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ABSTRACT

Change detection from traditional optical images has limited capability to model the changes in the
height or shape of objects. Change detection using 3D point cloud aerial LiDAR survey data can fill
this gap by providing critical depth information. While most existing machine learning based 3D point
cloud change detection methods are supervised, they severely depend on the availability of annotated
training data, which is in practice a critical point. To circumnavigate this dependence, we propose
an unsupervised 3D point cloud change detection method mainly based on self-supervised learning
using deep clustering and contrastive learning. The proposed method also relies on an adaptation of
deep change vector analysis to 3D point cloud via nearest point comparison. Experiments conducted
on a publicly available real dataset show that the proposed method obtains higher performance in
comparison to the traditional unsupervised methods, with a gain of about 9% in mean accuracy (to
reach more than 85%). Thus, it appears to be a relevant choice in scenario where prior knowledge
(labels) is not ensured. The code will be made available at https://github.com/IdeGelis/
torch-points3d-SSL-DCVA.

Keywords 3D point clouds · change detection · self-supervised learning · unsupervised deep learning · Aerial LiDAR
Survey

1 Introduction

Change detection from bi-temporal satellite/aerial images is one of the most important applications of remote sensing
[Shi et al., 2020, Li et al., 2022a] and earth observation (map updates, damage identification, etc.). Currently, most
existing change detection methods employ optical or Synthetic Aperture Radar (SAR) data [Saha et al., 2019, 2020a].
Both Siamese network-based supervised methods [Zhan et al., 2017] and deep transfer learning-based unsupervised
methods Saha et al. [2019] have been proposed in this context. However, optical images have limited capability to
model the changes in the shape of the object, e.g., the change of building height caused by construction work. While
SAR images are more suitable for such applications [Saha et al., 2020a], they are not visually salient and analyzing them
requires advanced domain expertise. Thus, environment understanding from optical and SAR data has a significant
shortfall in tasks where depth information is critical.

An interesting alternative consists in using 3D Point Clouds (PCs) since such data fill the above-mentioned gap and have
become more accessible recently. In particular, Light Detection and Ranging (LiDAR) sensor through aerial LiDAR
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surveying (ALS) allows to obtain 3D PCs at territory scale. While 3D point clouds change detection is popular [Qin
et al., 2016, Shirowzhan et al., 2019, de Gélis et al., 2021], deep learning remains rarely used in this context, calling
for more development. Indeed it has been demonstrated that deep learning outperforms both machine learning and
traditional methods in numerous remote sensing applications, and compared to rule-based methods, it is less specific to
one particular dataset. So far, only one supervised method has been proposed for change classification at point level
[de Gélis et al., 2023]. However, supervised 3D PC change detection methods require training data with annotation
statistically similar to the test data [de Gélis et al., 2021]. The tedious ground truth labelling step limits its adaptation to
new applications and geographic areas. While some unsupervised learning methods have been proposed for 2D change
detection [Saha et al., 2019] (e.g. for optical and SAR data), their adaptation for PCs is not straightforward due to the
particular characteristics of 3D PCs, e.g., sparsity of data and lack of point-to-point correspondence between pre-change
and post-change PCs, surely explaining the lack of unsupervised learning method in the literature [Xiao et al., 2023].

Self-supervised learning has recently emerged as a popular topic in computer vision and remote sensing [Stojnic and
Risojevic, 2021, Wang et al., 2022]. It has also been explored in the context of bi-temporal remote sensing analysis
[Saha et al., 2021] and multi-modal learning in remote sensing [Heidler et al., 2023]. Motivated by this, we propose a
self-supervised learning mechanism to train a network from unlabeled bi-temporal PC data. Following this, we employ
this network as a feature extractor and modify Deep Change Vector Analysis (DCVA) [Saha et al., 2019] using a nearest
neighborhood comparison of PCs to account for the absence of point-to-point correspondence between pre-change and
post-change 3D points.

The contributions of this work are as follows:

1. A deep learning unsupervised change detection method for remote sensing 3D PC data. To the best of our
knowledge, this is the first one that relies on neural networks;

2. A training strategy for deep feature extractor based on self-supervised learning paradigm;

3. An adaptation of DCVA to raw 3D point clouds for bi-temporal deep features comparison;

4. Experimental comparisons to the state-of-the-art, i.e. existing supervised and unsupervised approaches, as
well as an application of DCVA on deep features extracted by a pre-trained network on a public dataset for
semantic segmentation (transfer learning scenario, as done in [Saha et al., 2019] in the 2D case).

