of the objects, as
LiDAR can penetrate the foliage of trees. More generally, our
results (9f-10f) are consistent with the ground truth (9c-10c).
Conversely, the RF method (9d-10d) gives less convincing
results with several confusions between classes, e.g. in the
foreground low building it mixes new building and new
vegetation classes in Figure 9d (see the ellipse showing the
region of interest). In Figure 10, some occlusions are shown.
While they are very common in processing 3D PCs data
especially in dense urban areas, they remain an important
challenge for change detection methods. Indeed, as can
be observed when comparing both PCs (Figure 10(a-b)),
hidden facades are not in the same location between the two
epochs because of different positions of the sensor during the
acquisition. When looking at results of different methods,
deep learning based approaches bring better results in these
particular areas while the RF algorithm on handcrafted fea-
tures mix with new building class the building facades that
appear only in the second PC (because of occlusion) (see the
ellipse showing the region of interest in Figure 10d). As our
method learns deep features from raw 3D PCs, it seems to be
able to understand objects as a whole. This ability probably
comes from the different scales (or network layers) in the
feature extraction process. DSM-based methods also provide
accurate results in hidden facades. Indeed, the prediction is
made only on roofs of buildings by definition of DSM, so
predicting no change on the roof leads to the whole facade
below to be marked as unchanged as well in the 3D re-
projection step. However, DSM-based methods face some
problems with occlusions due to building shadows (as no
point is acquired resulting in empty pixels in the rasteriza-
tion) that are generally filled using an interpolation (thus
implying imprecision in building edges). When looking at
qualitative results of DSM-FC-EF method (Figure 10e), one
can observe that small roofs details are confused with mobile
objects. Indeed, this method rather identifies cars than roofs
probably because these details are similar to cars on this low
density dataset.

Quantitative results for the MS dataset are presented in
Tables 7 and 9. The Siamese KPConv method with shared
weights does not outperform state-of-the-art as much as the
pseudo-Siamese KPConv does. This was expected, since
even if both pieces of data are 3D PCs, they embed very
different characteristics. Thus, unshared weights allow each
branch of the encoder to specialize in extracting features
from one type of sensor. Even for the unshared weights
configuration of our method (Pseudo-Siamese KPConv), the
results are lower than for the previous dataset. However, the
same gap between methods can be seen: Pseudo-Siamese
KPConv still improves mIoU𝑐ℎ of about 30% versus the
RF method. Among DSM-based methods, early fusion ob-
tains the best results. This is consistent with results from
de Gélis et al. (2021b), especially for the MS sub-dataset.
As described previously, the number of ground truth la-
bels in the DSM and 3D PCs databases are substantially
different because of the rasterization process. Hence, prob-
ably due to over-fitting problems, it explains why DSM-
Pseudo-Siamese is worse than DSM-Siamese even in the
MS configuration, conversely to Siamese KPConv results.
Furthermore, we believe that in 3D PCs the difference of
sensor is more visible than in 2D rasterization. Indeed, in
DSMs most differences are seen at edges of buildings which
are very distinct in the noiseless DSM while blurry in the
noisy DSM. Even if original PCs are very different in terms
of quality, they are converted to more similar 2D data during
the rasterization process since the same grid size is chosen.
Still, the noise present in the first point cloud leads to a
noisy DSM, especially on the building edges. Overall, the
high similarity between the two input DSMs makes relevant
the use of DSM-Siamese with shared weights. Thus, similar
filters (and similar weights) can be used to identify changes
among pairs of DSMs, conversely to pairs of PCs. Let us note
that when applied on 2D images, pseudo-Siamese networks
are used mostly in case of pairs of images coming from
different sensors, e.g., change detection between optical and
SAR inputs (Touati et al., 2020; Zhou et al., 2021).

It is worth noting that the quality of data seems to impact
less DSM based results when comparing low density and
MS results in Tables 6 and 7, which is in our mind not so
surprising because the rasterization process tends to smooth
original data by fusing several points into a single pixel.

