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ABSTRACT 
This paper presents a bipolar charge transport model 
based on new assumptions of energy levels distribution of 
traps and allowing to predict the XLPE electrical behaviour 
under DC stress. The model assumes that shallow traps 
are distributed over a single energy level and can 
participate in transport with a hopping mobility, whereas an 
exponential distribution is used to model the repartition of 
deep traps. Trapping, detrapping and recombination of 
charges are taken into account. Results show that the 
model (simulated under COMSOL Multiphysics®)  
reproduces the main characteristics of space charge 
density obtained by PEA measurement on degassed XLPE 
plates samples.  

KEYWORDS 
Charge transport modelling, Cross-linked polyethylene 
(XLPE), Insulating polymers, Dielectric characterizations, 
Space charges, Traps distribution. 

INTRODUCTION 
The challenge in strengthening grid interconnections 
between countries and in the development of renewable 
energies from solar or wind sources is to transmit energy 
over long distances, as production areas are generally far 
from consumption areas. To rise to this challenge, more 
and more power transmission systems are based on HVDC 
technology, and cross-linked polyethylene (XLPE) is now 
the most used insulation in HVDC cables, because of its 
suitable electrical and thermomechanical properties for 
service conditions, in particular its improved thermal and 
mechanical resistance due to the bridges (formed during 
the cross-linked process) between the molecular chains of 
LDPE. One of the issues using a synthetic insulation under 
DC stress is the generation and accumulation of charges 
inside the insulation, which can locally increase the electric 
field, leading to material degradation and possible dielectric 
breakdown, i.e. to the failure of the transmission link. 
Modelling charge generation and transport phenomena is 
a complementary way to experimental measurements to 
improve the understanding of charge accumulation 
mechanisms and associated consequences in XLPE. In 
this perspective, several charge transport models have 
been proposed in the literature over the last decades to 
describe and predict the electrical behaviour of polymeric 
insulators (LDPE, XLPE, etc.) [1-5]. In this paper, we 
present a new charge transport model allowing to follow the 
spatio-temporal charge evolution, the local electric field 
distribution and the current density evolution in a degassed 
XLPE under thermoelectric stress. Such degassed material 
allows to let ionic charges aside in a first attempt. The 
developed model is an improvement of a BCT (bipolar 
charge transport) model already published in the literature 

[1, 2]. The main difficulty with charge transport models is to 
describe as correctly as possible the trap distribution within 
the band gap, as this is what rules charge transport and 
accumulation in solid organic insulators. On the other hand, 
the trap description should be relatively simple, otherwise 
the resolution becomes too long due to model timesteps, or 
parameters identification is not tractable as processes are 
too interrelated. The original approach of our work is the 
type of energy levels distribution that is proposed and used 
to model the traps distribution in the material: for each type 
of electronic charges (electrons and holes), we assume a 
discrete level for shallow traps, mostly linked to physical 
defects, and an exponential distribution for deep traps due 
to chemical defects. Such description has been already 
proposed in the literature [4], although the present model 
accounts differently for most of the physical processes 
included in the model, and described in a further 
paragraph. The model accounts for the main physical 
processes for electronic charges such as charge injection 
and extraction at the electrodes, transport (drift and 
diffusion), trapping, detrapping and recombination of 
charges in a degassed XLPE. The fluid model is solved 
using a finite element method, and has been developed for 
planar (plates) geometry. To validate the model, 
experimental measurements of space charges and current 
are performed on degassed XLPE plane parallel samples 
and the obtained results are compared with those of the 
model. 

EXPERIMENTAL APPROACH 
A peroxide cross-linked polyethylene (XLPE) has been 
chosen as model material. Plaques of cross-linkable LDPE, 
i.e. containing peroxide, are first obtained using a hydraulic 
press. Semicon electrodes (SC) based on carbon black-
doped polyethylene are added on each side of the XLPE, 
and the sandwich SC/XLPE/SC is crosslinked by 
compression molding at 190°C for 10 minutes. Adding SC 
electrodes allow being closer to the real configuration of an 
insulated XLPE cable system, and also allow having a good 
electrical and acoustic match during space charge 
measurements. The thickness of the sandwich is about 500 
µm, with SC electrodes of 12 mm wide and 150 µm thick, 
and XLPE insulation of 70 mm wide and about 200 µm 
thick. After sample preparation and before experimental 
measurements, the samples are degassed for 3 days at 
70°C to remove the XLPE cross-linking by-products, as 
their presence in the material and their contribution to 
space charge are not taken into account in the present 
research. Experimental space charge measurements using 
the Pulsed Electro-Acoustic (PEA) method and current 
measurements were performed on these degassed XLPE 
samples. The applied electric field protocol is given in Fig. 
1, and consists, for a given temperature, in applying an 
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increasing electric field from 20 to 40 kV.mm-1. The electric 
field is applied for 24 hours at each level to allow the 
samples to reach a steady state. After the application of 
each electric field for 24 hours, a depolarization time of 1 
hour has been performed to measure space charge and 
current at volt-off. Measurements have been performed for 
temperatures of 20, 50 and 70°C. 