This paper is organized as follows. We review related works in Section 2. The proposed method is detailed in Section 3
while experimental validation is presented in Section 4. Finally, a conclusion is proposed in Section 5.

2 Related work

Though several methods have been proposed to perform change detection into 3D PCs, a large majority of them still
relies on conventional processing approaches: comparison of rasterized version of PCs [Xu et al., 2015, Okyay et al.,
2019, Örkény Zováthi et al., 2022, Cserép and Lindenbergh, 2023], distance computation [Girardeau-Montaut et al.,
2005, Lague et al., 2013], scene object extraction and bi-temporal comparison [Awrangjeb et al., 2015, Siddiqui and
Awrangjeb, 2017, Dai et al., 2020] or machine learning with hand-crafted features [Tran et al., 2018]. Even if deep
learning is now well established in remote sensing [Zhu et al., 2017], it is still a new field of research when dealing
with change extraction in 3D data. While Xiu et al. [2023] propose to detect damaged building after an earthquake
using a supervised deep network on raw 3D point clouds, their method is not a suitable change detection method in
the sense that collapsed buildings are only recovered from a point cloud acquired at a single date by looking at the
shape of the building. Therefore, to the best of our knowledge, we counted only three studies relied on deep networks
to highlight changes into bi-temporal 3D data. Among them, Zhang et al. [2019] propose to apply feed forward and
Siamese convolutional neural networks on 2.5D rasterization of PCs into Digital Surface Models (DSMs). The results
consists in a binary change label (change or no change) for each 2D patch. In Ku et al. [2021], the authors experiment
a Siamese architecture based on graph convolution to deal with raw 3D PCs. However, results still remain at the
scene/patch level and not at the point level. Finally, de Gélis et al. [2023] propose the Siamese KPConv network to
perform multi-change segmentation at the point level, in a supervised way. These three fully-supervised methods
imply the availability of a fully annotated dataset, which can be challenging in some application contexts. Indeed, no
generic dataset/benchmark exists so far to design change detection methods between PCs at the point level. Therefore,
unsupervised approaches constitute an interesting alternative. However, to the best of our knowledge, there are no
unsupervised deep learning-based methods to tackle change detection between PCs.

Conversely to 3D PCs, change detection in 2D remote sensing images has been far more studied using deep learning
based methods since the processing of 2D images is simplified by the regularity of the pixel grid which makes
convolutions easier. To tackle the aforementioned difficulties related to data annotation, numerous deep frameworks
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have been designed to address this unsupervised change detection task. As highlighted in Shi et al. [2020], a first
category of methods is based on the generation of credible change pseudo-labels to train a deep model. Generation
of training data relies on various ideas such as combination of unsupervised traditional methods (e.g., change vector
analysis (CVA)) [Song et al., 2018, Li et al., 2021, Seydi and Hasanlou, 2021, Fang et al., 2022], fuzzy clustering
[Gao et al., 2016, Zhan et al., 2018, Zhang et al., 2021], metric learning [Zhao et al., 2019] or even unsupervised deep
framework, e.g., auto-encoders (AEs) [Gong et al., 2017] or generative adversarial networks (GANs) combined with
metric learning [Tang et al., 2021]. To counter the class imbalance problem (i.e., changed areas are in minority compared
to unchanged ones), additional GAN can be used to enrich changed class pseudo-labels [Zhang et al., 2021]. In general
pixels are classified into three categories: changed, unchanged and uncertain. Only certain pixels are taken into account
for the loss computation. Even if it has been shown that final change maps predicted by the deep network are more
accurate than the original pseudo-change classification, these methods may somehow be limited by the pseudo-label
quality. Therefore, a second category of methods is based on latent change map generated by deep features. Transfer
learning is a common strategy to train the deep model to extract useful features [Saha et al., 2019]. However, transfer
learning still requires the availability of an annotated source dataset. Therefore, fully unsupervised networks such
as AEs [Lv et al., 2018, Bergamasco et al., 2019, Kalinicheva et al., 2019, Touati et al., 2020, Zheng et al., 2021]
or GANs [Niu et al., 2018] are used as well. Self-supervised learning strategies have shown great success recently,
including for change detection task. In Saha et al. [2021], the authors take the advantage of the under-representation of
changed areas and of the multi-sensor configuration to force the network to learn similar features in patches from the
same spatial location and different features for two random patches through a contrastive loss. Contrastive learning is
also used at super-pixel level [Chen and Bruzzone, 2022] or to separate features from similar and dissimilar patches
generated using an unsupervised image segmentation algorithm [Cai et al., 2021]. Leenstra et al. [2021] experimented
two different pre-text tasks: overlapping and non-overlapping patches discrimination, and minimizing the difference
between overlapping patches in the feature space. Notice that the second task seems to bring better change detection
results, this is in line with the work of Saha et al. [2021]. Dong et al. [2020] make use of the discriminator of a GAN
trained to differentiate samples from bi-temporal images. When image time series are available, the prediction of the
natural order of images seems to be a suitable pre-text task for change detection [Saha et al., 2020b]. Pre-trained models
can also be used to generate latent features further transformed in the final change map. Building upon this idea, Saha
et al. [2019] propose to adapt the well-known CVA algorithm [Malila, 1980] to deep latent features with Deep Change
Vector Analysis (DCVA) method. A deep change magnitude coefficient is computed for each pixel from automatically
selected deep features. These pixel-wise coefficients, named the latent change map, are then converted to the final
change map through thresholding. Let us also outline that in the literature, different other strategies are experimented to
generate the latent change map using features similarity analysis [Zhang et al., 2016, Chen and Bruzzone, 2022], slow
features analysis [Du et al., 2019], features distance combined with mutual information metric [Zheng et al., 2021],
multi-scale feature map fusion [Li et al., 2022b]. Thresholding operation is very common to obtain the final change
map [Liu et al., 2016, Du et al., 2019, Chen and Bruzzone, 2022, Zheng et al., 2021], but clustering is also used for
binary [Zhang et al., 2016, Lv et al., 2018, Touati et al., 2020] or multi-class change identification [Wu et al., 2021].