Concerning per-class results, the same trend as for the
low density LiDAR dataset is observed in Table 9. When
looking at qualitative results in Figures 11 and 12, the miss-
ing vegetation class is almost always mixed with demolition
in RF results (11d-12d). Changed objects boundaries are not
precise in DSM-FC-EF results (11e-12e) due to the raster-
ization process. Despite the difference of quality between
the two input PCs (11(a-b)-12(a-b)), our method seems
capable of retrieving and classifying changes correctly even
for challenging classes such as vegetation growth. Looking
at occlusions visible in Figure 12, we can draw the same
conclusion as already made on the Urb3CDCD-V2 low
density dataset.
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Ground Building Vegetation Mobile Objects

(a) PC1 (b) PC2 (c) GT

(d) RF (Tran et al., 2018) (e) DSM-FC-EF (f) Siamese KPConv (ours)

Unchanged New Building Demolition New Vegetation Vegetation Growth Missing Vegetation Mobile Objects

Figure 9: Visual change detection results on Urb3DCD-V2 low density LiDAR sub-dataset: (a-b) the two input point clouds; (c)
Ground truth: simulated changes; (d) RF (Tran et al., 2018) results; (e) DSM-FC-EF (adaptation of Daudt et al. (2018) FC-EF
to DSM inspired by Zhang et al. (2019) works) results; (f) our results with Siamese KPConv. Region of interest specifically
discussed in the text is highlighted with an ellipse.

Method mAcc mIoU𝑐ℎ

Siamese KPConv (ours) 73.24 ± 5.7 58.55 ± 4.86
Pseudo-Siamese KPConv (ours) 87.86 ± 0.94 74.48 ± 0.59

DSM-Siamese 69.91 ± 6.18 49.14 ± 4.92
DSM-Pseudo-Siamese 66.50 ± 10.82 46.60 ± 10.13

DSM-FC-EF 81.25 ± 1.86 55.59 ± 1.84
RF (Tran et al., 2018) 62.20 ± 0.02 46.81 ± 0.01

Table 7
General results in % on Urb3DCD-V2 MS dataset. DSM-based
methods are adaptation of Daudt et al. (2018) networks to
DSM inspired by Zhang et al. (2019) works.

5.3.2. Semantic change on real dataset
Results on AHN-CD dataset are presented in Table 10.

As in previous experiments, Siamese KPConv networks
provide better results than other methods. A significant gap
(around 31% of mIoU𝑐ℎ) between our results and RF persists
on this real dataset. Similarly to simulated datasets, the
FC network with early fusion performs better than Siamese
networks on DSMs, with lower scores, however, than our

method. As can be seen in Figure 13, Pseudo-Siamese KP-
Conv predictions (13d) are globally similar to the ground
truth (13c). Finally, scores of all methods are lower com-
pared to results on Urb3DCD-V2 datasets, and this will be
further discussed in Section 6.1.

As far as computation time is concerned, we report an
inference time for Siamese KPConv of about 30 minutes in
a single GPU computer (Nvidia Tesla V100 SXM2 16 GB
for cylinders of 25 m in radius in the test area of Figure 6. The
test set corresponds to ∼ 27,000 cylinders extracted from
the pair of original PCs, i.e. a total of around 34 and 81
millions of points for each PC respectively, resulting in about
9 millions points in each PC after the first sub-sampling
step. The training stage takes about one day on AHN-CD
dataset with 6,000 cylinders in the training set and 500 in
the validation set.
5.3.3. Change classification results

Results regarding the change classification task for both
synthetic and real datasets are presented in Table 11 and 12,
respectively. Our architecture is reaching some quite reliable
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Ground Building Vegetation Mobile Objects

(a) PC1 (b) PC2 (c) GT

(d) RF (Tran et al., 2018) (e) DSM-FC-EF (f) Siamese KPConv (ours)

Unchanged New Building Demolition New Vegetation Vegetation Growth Missing Vegetation Mobile Objects

Figure 10: Visual change detection results on Urb3DCD-V2 low density LiDAR sub-dataset in an area containing occlusions: (a-b)
the two input point clouds; (c) Ground truth: simulated changes; (d) RF (Tran et al., 2018) results; (e) DSM-FC-EF (adaptation
of Daudt et al. (2018) FC-EF to DSM inspired by Zhang et al. (2019) works) results; (f) our results with Siamese KPConv.
Regions of interest specifically discussed in the text are highlighted with ellipses.