MODEL  DESCRIPTION 
The aim of our work is to develop a fluid bipolar charge 
transport model that contributes to the improvement of 
already existing ones. The model we propose in this paper 
combines the trap energy levels distribution  from two 
models already developed: the two-levels of traps model 
[1], and the model with an exponential trap distribution [2]. 
Each model accounts only for electronic charges, i.e. 
electrons and holes.  

Description of the trap distributions used as 
basis for our model  
The first trap distribution description, which has been 
described in several publications, [1, 5, 6], is the two levels 
of trap model presented in Fig. 2.   

Each charge type (electron and hole) has only two levels, 
one where the charge is mobile, and the other where the 
charge is trapped. Mobile charges in the transport level 
(mobile electrons in conduction band and mobile holes in 
valence band) have an effective mobility that accounts for 
the possible trapping and detrapping of charges in shallow 
traps, where the residence time of charges is short (10-12 s) 
[1, 7]. This mobility is hence lower than a band mobility, and 
is of the order of 10-13-10-14 m2.V-1.s-1. A single deep 
trapping level for each charge species is considered.  

The second description is an exponential distribution of 
energy states for each kind of carrier, based on ab initio 
calculations [8]. The exponential distribution, presented in 
Fig. 3, is expressed as a function of the energy level ∆ by 
[2, 6]: 

𝑁𝑁𝑡𝑡(𝑒𝑒,ℎ)�∆𝑒𝑒,ℎ� = 𝑁𝑁𝑒𝑒,ℎ
′ exp �−

∆𝑒𝑒,ℎ

𝑘𝑘𝐵𝐵𝑇𝑇0(𝑒𝑒,ℎ)
�      (∆ ≤ ∆𝒎𝒎𝒎𝒎𝒎𝒎) [1] 

where 𝑁𝑁𝑡𝑡(𝑒𝑒) and 𝑁𝑁𝑡𝑡(ℎ) are the trap density distributions for 
electrons and holes, characterized by the shape parameter 
𝑇𝑇0 (in K) and the pre-exponential factor 𝑁𝑁′ (in m-3.J-1). 𝑘𝑘𝐵𝐵 

the Boltzmann constant (1,38 10-23 J.K-1). The exponential 
distribution is limited by a maximum trap depth ∆𝑚𝑚𝑚𝑚𝑚𝑚 (in eV) 
corresponding to the deepest trap available in the material 
[6]. All charges are considered trapped at all times, and 
only a fraction of trapped charges, with an energy between 
∆𝑓𝑓 and ∆𝑓𝑓 − 𝑘𝑘𝐵𝐵𝑇𝑇, ∆𝑓𝑓 representing the highest occupied 
level, contributes to the transport. For this model, the 
mobility of each carrier is function of the exponential trap 
distribution, and is of the hopping type. 

The model with two levels of traps has the advantages of 
being simple and is easy to parameterize to reproduce the 
results of experimental measurements, as all these 
parameters are independent. However, it is limited by its 
simplified description of the energy levels of the trap states. 
The exponential trap distribution model provides a more 
realistic physical description of traps distribution in the 
bandgap. However, because all its parameters are related, 
this model is much more complicated to use. In addition, 
the assumption that a constant fraction of trapped charges 
is available for transport whatever the trap filling level is 
also a limitation for this model.  

Description of the proposed trap distribution 
The present model is based on the description of trap 
distribution as proposed in Fig. 4. We assume that for each 
charge carrier: 

- There is a single trapping energy level for mobile charges, 

 
Fig. 1: Electric field protocol for space charge and 

current measurements and simulation. 
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Fig. 2: Schematic representation of the two-level 

of traps model.  