Following the analysis of the state-of-the-art, we propose to rely on DCVA [Saha et al., 2019] to build an unsupervised
deep learning method for 3D PCs change detection. Given the interesting results achieved by self-supervised learning
for 2D images change detection, we will adapt the idea of Saha et al. [2021] for 3D particular data.

3 Methodology

Our proposed method is fully unsupervised and is composed of two major steps, as described in Figure 1 and detailed in
sections 3.1 and 3.2, respectively. The first one consists in extracting deep features that will be compared in the second
step to extract changes. In the first stage, a network is trained to segment each PC individually using a self-supervised
learning strategy. In this study, to adapt such a framework to 3D PCs, we use the Kernel Point – Fully Convolutional
Neural Network (KP-FCNN) [Thomas et al., 2019] as the backbone for the deep feature extraction part. Indeed, this
network, based on Kernel Point Convolution (KPConv), showed interesting results even when dealing with the remote
sensing of large scenes [Varney et al., 2020]. Furthermore, the architecture is similar to 2D architectures, except that 2D
convolutions are replaced by KPConv ones. Based on kernel points, these convolutions are specially designed to extract
features from 3D PCs. In the second part, we use DCVA to compare deep features and achieve 3D PC change detection.

We will denote P a PC and F l its associate features at the layer l ∈ {0 . . . L} of the network symbolized by fKP-FCNN.
The index 1 (resp. 2) corresponds to the older PC noted P1 (resp. newer PC noted P2) and N denotes the number of
points p in the PC P . We assume that P1 and P2 are registered together. To do this, a traditional flowchart like the
Iterative Closest Point [Besl and McKay, 1992] algorithm can be used for example.
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Figure 1: Overview of the proposed method
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Figure 2: Schema of the self-supervised training of the back-bone. The three different losses are alternatively used to
modulate the model weights: the deep clustering loss LDC , the temporal consistency loss L1,2 (with attractive arrows)
and the contrastive loss L′1,2 (with repulsive arrows).

3.1 Training deep feature extraction: self-supervision

Inspired by Saha et al. [2021], we propose a self-supervised approach that does not require complementary data to train
the feature extraction network. While in Saha et al. [2021], self-supervised learning idea is based on learning to extract
similar features from very different SAR and optical acquisitions from a same scene, we thought the variation in 3D
points distribution may also be an advantage. Let us note that even in unchanged parts, 3D PCs may have different
distributions due to the various acquisition plans, sensors, weather conditions, etc. Although differences in distributions
make the direct comparison of PCs impossible, this property can be an asset for training a network to predict similar
attributes over an unchanged area regardless of distribution.