Method Unchanged New building Demolition New veg. Veg. growth Missing veg. Mobile Object

Siamese KPConv (ours) 95.82 ± 0.48 86.68 ± 0.47 78.66 ± 0.47 93.16 ± 0.27 65.17 ± 1.37 65.46 ± 0.93 91.55 ± 0.60
Pseudo-Siamese KPConv (ours) 95.20 ± 0.18 86.23 ± 1.37 76.08 ± 0.54 92.98 ± 0.95 55.96 ± 9.41 63.50 ± 1.41 91.88 ± 0.71

DSM-Siamese 93.21 ± 0.11 86.14 ± 0.65 69.85 ± 1.46 70.69 ± 1.35 8.92 ± 15.46 60.71 ± 0.74 8.14 ± 5.42
DSM-Pseudo-Siamese 93.44 ± 0.23 84.65 ± 2.05 68.41 ± 1.77 70.38 ± 4.98 15.42 ± 13.81 59.77 ± 3.32 33.15 ± 29.12

DSM-FC-EF 94.39 ± 0.12 91.23 ± 0.31 71.15 ± 0.99 68.56 ± 3.92 1.89 ± 2.82 62.34 ± 1.23 46.70 ± 3.49
RF (Tran et al., 2018) 92.72 ± 0.01 73.16 ± 0.02 64.60 ± 0.06 75.17 ± 0.06 19.78 ± 0.30 7.78 ± 0.02 73.71 ± 0.63

Table 8
Per-class IoU scores on Urb3DCD-V2 low density LiDAR dataset. DSM-based methods are adaptation of Daudt et al. (2018)
networks to DSM inspired by Zhang et al. (2019) works. Results are given in %. Veg. stands for vegetation.

Method Unchanged New building Demolition New veg. Veg. growth Missing veg. Mobile Object

Siamese KPConv (ours) 91.68 ± 1.38 55.90 ± 15.65 66.80 ± 0.44 70.94 ± 11.07 42.50 ± 4.88 48.43 ± 4.35 66.74 ± 2.39
Pseudo-Siamese KPConv (ours) 95.52 ± 0.19 83.34 ± 2.21 76.22 ± 1.08 85.76 ± 0.50 59.35 ± 1.00 57.55 ± 0.89 81.98 ± 0.87

DSM-Siamese 92.85 ± 0.11 87.08 ± 0.70 66.10 ± 0.59 67.47 ± 2.69 1.78 ± 3.09 58.93 ± 0.82 13.51 ± 23.39
DSM-Pseudo-Siamese 93.10 ± 0.42 84.73 ± 1.74 63.33 ± 5.59 62.82 ± 9.71 13.49 ± 10.71 35.22 ± 24.53 20.02 ± 20.42

DSM-FC-EF 93.99 ± 0.12 90.57 ± 0.61 71.15 ± 1.22 58.74 ± 0.76 6.31 ± 4.49 62.82 ± 0.68 43.96 ±4.84
RF (Tran et al., 2018) 91.59 ± 0.00 68.96 ± 0.01 58.78 ± 0.02 72.65 ± 0.03 13.88 ± 0.09 4.26 ± 0.00 62.31 ± 0.07

Table 9
Per-class IoU scores on Urb3DCD-V2 MS dataset. DSM-based methods are adaptation of Daudt et al. (2018) networks to DSM
inspired by Zhang et al. (2019) works. Results are given in %. Veg. stands for vegetation.
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Ground Building Vegetation Mobile Objects

(a) PC1 (b) PC2 (c) GT

(d) RF (Tran et al., 2018) (e) DSM-FC-EF (f) Pseudo-Siamese KPConv (ours)