 
Fig. 3: Schematic representation of the 

exponential trap distribution for a single kind of 
carrier. ∆𝒇𝒇 is the upper filled level and ∆𝒎𝒎𝒎𝒎𝒎𝒎 the 

maximum depth of traps. 
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with an energy less or equal to 0.3 eV. This upper energy 
value has been defined according to the maximum trap 
depth for physical traps reported by Meunier et al. [7]. 
Charges on this level have a mobility of the hopping type. 
Contrarily to the two levels of traps model, where the 
mobility for charges in the ‘mobile’ level was of the order of 
10-13-10-14 m2.V-1.s-1, in the present model, the mobility 
(around 10-8 m2.V-1.s-1 for an energy level of 0.3 eV) is 
closer to a band mobility. 

- There is an exponential distribution for deep traps. The 
depth of the traps varies from a maximum energy level 
∆𝑚𝑚𝑚𝑚𝑚𝑚 (≤ 1.5 eV) to a minimum energy level ∆𝑚𝑚𝑚𝑚𝑚𝑚, which 
must be greater than the hopping barrier height (𝑤𝑤ℎ𝑜𝑜𝑜𝑜) 
value for each kind of charge. The traps are first filled from 
the deepest energy levels towards the most shallow ones. 
These energy levels values have again been extracted 
from the literature on ab-initio simulations [7, 8, 9].  

The equation governing the exponential distribution is :  

𝑁𝑁𝑡𝑡(𝑒𝑒,ℎ) = 𝑁𝑁′
(𝑒𝑒,ℎ)exp�−

∆𝑒𝑒,ℎ

𝑘𝑘𝐵𝐵𝑇𝑇0(𝑒𝑒,ℎ)
� , �∆𝑚𝑚𝑚𝑚𝑚𝑚< ∆𝑒𝑒,ℎ< ∆𝑚𝑚𝑚𝑚𝑚𝑚� [2] 

where ∆𝑚𝑚𝑚𝑚𝑚𝑚 and ∆𝑚𝑚𝑚𝑚𝑚𝑚 (in eV) are the maximum and 
minimum trap depth respectively.  

The integral of 𝑁𝑁𝑡𝑡(𝑒𝑒) between ∆𝑚𝑚𝑚𝑚𝑚𝑚 and ∆𝑚𝑚𝑚𝑚𝑚𝑚 gives the total 
deep trap density:  

𝑁𝑁′
𝑡𝑡𝑜𝑜𝑡𝑡(𝑒𝑒,ℎ) = � 𝑁𝑁′

(𝑒𝑒,ℎ)exp�−
∆𝑒𝑒,ℎ

𝑘𝑘𝐵𝐵𝑇𝑇0(𝑒𝑒,ℎ)
�𝑑𝑑∆

Δmax 

Δmin 
 [3] 

𝑁𝑁′𝑡𝑡𝑜𝑜𝑡𝑡(𝑒𝑒,ℎ) = 𝑁𝑁′
(𝑒𝑒,ℎ)𝑘𝑘𝐵𝐵𝑇𝑇0(𝑒𝑒,ℎ) �exp�−

∆min (𝑒𝑒,ℎ)

𝑘𝑘𝐵𝐵𝑇𝑇0(𝑒𝑒,ℎ)
�

− exp�−
∆max (𝑒𝑒,ℎ)

𝑘𝑘𝐵𝐵𝑇𝑇0(𝑒𝑒,ℎ)
�� 

 

            
[4] 

The parameters N’, T0 are then chosen to have a total trap 
density of the order of what has been proposed in the 
literature for deep traps [8, 9].  

The proposed model is a one-dimensional bipolar charge 
transport model, function of the position in the sample, and 
accounts for charge generation, transport, trapping, 
detrapping and recombination. Each physical process has 
a link with the trap distribution proposed above, and will be 
described in the following.  

The equations to solve are the Poisson equation and the 
transport equation combined with the charge conservation 
equation (also called continuity equation): 

∇. (𝜀𝜀0𝜀𝜀𝑟𝑟𝐸𝐸) = �+𝑞𝑞𝑛𝑛ℎµ + 𝑞𝑞𝑛𝑛ℎ𝑡𝑡 − 𝑞𝑞𝑛𝑛𝑒𝑒µ − 𝑞𝑞𝑛𝑛𝑒𝑒𝑡𝑡� =  𝜌𝜌 [5] 

𝜕𝜕𝑛𝑛𝑚𝑚
𝜕𝜕𝜕𝜕 + ∇. �𝑛𝑛𝑚𝑚µ𝑚𝑚𝐸𝐸 − 𝐷𝐷𝑑𝑑𝑚𝑚𝑓𝑓𝑓𝑓𝑎𝑎∇𝑛𝑛𝑚𝑚� = 𝑠𝑠𝑚𝑚  [6] 