This is the idea of the self-supervised part. The network is trained using three different losses on an unlabeled training
set from the same two campaigns of acquisition as the testing set. At each iteration, the back-propagation of the gradient
is made using alternatively one of the three losses. Thereby, in each iteration, a batch of B tiles of the older PC, denoted
as X1 =

{
x11, . . . , x

B
1

}
, and the corresponding B tiles of the newer PC, X2 =

{
x12, . . . , x

B
2

}
, are independently given

to the network, resulting in features y:

yb1 = fKP-FCNN(x
b
1) (1)

yb2 = fKP-FCNN(x
b
2) (2)

where yb1 and yb2 have the dimension N b
1 ×K and N b

2 ×K, respectively. We recall that N b
1 and N b

2 are the number of
points in the corresponding tiles. K refers to the dimension of the output which is in practice the number of desired
clusters (see the deep clustering loss below).
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As for losses, we alternatively use three different terms, as illustrated in Figure 2. The first one is based on the deep
clustering principle to force the network to learn discriminative features. Deep clustering relies on a pseudo-label
assignment which will be used to train the network [Caron et al., 2018]. In this study, pseudo-labels are obtained for
each point by taking the argument of the maxima as the output of the network. For example, for each point i of the tile
xb1 ∈ X1, the corresponding pseudo-label cb1,i is defined as:

cb1,i = argmax
k≤K

yb1,i(k) (3)

where K is the number of clusters, which is a hyper-parameter to fix. It can be associated with the number of semantic
classes to segment in a single PC (note that this does not concern the number of classes of change between two PCs).
However, intuitively, if K is small, learned features will not be discriminative enough as large sets of points will
be classified in the same class. On the contrary, with excessively high value, features will be too precise, and no
generalization will be possible. In this study, it has been set empirically.

Based on these pseudo-labels, two deep clustering losses L1 and L2 are defined as the cross-entropy between (c1, y1)
and between (c2, y2) respectively. The average of these two terms is taken to modulate weights:

LDC =
L1 + L2

2
(4)

However, with such losses, we observed that the network was collapsing and predicting all the points in a single cluster.
To prevent this obvious solution, a weighting of the cross-entropy losses was done by applying the following weights:

Wk =
1√
αCk

(5)

for each cluster k ∈ {1, . . . ,K}, Ck being the number of points in the cluster k. α is fixed to K
∑K

h=1Ch as done in the
public implementation of KP-FCNN in the Torch-Points3D framework [Chaton et al., 2020]. Weights are recomputed
at each epoch. Intuitively, the deep clustering loss enables the network to learn discriminative features to be able to
segment each point into clusters.

In addition to these clustering losses, we add a temporal consistency loss whose rule is to push the network to make
similar predictions for tiles from different times but at similar places. As a matter of fact, even in unchanged areas, the
point distribution in 3D point clouds differ from each other. Thus, by assuming that permanent changes between two
dates are rare in proportion to the unchanged parts in urban areas, the temporal consistency loss enforces the network to
make similar predictions for each point of the newer PC compared to the corresponding nearest point in the older PC.
Therefore, both predictions (yb1 and yb2) are ordered before computing the loss:

yb1ordered
= yb1

j|j=arg min(‖p2i−p1j‖),∀p2i∈xb
2

(6)

yb2ordered
= yb2

i,∀p2i∈xb
2

(7)

lb12,i = ‖yb1ordered,i − y
b
2ordered,i‖1 (8)

The temporal consistency loss, L1,2, is then given by taking the mean of lb12,i over all considered points (pb2i ∈ X2) of
all tiles of the batch. Notice that this strategy of nearest point correspondence has already been successfully employed
in supervised 3D PC change detection [de Gélis et al., 2023].

The third loss is a contrastive loss to encourage the network to produce dissimilar features for different tiles. As
proposed in Saha et al. [2019], the contrastive loss is computed in a similar way to L1,2 by having previously randomly
shuffled the batch X2 into X ′2 to obtain different tiles between X1 and X ′2. The loss lb

′

12,i is defined as follows:

yb1ordered
= yb1

j|j=arg min(‖p′
2i
−p1j‖),∀p′2i∈x

b′
2

(9)

yb
′

2ordered
= yb

′

2
i,∀p′

2i
∈xb′

2

(10)

lb
′

12,i = −‖yb1ordered,i − y
b′

2ordered,i‖1 (11)
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Similarly to Saha et al. [2019], L′1,2 is given by taking the mean of the exponential of the term lb
′

12,i over all considered
points of all tiles in the batch X ′2:

L′1,2 =
∑
i∈X ′2

el
b′
12,i

NX ′2
(12)

where NX ′2 is the number of points in the batch X ′2. Here, the exponential is added to avoid over-penalizing the network
when lb

′

12,i is too far from 0. Indeed, even by shuffling X2, some areas can keep the same semantic, for example there
might always be some ground points.