Unchanged New Building Demolition New Vegetation Vegetation Growth Missing Vegetation Mobile Objects

Figure 11: Visual change detection results on Urb3DCD-V2 MS sub-dataset: (a-b) the two input point clouds; (c) Ground truth:
simulated changes; (d) RF (Tran et al., 2018) results; (e) DSM-FC-EF (adaptation of Daudt et al. (2018) FC-EF to DSM inspired
by Zhang et al. (2019) works) results; (f) our results with Pseudo-Siamese KPConv. Regions of interest specifically discussed in
the text are highlighted with ellipses.

mAcc mIoU𝑐ℎ
Per class IoU

Method Unchanged New building Demolition New clutter

Siamese KPConv (ours) 81.86 ± 0.72 59.93 ± 0.14 95.94 ± 0.06 83.19 ± 1.54 56.05 ± 1.74 40.53 ± 0.56
Pseudo-Siamese KPConv (ours) 84.44 ± 1.24 52.32 ± 4.31 92.96 ± 1.34 76.54 ± 11.39 43.67 ± 1.88 36.76 ± 2.95

DSM-Siamese 62.85 ± 1.13 33.18 ± 3.56 88.58 ± 2.53 60.95 ± 5.54 18.04 ± 1.59 20.54 ± 3.59
DSM-Pseudo-Siamese 67.04 ± 0.77 41.40 ± 0.62 92.25 ± 0.11 73.26 ± 0.68 22.91 ± 1.82 28.02 ± 0.73

DSM-FC-EF 74.98 ± 0.80 44.73 ± 2.16 92.95 ± 1.49 74.21 ± 0.37 33.68 ± 6.84 26.32 ± 0.04
RF (Tran et al., 2018) 50.11 ± 0.01 28.56 ± 0.02 93.13 ± 0.00 70.5 ± 0.21 2.04 ± 0.04 13.27 ± 0.02

Table 10
Results on AHN-CD dataset given in %. DSM-based methods are adaptation of Daudt et al. (2018) networks to DSM inspired
by Zhang et al. (2019) works.

results for each class of the Urb3DCD-Cls dataset. It also
strongly outperforms SiamGCN. When looking at Table 12
for the Change3D dataset, results of Siamese KPConv Cls
are still higher than other methods except for classes “no
change” and “color change”. Indeed, on these two classes,
the hand-crafted PoChaDeHH method is performing better.
As shown in Table 3 the “color change” class is under-
represented (3.24% of the training set), surely explaining

lower scores of methods requiring a training phase (Siamese
KPConv Cls, SiamGCN and HGI-CD). Furthermore, this
class is the only class representing colorimetric changes
instead of geometric ones. Even if it outperforms other meth-
ods on the “change” class, Siamese KPConv Cls leads to an
unsatisfactory IoU score and has an important variation over
different training runs. This class stands for slight changes in
a remaining object, therefore the scale of change is different
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Ground Building Vegetation Mobile Objects

(a) PC1 (b) PC2 (c) GT

(d) RF (Tran et al., 2018) (e) DSM-FC-EF (f) Pseudo-Siamese KPConv (ours)

Unchanged New Building Demolition New Vegetation Vegetation Growth Missing Vegetation Mobile Objects

Figure 12: Visual change detection results on Urb3DCD-V2 MS sub-dataset in an area containing occlusions: (a-b) the two input
point clouds; (c) Ground truth: simulated changes; (d) RF (Tran et al., 2018) results; (e) DSM-FC-EF (adaptation of Daudt et al.
(2018) FC-EF to DSM inspired by Zhang et al. (2019) works) results; (f) our results with Pseudo-Siamese KPConv. Regions of
interest specifically discussed in the text are highlighted with ellipses.

mAcc mIoU Per class IoU
Method No change New building Demolition New veg. Veg. removed

Siamese KPconv Cls (ours) 88.75 ± 1.59 80.30 ± 1.58 82.10 ± 0.98 73.65 ± 1.56 80.50 ± 1.60 85.81 ± 1.64 79.45 ± 2.87
SiamGCN (Ku et al., 2021) 76.45 ± 1.14 57.27 ± 0.52 68.63 ± 0.97 61.43 ± 0.79 70.29 ± 1.08 38.31 ± 0.59 47.69 ± 0.92

Table 11
Change classification results on Urb3DCD-Cls synthetic dataset. Results are given in %. Veg. stands for vegetation.

for this class compared to “removed” or “added” ones where
the entire object changes, making the change detection task
harder. Finally, when looking at global results (mAcc and
mIoU), one can observe that our method outperforms state-
of-the-art methods for the change classification task.