𝑞𝑞 is the elementary charge (in C), 𝑛𝑛𝑚𝑚 is the charge density 
(in m-3), 𝑎𝑎 defines the type of charge (electron or hole), 
mobile (µ) or trapped (t). 𝜕𝜕 is the time, µ𝑚𝑚 is the mobility (in 
m2.V-1.s-1) for each kind of carrier and 𝐷𝐷𝑑𝑑𝑚𝑚𝑓𝑓𝑓𝑓𝑚𝑚 the diffusion 
coefficient (in m2.s-1). 𝐸𝐸 is the electric field (in V.m-1), 𝜌𝜌 the 
net charge density (in C.m-3), 𝜀𝜀0 the vacuum permittivity, 
and 𝜀𝜀𝑟𝑟 the relative permittivity of the material (2.3 for 
XLPE). 𝑠𝑠𝑚𝑚 is the source term defined below.  

The mobility for each kind of charge is of the hopping type 
and is expressed as: 

𝜇𝜇(𝑒𝑒,ℎ) =
2𝜆𝜆(𝑒𝑒,ℎ)𝜈𝜈

𝐸𝐸 exp �
−𝑤𝑤ℎ𝑜𝑜𝑜𝑜(𝑒𝑒,ℎ)

𝑘𝑘𝐵𝐵𝑇𝑇
� sinh �

𝑞𝑞𝜆𝜆(𝑒𝑒,ℎ)𝐸𝐸
2𝑘𝑘𝐵𝐵𝑇𝑇

�  [7]  

𝜆𝜆(𝑒𝑒,ℎ) is the hopping distance, i.e. the inter-traps distance 
(in m), 𝜈𝜈 the attempt to escape frequency (in s-1) equal to 
𝑘𝑘𝐵𝐵𝑇𝑇/ℎ = 6.2 10−12 s−1 at room temperature (300 K), 
𝑤𝑤ℎ𝑜𝑜𝑜𝑜(𝑒𝑒,ℎ) is the hopping barrier (in eV) ≤ 0.3 eV, and 𝑇𝑇 is 
the temperature. 

The diffusion coefficient is related to the mobility by the 
Einstein relation: 

𝐷𝐷𝑑𝑑𝑚𝑚𝑓𝑓𝑓𝑓(𝑒𝑒,ℎ) =
𝑘𝑘𝐵𝐵𝑇𝑇
𝑞𝑞 µ(𝑒𝑒,ℎ)  [8] 

The source terms 𝑠𝑠𝑚𝑚 take into account all physical 
processes not related to transport (trapping, detrapping, 
recombination). An example of a source term for free 
electrons is given below: 

𝑠𝑠𝑒𝑒µ = −𝐵𝐵(𝑒𝑒)𝑛𝑛𝑒𝑒µ �1 −
𝑛𝑛𝑒𝑒𝑡𝑡

𝑁𝑁′
𝑡𝑡𝑜𝑜𝑡𝑡(𝑒𝑒)

� + 𝐷𝐷(𝑒𝑒)𝑛𝑛𝑒𝑒𝑡𝑡

−𝑆𝑆1𝐿𝐿𝑛𝑛𝑒𝑒µ𝑛𝑛ℎ𝑡𝑡 − 𝑆𝑆3𝐿𝐿𝑛𝑛𝑒𝑒µ𝑛𝑛ℎµ  [9]
 

The first term in the right hand side of equation [9] defines 
the trapping, characterized by the trapping coefficient 𝐵𝐵(𝑒𝑒,ℎ) 
(in s-1) which depends on the total trap density and the 
charges mobility [10]: 

𝐵𝐵(𝑒𝑒,ℎ) = 𝑞𝑞𝑁𝑁′
𝑡𝑡𝑜𝑜𝑡𝑡(𝑒𝑒,ℎ)

µ(𝑒𝑒,ℎ)

𝜀𝜀0𝜀𝜀𝑟𝑟
  [10] 

The second term in the right hand side of equation [9] 
describes the detrapping, defined by the detrapping 
coefficient 𝐷𝐷(𝑒𝑒,ℎ) (in s-1), which is function of the upper filled 
limit ∆𝑓𝑓(𝑒𝑒,ℎ): 

𝐷𝐷(𝑒𝑒,ℎ) =  𝜈𝜈exp �
−∆𝑓𝑓(𝑒𝑒,ℎ)

𝑘𝑘𝐵𝐵𝑇𝑇
�   [11] 

The trap filling depth, ∆𝑓𝑓(𝑒𝑒,ℎ), can be calculated from the 
equation (for electrons for example): 