To summarize, the deep clustering loss makes it possible to learn discriminative features, the temporal consistency loss
forces the network to predict similar features for similar areas regardless of the point distribution, and the contrastive
loss avoids a trivial solution where all predictions are similar for both times. The overall process is given in Algorithm 1
and illustrated in Figure 2. This method is referred to as Self-Supervised Learning (SSL) in the following part.

Algorithm 1 Self-supervised training of the back-bone
Initialize KP-FCNN weights
for e← 1 to E do

Sample B tiles from P1, denoted as X1

Obtain corresponding B tiles from P2, denoted as X2

Obtain X ′2 as random shuffling of X2

for i← 0 to I − 1 do
for b ∈ B do
yb1 = fKP-FCNN(x

b
1)

yb2 = fKP-FCNN(x
b
2)

yb
′

2 = fKP-FCNN(x
b′

2 )
Compute the weights Wk considering yb1 and yb2
Calculate weighted deep clustering loss L1

Calculate weighted deep clustering loss L2

Calculate temporal consistency loss L1,2

Calculate contrastive loss L′1,2
if i mod 3 = 0 then

Use LDC = L1+L2

2 to modulate KP-FCNN weights
else if i mod 3 = 1 then

Use L1,2 to modulate KP-FCNN weights
else

Use L′1,2 to modulate KP-FCNN weights

3.2 Deep feature comparison

Once a model is trained to perform a segmentation task, it can be used on both input PCs to extract features at different
levels of abstraction and complexity depending on the layer. These extracted features can be used in order to highlight
changes applying the Deep Change Vector Analysis (DCVA) principle, initially developed for 2D pixel change retrieving
through deep features comparison [Saha et al., 2019]. As shown in the comparison module of Figure 1, the point-wise
change identification is realized by taking the magnitude of the difference (δl) between feature vectors computed for
each point of the newer PC, p2i ∈ P2, with the nearest point of the older PC, p1j ∈ P1. In other words, the feature
difference δl is computed between features F l

1 and F l
2 for each PC, P1 and P2 respectively, according to the following

equation:

δli = f l2i − f l1j|j=argmin(‖p2i−p1j‖) (13)

with f l1j ∈ F l
1, f l2i ∈ F l

2, p1j ∈ P1 and p2i ∈ P2. The magnitude of the difference, also called deep feature magnitude
coefficient, is obtained by taking the L2-norm of δl. A threshold is applied on the deep feature magnitude coefficient
to distinguish between changed and unchanged points. As in Saha et al. [2019], the threshold is selected using the
unsupervised Otsu algorithm [Otsu, 1979]. The trained network extracts similar features for two similar areas, thus the
deep magnitude coefficient is close to zero in the unchanged part. The choice of the layer from which features are taken
is a hyper-parameter to be set. Combined with SSL, the method is called SSL-DCVA.
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4 Experiments and discussion

4.1 Dataset

We performed the same experiments on a real dataset consisting of two different ALS campaigns throughout the
Netherlands. We extracted some tiles for the training and the test of the method among the publicly available dataset
Actueel Hoogtebestand Nederland (AHN). This dataset consists of a total of four surveys throughout the entire country
[Sande et al., 2010], allowing multi-date change extraction [Cserép and Lindenbergh, 2023]. The two last surveys
(AHN3 and AHN4) have been semi-automatically annotated to assign a semantic label to each point. Five different
classes are distinguished: ground, buildings, water, civil engineering structures (e.g., bridges) and clutter. This mono-
date segmentation allowed us to manually derive a change ground truth for the test set. Concerning the changes, we
decided to include in change areas the new or demolished building (in this case the building footprint is marked on the
ground points), new vegetation and new clutter. Since our focus is on 3D object changes, our manual annotation was
ignoring changes in land cover if not characterized by modifications of the geometry. As such, changes like grassland to
bare soil are only discernible using red-green-blue (RGB) color information, and do not imply 3D geometric changes.
Besides, let us notice that the RGB data provided in AHN has not been acquired at the same date as LiDAR PCs
implying numerous disagreement between 3D geometry and RGB information of changed scenes. Therefore, we
explicitly discard RGB information.

As far as training PCs are concerned, they are sub-parts of tiles 31HN1_22, 31HN1_23, 31HZ1_04, from the divided
AHN dataset (https://geotiles.nl/). Concerning the test set, qualitative analysis is performed on a sub-part of
tile 37EN1_08 (see Figure 4(a,c)). This sub-part is selected to show sufficient change instances to properly evaluate
the method. AHN data does not contain any change annotation. Thus, deriving change labels from available semantic
labels is not obvious due to point cloud characteristics (e.g., no point to point corresponding). Thereby, we selected a
surface of 12,400 m2 from the tile 37EN1_08 and conducted a manual annotation. Even if here the change detection is
only binary, some different types of changes are present in this area including new buildings, demolished buildings, new
vegetation and clutter.