6. Discussion
In the following section, we focus on the quality of AHN-

CD and we discuss the transfer learning capacity of the
network.

6.1. AHN-CD quality assessment
As seen in Table 10, the scores of all methods are

lower with AHN-CD than scores obtained on Urb3DCD-V2
datasets. Despite the fact that it might be more difficult to
perform change detection and categorization on these real
data, our results seem quite coherent with visible changes
when comparing AHN3 and AHN4, as shown in Figure 13.
In our opinion, the main difficulty comes from change an-
notation. First of all, in order to obtain our annotations,
we performed an automatic comparison of the two PCs,
leading to a lot of mis-classifications, since objects may
have changed even if the label has not. To illustrate this,
one can focus on the left side of the house in Figure 13.
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mAcc mIoU Per class IoU
Method No change New building Demolition New veg. Veg. removed

Siamese KPconv Cls (ours) 49.64 ± 1.35 34.64 ± 1.18 55.35 ± 2.80 43.41 ± 3.71 47.93 ± 4.74 19.85 ± 9.25 6.67 ± 11.55

PoChaDeHH (Ku et al., 2021) 45.18 30.22 61.06 31.58 40.00 4.17 14.29
HGI-CD (Ku et al., 2021) 25.82 17.17 55.30 16.28 14.29 0.00 0.00

SiamGCN (Ku et al., 2021) 32.04 ± 6.49 19.18 ± 1.03 42.56 ± 1.78 24.33 ± 0.83 11.27 ± 3.07 14.00 ± 2.19 3.70 ± 4.94

Table 12
Change classification results on Change3D real dataset. PoChaDeHH, HGI-CD, and SiamGCN have been introduced in Ku et al.
(2021). For PoChaDeHH and HGI-CD, results are directly taken from the original publication. For SiamGCN, the public code has
been used to retrain the model on a valid train/val/test split. Results are given in %.

(a) PC1 : AHN3 (b) PC2: AHN4

(c) GT (d) Siamese KPConv (ours)

Unchanged New Building
Demolition New Clutter

Figure 13: Qualitative results on AHN-CD dataset. See the
discussion regarding the quality of the GT. Regions of interest
specifically discussed in the text is highlighted with ellipses.

With manual processing, the small garden would have been
annotated as new clutter because it is totally different to
the vegetation existing previously in AHN3 (see region
of interest in Figure 13a), yielding difficulties in practice.
Another example is given in Figure 14 where we can observe
a lot of new buildings omitted by the ground truth. Indeed,
in AHN3 the whole surface was covered by a glasshouse
marked as a building in the AHN classification. Therefore,
in the label comparison step of our annotation processing
chain, new buildings were overlooked. As can be seen, our
method correctly predicted the majority of all new buildings.
Another difficulty comes with the clutter class of AHN,
which is a mix of various types of objects, ranging from all
kinds of vegetation to cars or rubble. The boundary between
the clutter and building classes in AHN annotation is not
very clear in some cases. For example when dealing with

garden sheds, as visible on the right side of the house in
Figure 13, the shed is marked as clutter in the annotation
whereas it is sometimes predicted as new building or even
unchanged because of the glasshouse present in the older
PC as explained before (Figure 14). Also, notice that the
AHN classification of the term ‘building’ itself does not have
exactly the same definition for the building class for AHN3
and for AHN4.

Another remark should be made on the demolition class.
Indeed, this class is largely under-represented: it contains
only 0.2% of points in the training dataset whereas the ‘un-
changed’, ‘new building’ and ‘new clutter’ classes represent
87.83%, 7.84% and 4.41% respectively. This undoubtedly
explains the lower scores for demolition, even if we adapted
the training stage to alleviate this issue. An example of
demolition omitted by our network is visible on the ground
replacing the demolished glasshouse of Figure 14d (see
region of interest on the right side). However, this example
might be a difficult situation since in the older PC, the
glasshouse was mapped with both points of the ground and
on its roof, since the LiDAR signal was partly reflected on
the glass surface, and partly passing through it and reflected
on the ground. Indeed, the demolition is well predicted in
easier configurations such as on the left side of Figure 14.

Despite this imperfect annotation, we thought it was
interesting to perform some tests on such real data. How-
ever, figures should be read with caution and analyzed in
comparison to other methods. Nevertheless, let us point out
that the visual results of our method seem very promising.
In particular, the fact that our method provides results in
some cases closer to reality than the ground truth, as seen
in Figure 14, highlights the robustness against mislabeled
data. Therefore, it would be interesting to possess a method
capable of indicating the confidence level of the prediction,
such as Bayesian deep learning methods. Indeed, it has
been shown that some errors in the ground truth can be
highlighted by looking at the confidence level (Dechesne
et al., 2021).

Furthermore, a sub-part of the AHN-CD test set has
been manually annotated to guarantee the consistency in
area where the ground truth is entirely reliable. The sub-
area has been chosen to be representative of each class of
change. It contains a total of 707,199 points distributed as
follows: 60.95% ‘unchanged’, 29.06% ‘new building’, 7.04%
‘demolition’ and 2.95% ‘new clutter’. The selected area is
about 12,400 m2. Results are given in Table 13. Again,

I. de Gélis, S. Lefèvre and T. Corpetti: Preprint submitted to Elsevier Page 17 of 22



Siamese KPConv: 3D multiple change detection from raw point clouds using deep learning

(a) PC1: AHN3 (b) PC2: AHN4

(c) GT (d) Siamese KPConv (ours)

Unchanged New Building Demolition New Clutter

Figure 14: Qualitative results on AHN-CD dataset, illustrating some ground truth errors contrasting with relevant prediction by
our method. Regions of interest specifically discussed in the text are highlighted with ellipses.

mAcc mIoU𝑐ℎ
Per class IoU

Method Unchanged New building Demolition New clutter

Siamese KPConv (ours) 85.65 ± 1.55 72.95 ± 2.05 89.75 ± 2.18 82.77 ± 5.38 86.44 ± 0.88 46.65 ± 0.16
Pseudo-Siamese KPConv (ours) 87.87 ± 1.89 69.33 ± 1.99 88.90 ± 1.89 86.93 ± 5.32 84.01 ± 0.87 37.08 ± 2.85

DSM-Siamese 50.87 ± 1.15 30.96 ± 2.48 77.10 ± 1.51 76.77 ± 0.79 4.91 ± 8.33 11.20 ± 1.71
DSM-Pseudo-Siamese 70.71 ± 5.09 48.85 ± 7.03 78.00 ± 5.09 75.32 ± 8.59 47.46 ± 11.92 23.76 ± 0.56

DSM-FC-EF 71.47 ± 1.43 45.57 ± 0.98 70.77 ± 1.13 90.32 ± 0.61 30.58 ± 1.76 15.81 ± 0.81
RF (Tran et al., 2018) 47.94 ± 0.02 29.45 ± 0.02 78.24 ± 0.00 74.64 ± 0.03 0.00 ± 0.00 13.72 ± 0.06

Table 13
Results (given in %) on the AHN-CD dataset sub-part that has been manually annotated. DSM-based methods are adaptation
of Daudt et al. (2018) networks to DSM inspired by Zhang et al. (2019) works.

our methods lead to better results than other state-of-the-art
methods based on handcrafted features or DSM. In particu-
lar, scores are very satisfying on unchanged, new building
and demolition classes. Concerning the new clutter class,
results are less impressive but still better than other methods.
However, as stated before, this class is a mix of several types
of objects. Notice that these results are obtained with the
network trained on the AHN-CD dataset without manual
correction of the ground truth. Hence, it demonstrates the
robustness of our method to errors in the training database.