The density of AHN3 is about 12 points/m2 while AHN4 is about 22 points/m2. Height and planimetric stochastic
errors are 5 cm. In addition to point coordinates, AHN data also includes LiDAR intensity and the number of returns.
However, since here we focus on raw 3D PCs only, we rely solely on the 3D point coordinates to feed the network.

4.2 Experimental protocol

To assess our proposed self-supervised strategy to extract relevant deep features, we will compare our results with those
obtained by our 3D PC DCVA adaptation using a network pre-trained on an annex task such as semantic segmentation
using labels from a publicly available dataset as done in the 2D case in [Saha et al., 2019]. Indeed, while datasets
annotated according to the change are not common when dealing with 3D PCs, public datasets with a mono-date
semantic annotation in urban environment are widely spread [Hackel et al., 2017, Roynard et al., 2018, Varney et al.,
2020, Kölle et al., 2021]. By choosing a public dataset as close as possible to the unlabeled change detection dataset to
perform supervised training of the network, one could expect that extracted features will be consistent in unchanged
areas and different in the case of changes. In our study, we use the Hessigheim 3D (H3D) Aerial LiDAR Survey
(ALS) to train the network for semantic segmentation. The H3D dataset consists of four different PCs at various
dates and comes with labels related to 11 semantic classes that have been manually annotated [Kölle et al., 2021]. In
practice, the training is performed on H3D PCs acquired in March 2016 on behalf of the national mapping agency of
Baden-Württemberg, Germany. In the following study, we refer to this method by Supervised Semantic Segmentation
Training (SSST). Combined with DCVA, the method is called SSST-DCVA.

Additionaly, even if no specific unsupervised deep method exists so far in the literature for 3D change detection, we
decided to compare with the supervised Siamese KPConv network [de Gélis et al., 2023] trained on the simulated
Urb3DCD dataset [de Gélis et al., 2021] and directly applied to our testing set without any retraining. Thereby, this
strategy refered as Siamese KPConv transfer is another unsupervised baseline as no label from the target dataset
(i.e., AHN-CD) is used during the training. Conversely, the supervised baseline with Siamese KPConv trained on the
AHN-CD train part (with automatic annotation of change) is also given. To further benchmark our method against the
state-of-the-art, we provide a comparison with Cloud-to-Cloud (C2C) [Girardeau-Montaut et al., 2005] and multi-scale
model-to-model cloud comparison (M3C2) [Lague et al., 2013] distance-based methods. These methods constitute
unsupervised baselines for 3D point-based binary change detection [Shirowzhan et al., 2019]. In particular, to obtain
final binary change information, a thresholding based on Otsu algorithm [Otsu, 1979] is applied on the Hausdorff
point-to-point distance computed in C2C. The traditional M3C2 method uses local surface normal and orientation to
compute the 3D distance between two PCs [Lague et al., 2013]. This method relies on statistical tests on distances
between local surface normal and orientation features of the two PCs to automatically extract significant changes.
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mAcc mIoU IoU (%) Computation time
(%) (%) Unchanged Changed Training Testing

SSL-DCVA (ours) 85.20 74.14 78.91 69.38 9 min 40 sec
SSST-DCVA (ours) 81.88 66.93 70.02 63.85 17 hours 40 sec

Siamese KPConv transfer [de Gélis et al., 2023] 81.83 69.76 75.80 63.73 28 hours 25 sec
M3C2 [Lague et al., 2013] 51.77 43.56 3.66 39.90 - 5 sec

C2C [Girardeau-Montaut et al., 2005] 76.67 65.16 76.98 53.34 - 5 sec
Siamese KPConv (supervised) [de Gélis et al., 2023] 94.23 89.96 92.27 87.65 15 hours 25 sec

Table 1: Quantitative results on AHN-CD dataset. Approximate computation times are provided for the training and
testing (on the manually annotated part) step.

4.3 Experimental settings

For the same computational reason as 2D images are divided into patches, original PCs are also divided into tiles to run
deep learning experiments. As done in the supervised deep framework for 3D PC change detection from de Gélis et al.
[2023], vertical 3D cylinders are chosen to make sure that whatever changes occur between the two dates, at least the
ground is visible.

For the SSST part, KP-FCNN is trained using cylinders of 10 m in radius with a first sub-sampling rate of 0.2 m. A
total of 6,000 cylinders are used for the training at each epoch. The batch size is 10. The 11 H3D classes are fused into
7 classes better suited for the AHN dataset. It requires around 90 epochs to converge.

Concerning SSL, the training is realized using cylinders of 20 m in radius and a first sub-sampling rate of 0.5 m. The
best results are obtained using 6 clusters for the deep clustering loss, and after 15 epochs of training. One hundred
cylinders are used for each epoch with a batch size of 10.

Networks are optimized using a Stochastic Gradient Descent with a momentum of 0.98. The learning rate is set at
0.01 and decreases exponentially. Regardless of the first sub-sampling rate, the final results are given at the original
resolution.

For the choice of the layer to take features for the DCVA, several configurations have been tested. Knowing that
KP-FCNN has 9 layers, the best results, reported here, are obtained using the 7th layer for SSST and the 8th for the SSL
strategy.

Following the thresholding step, a cleaning of isolated predictions is realized to spatially smooth the results. Note that
this cleaning step is systematically applied to ensure fair comparison.

4.4 Results and discussion

Quantitative results are given in Table 1. The mean of accuracy (mAcc), the mean of intersection over union (IoU) and
the IoU for both changed and unchanged classes are given. Corresponding qualitative results on the manually annotated
test set are presented in Figure 3. To complete the qualitative analysis of the results, a larger scene has been visually
inspected to understand the behavior of our methods in multiple conditions (see Figure 4).

As can be seen in Table 1, SSL-DCVA outperforms other methods including SSST-DCVA. It is worth noting that
despite its simplicity (no training is required), C2C provides relevant results. However, the point-to-point distance
seems limited in places where for example trees have been replaced by a building of approximately the same height
(see regions of interest in Figure 3(h)) or where a new building replaced an old one as in the top of zoom 1 where
buildings in AHN3 and AHN4 are very different (Figure 4(a,d,h)). Conversely to C2C, M3C2 provides inconsistent
results here (see Figure 3(g)): the ground elevation has changed slightly between the two acquisitions, so almost all
areas are marked as changed. Notice that even when removing ground points for metric computation, the M3C2 method
is lagging behind other methods (still about 10% of mAcc behind the SSST-DCVA algorithm evaluated under the same
conditions). Moreover, in this study, we aim at detecting changes in object semantics (new buildings, demolition, new
vegetation, etc.), so a change in the ground height is not of interest to us and has not been marked as changed in the
ground truth. To further explain the relative poor results of M3C2, we recall that this method was originally developed
in a geoscience context to detect changes at different scales including centimetric [Lague et al., 2013]. Thereby it might
be inadequate for urban environments, as already noticed in de Gélis et al. [2021]. A distance-based method may not
distinguish between topographic and semantic changes as long as the geometry of objects has changed. Learning-based
methods (see Figure 3(d-f)) seem to also retrieve small changed objects, which is not possible with distance-based
methods without including too many changes.
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By looking at the results of the Siamese KPConv change detection network with transfer onto AHN dataset from
Urb3DCD simulated dataset, we can see that performances are quite similar to the SSST-DCVA but are overtaken by
SSL-DCVA method. In particular, some differences with the ground truth are visible in the demolished area and at
object boundaries. This is probably due to the difference of building types present in the selected area of AHN dataset.
Indeed, Urb3DCD dataset contains buildings from a french city center different from train and test areas, as for example,
AHN3 data (time 1) contains a glasshouse. The same problem occurs with SSST-DCVA methods, since H3D PCs have
different resolution and quality than AHN PCs. This shows the advantage of training directly on a dataset with similar
properties to the test set and using recent developments in self-supervised learning. However, when compared to the
supervised Siamese KPConv network, unsupervised methods can still largely be improved. The main differences of
SSL-DCVA with the ground truth are visible on small objects such as vehicles, road signs or vegetation (see Figure 3(c)
and (d)). Furthermore, as can be seen in the buildings on the left side of Figure 3 and right side of Figure 4(c), some
omissions remain on new buildings with a flat roof. When looking at the mono-date segmentation of the PC realized
before the DCVA step, one can see that flat roofs are classified in the same class as ground so, when comparing features,
no changes are highlighted. This raises the difficulty of late-fusion change identification. Indeed, errors in the feature
extraction step are propagated in the comparison step. Finally, some false detections are visible on the ground, forming
a large trapezium (see Figure 3(d)). This is due to changes in the orientation of the ground surface.