To improve change classification results, it would also
be interesting to add RGB information or LiDAR intensity,
available in the AHN data, as input to the network.
6.2. Transfer learning

In the following section, we aim at assessing the transfer
capacity of our method compared to others, from simulated
to real datasets. The goal is to explore the ability of a model
trained on a specific dataset to generalize data of various
types.

In Table 14, we report the transfer results between a
training on Urb3DCD-V2 MS sub-dataset and a test on the
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mIoU𝑐ℎ
Per class IoU

Method Unchanged New build. Demol. New veg. Veg. growth Missing veg. M.O.

Pseudo-Siamese KPConv (ours) 59.10 92.91 69.73 63.71 40.88 35.80 65.69 78.79

DSM-Siamese 37.07 92.08 74.61 54.67 39.41 0.43 38.05 15.25
DSM-Pseudo-Siamese 35.77 91.55 69.36 56.02 36.3 4.76 30.11 17.94

DSM-FC-EF 42.01 92.87 67.11 55.63 33.41 1.14 39.1 29.72
RF (Tran et al., 2018) 14.48 87.74 54.03 21.91 8.24 0.47 0.02 2.19

Table 14
Transfer learning tests with training on the Urb3DCD-V2 MS sub-dataset and testing on the Urb3DCD-V2 low-density LiDAR
dataset. DSM-based methods are adaptation of Daudt et al. (2018) networks to DSM inspired by Zhang et al. (2019) works.
Results are given in %. Build., demol., veg. and M.O. stand for building, demolition, vegetation and mobile object respectively.

low-density LiDAR sub-dataset. Notice that no retraining
has been done to adapt to the other dataset. As expected,
results are worse than when the training is performed on
a training set containing the same types of PCs as the test
set. However, our Pseudo-Siamese KPConv still gives better
results than other methods when observing change classes
corresponding to mIoU𝑐ℎ. Notice that the generalization
capacity is not the same according to the classes. Indeed, low
scores are obtained on new vegetation or vegetation growth,
whereas missing vegetation obtains very similar results to
the without transfer method. We have not included our
Siamese KPConv in this comparison since its training on the
MS sub-dataset is not reliable (see Table 7) and therefore the
pre-trained network would lead to non-reliable features. One
can note that scores obtained with Pseudo-Siamese KPConv
trained on the MS dataset are slightly higher than those
obtained when training an RF algorithm directly on the low-
density LiDAR dataset. In particular, it allows us to obtain
more reliable results than the RF method without transfer
for unchanged, vegetation growth, missing vegetation and
mobile objects classes (see Table 8). Table 14 recalls the
poor generalization capacity of the RF method, even though
it requires a smaller training set than deep learning methods
(de Gélis et al., 2021b).

The issue of the size of the training set is crucial since
automatic data annotation is tricky (see Section 6.1) and
manual annotation is time-consuming.

To deal with this issue, an idea would be to pre-train
a network on simulated data and then fine-tune it on a few
examples of real data. In order to assess the behavior of our
network in such a small training dataset configuration, we
trained the network from scratch with different sizes of train-
ing set (symbolized by the number of cylinders given as in-
put) and compared results with the network pre-trained on a
simulated dataset and fine-tuned on real data. The results are
depicted in Figure 15. For these experiments, input cylinders
are randomly chosen among the whole training set according
to the class balance before the training, conversely to results
shown in Section 5.3, where, for each training epoch, 6,000
cylinders are chosen randomly in the training set according
to class balance (see Section 5.2). Chosen cylinders are the
same for both training from scratch and transfer learning
tests. Notice that classes from Urb3DCD-V2 and AHN-
CD are not the same and we initialized weights with those