Our method encouters difficulties in unchanged vegetated areas (see the top of zoom 2 in Figure 4(i)) certainly because
of the complexity of LiDAR data in such areas with a high variation of point distribution even without changes in the
semantics of objects. This results in a mixture of points predicted as changed and unchanged. Furthermore, these
vegetated areas may have grown, and the acquisition not realized in the same season implies some differences on the
3D representation of trees. Note that the same problems occur with the other learning-based methods (see the top of
zoom 2 in Figure 4(j,k). Looking at Figure 4(l), we can observe that C2C method is not better in this zoom where the
vegetation has been removed. Indeed, in AHN3 some points are acquired from the ground to the top of the tree canopy
thanks to the LiDAR sensor, thereby the point-to-point distance is not an efficient indicator for changes.

The point-to-point nearest neighbor correspondence lacks precision in the presence of occlusion in the 3D PCs. Indeed,
due to the geometry of acquisition, some occlusions may appear in PCs, these hidden parts may not be similar in the
two compared PCs leading to difficulties when comparing points in the DCVA part.

Finally, once again SSL-DCVA seems more interesting than SSST-DCVA when looking at training time. SSST-DCVA
takes about 17 hours to train on H3D dataset, while SSL-DCVA only requires about 9 minutes to train (see Table 1).
The DCVA part on the manually annotated test set takes about 40 seconds. All experiments were realized on a single
Graphic Processing Unit (GPU) (Nvidia Tesla V100 SXM2 16 GB).

5 Conclusion

In this paper, we have proposed a method able to detect changes into raw 3D PCs using unsupervised deep learning, i.e.,
without any ground truth annotation for the training step. This unsupervised change detection in 3D PCs is challenging
due to the lack of point-to-point correspondence between pre-change and post-change 3D points and the proposed
method effectively addressed this problem. It further exploits self-supervised learning through deep clustering and
contrastive learning to effectively characterize the target area. The method also relies on an adaptation of the deep
change vector analysis framework to the particular case of 3D PCs data. Experiments on the public AHN dataset
demonstrate both the effectiveness of the proposed approach over existing unsupervised approaches and the additional
benefit brought by self-supervised learning w.r.t. transfer learning (i.e., using a network pre-trained on another public
dataset). More specifically, our method reach 85% of mean accuracy. It futher allows to increase the best traditional and
unsupervised learning method by around 9% and 4% of mean of IoU respectively. Nevertheless, the performance of the
proposed unsupervised method cannot compete with supervised methods yet, that provide very accurate results, at the
cost of tedious annotation of large datasets though. In the future, we will focus on further improving the method in the
occluded regions, e.g., by taking inspiration from the recent literature on contrastive learning in the scene boundaries
[Tang et al., 2022]. Finally, let us emphasize that our self-supervised method is based on a learning process. As such, it
should be agnostic to the sensor used to provide the 3D PCs. Thereby, we consider as future work to experiment our
method with other types of 3D data such as photogrammetric or terrestrial LiDAR scanning.
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a) AHN3 data (time 1) b) AHN4 data (time 2)

Unchanged Changed

c) Ground Truth

True Negative
True Positive
False Negative
False Positive

d) SSL-DCVA

e) SSST-DCVA f) Siamese KPConv transfer
[de Gélis et al., 2023]

g) M3C2
[Lague et al., 2013]

h) C2C
[Girardeau-Montaut et al., 2005]

Figure 3: Qualitative results on the manually annotated testing set. Even if not perfect, deep learning based methods
(SSL-DCVA (d), SSST-DCVA (e) and Siamese KPConv transfer (f)) seem to better retrieve changes in small objects
than distance based methods (M3C2 (g) and C2C (h)).
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a) AHN3 data (time 1) b) SSST-DCVA results c) SSL-DCVA results d) AHN4 data (time 2)

e) Zoom 1: SSL-DCVA f) Zoom 1: SSST-DCVA g) Zoom 1: Siamese KPConv
transfer [de Gélis et al., 2023]

h) Zoom 1: C2C
[Girardeau-Montaut et al., 2005]

i) Zoom 2: SSL-DCVA j) Zoom 2: SSST-DCVA k) Zoom 2: Siamese KPConv
transfer [de Gélis et al., 2023]

l) Zoom 2: C2C
[Girardeau-Montaut et al., 2005]

Unchanged Changed

Figure 4: Qualitative results on the testing set. Changes are indicated in red. For more precise results, zoom 1 and 2 are
visible in e) to l), while zoom Fig. 3 corresponds to the manually annotated area presented in Figure 3.
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