issued from the Urb3DCD-V2 pre-training, except for the
last layer of the network, which gives the final label. This last
layer is initialized randomly as for the whole network when
trained from scratch. Pre-trained weights are taken from
Siamese KPConv with shared weight configuration trained
on the sub-dataset Urb3DCD-V2-1 (low-density LiDAR),
with input cylinders of 50 m in radius (𝑑𝑙0=1m). Even if
the results are slightly higher when weights are not shared,
the shared weights configuration provides better generaliza-
tion capacities according to our experimental observations.
Based on this figure, we can make several observations. The
proposed fine-tuning strategy allows us to reduce the number
of cylinders to 100, to achieve the same score. It should
be noticed that our fine-tuning is straightforward, and one
could expect better results using domain adaptation or meta-
learning (Rußwurm et al., 2020). We have also observed that
using more than 100 training cylinders did not improve the
results further. This is due to an overfitting situation faced
by our training procedure since we do not consider a random
drawing for cylinders selection at each epoch, conversely to
the process proposed by Thomas et al. (2019) that requires
up to 360,000 cylinders in total (considering 60 epochs)
and that was followed in Section 5. Improving the simulator
to generate data closer to real data (in terms of resolution,
noise, and classes) would definitely help, but this requires
knowing the target data in advance, which is not realistic in
all use cases.

7. Conclusion
In this study we have presented an original deep neural

network, called Siamese KPConv, dedicated to change detec-
tion and categorization on 3D point clouds. We build upon
successful deep components such as a Siamese network
and Kernel Point Convolution to elaborate the first, to our
knowledge, deep network able to cope with pairs of raw
3D point clouds and perform change segmentation task.
We conducted various experiments in an urban environment
using real and synthetic datasets. The latter were generated
thanks to a simulator also introduced in this paper, that
extends de Gélis et al. (2021b) to 6 different classes of
change concerning buildings, vegetation and mobile objects.
This enabled us to create different datasets with various
quality gathered in the Urb3DCD-V2 product.
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Figure 15: Comparison between training from scratch and
using pre-trained weights learnt on a simulated dataset of
Siamese KPConv. The mean of IoU over classes of change
is given as a function of the number of cylinders of 50 m in
diameter given as input. In red, the best results obtained with
Siamese KPConv trained from scratch over 6,000 cylinders
with random drawing.

In addition, tests were carried out on AHN-CD, a real
dataset we built from AHN products, a series of national
surveys on the Netherlands. For each dataset, our technique
outperforms the state-of-the-art with a significant margin,
around 30% of mean IoU over classes of change. Since
the best existing method before our Siamese KPConv relies
on the traditional machine learning algorithm trained on
handcrafted features, as reported in de Gélis et al. (2021b),
and there is no deep learning method dealing with change
detection and categorization over raw 3D PCs, we have
also been inspired by the literature to provide as baselines
two different networks (a Siamese and a Fully-Connected
(FC) network with early fusion) on 2D rasterization of
PCs (DSMs). Our method consistently leads to significant
improvement, between 15% to 30% in mean of IoU over
classes of change when compared with the best deep base-
line. Furthermore, an adapted version of Siamese KPConv
for the change classification task outperforms state-of-the-
art methods including deep learning based networks on both
synthetic and real (Change3D) datasets.

In a last part, we assessed the transfer learning capac-
ity of the network when trained on different conditions of
acquisition than those faced in the test set. When directly
transferring without retraining from the multi-sensor dataset
to the LiDAR with low density, obtained results are higher
than the traditional machine learning results without transfer,
i.e. trained on the target data. We also evaluated the benefit
of pre-training the network on simulated dataset to decrease
the size of training set needed on the real data. Thanks to
pre-training, only less than 1/3000 of cylinders from the
target domain are needed to reach the maximal score. It
significantly reduces the burden of manual annotation.

To the best of our knowledge, our work is the first to deal
with deep learning for multiple change segmentation over
3D PCs. While our method shows some promising results

on both synthetic and real datasets, and good generalization
capabilities, it remains dependent on the amount and quality
of the labels in the training set. Thus, in future work, we plan
to deal with the challenging annotation issue by exploring
semi-supervised or even unsupervised learning approaches
through self-supervision.
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