𝑛𝑛𝑒𝑒𝑡𝑡 = � 𝑁𝑁′
(𝑒𝑒)exp�−

∆𝑒𝑒
𝑘𝑘𝐵𝐵𝑇𝑇0(𝑒𝑒)

�𝑑𝑑∆
∆𝑚𝑚𝑎𝑎𝑚𝑚 

𝛥𝛥𝑓𝑓 
  [12] 

This allows to obtain: 

 
Fig. 4: Description of the proposed model. Shallow 
traps are modelled by a single trap level and deep 
traps distribution is described by an exponential 

function that varies from ∆𝒎𝒎𝒎𝒎𝒎𝒎 to ∆𝒎𝒎𝒎𝒎𝒎𝒎 (maximum and 
mimimum depth of traps). ∆𝒇𝒇 is the upper filled level, 

i.e. the highest occupied level. 
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∆𝑓𝑓(𝑒𝑒)= −𝑘𝑘𝐵𝐵𝑇𝑇0(𝑒𝑒)ln �exp�−
∆max (𝑒𝑒))

𝑘𝑘𝐵𝐵𝑇𝑇0(𝑒𝑒)
� + �

𝑛𝑛𝑒𝑒𝑡𝑡
𝑁𝑁′(𝑒𝑒)𝑘𝑘𝐵𝐵𝑇𝑇0(𝑒𝑒)

��  [13] 

At 𝜕𝜕 =  0, if we consider that there are no trapped charges, 
then 𝑛𝑛𝑒𝑒𝑡𝑡 = 𝑛𝑛ℎ𝑡𝑡 =  0, and thus ∆𝑓𝑓(𝑒𝑒,ℎ)=  ∆𝑚𝑚𝑚𝑚𝑚𝑚(𝑒𝑒,ℎ). This means 
that the trap filled limit ∆𝑓𝑓(𝑒𝑒,ℎ) will vary upon space and time, 
as a function of the occupied deep trap density.  

The last two terms  in the right hand side of equation [9] 
represent the recombination phenomena. Charge 
recombination is considered by assuming that the 
recombination coefficients 𝑆𝑆𝑚𝑚 (in m3.s-1) are of Langevin 
form, function of the carrier mobility, thus function of the 
electric field and temperature: 

𝑆𝑆1𝐿𝐿 =
𝑞𝑞𝜇𝜇𝑒𝑒
𝜀𝜀0𝜀𝜀𝑟𝑟

 ;      𝑆𝑆3𝐿𝐿 =
𝑞𝑞(𝜇𝜇𝑒𝑒 + 𝜇𝜇ℎ)

𝜀𝜀0𝜀𝜀𝑟𝑟
 ;      𝑆𝑆2𝐿𝐿 =

𝑞𝑞𝜇𝜇ℎ
𝜀𝜀0𝜀𝜀𝑟𝑟

   [14] 

In the model, we assumed that charge generation in the 
material is only due to injection at the electrodes according 
to a modified Schottky law. The injected current density for 
electrons at the cathode (𝑥𝑥 = 0) and holes at the anode 
(𝑥𝑥 = 𝐷𝐷) is written: 

𝑗𝑗𝑒𝑒,ℎ(𝑥𝑥0, 𝜕𝜕) = 𝐴𝐴𝑇𝑇2. exp �−
𝑤𝑤𝑚𝑚(𝑒𝑒,  ℎ)

𝑘𝑘𝐵𝐵𝑇𝑇
�

× �exp�
𝑞𝑞
𝑘𝑘𝐵𝐵𝑇𝑇

�
𝑞𝑞𝐸𝐸(𝑥𝑥0, 𝜕𝜕)
4𝜋𝜋𝜀𝜀0𝜀𝜀𝑟𝑟

� − 1�          [15] 

with 𝑥𝑥0 = 0 or 𝑥𝑥0 = 𝐷𝐷. 𝐴𝐴 is the Richardson constant (𝐴𝐴 = 
1.2 106 A.m-2.K-2). 𝑤𝑤𝑚𝑚(𝑒𝑒) and 𝑤𝑤𝑚𝑚(ℎ) are the injection barriers 
for electrons and holes (in eV). The model does not 
consider an extraction barrier at the electrodes, so the 
extraction fluxes for electrons and holes at the anode and 
cathode respectively follow the transport equation. 

Model implementation 
The model is developed with COMSOL Multiphysics® 
which offers several modules adapted or adaptable to the 
equations of our model. We have chosen the physical 
module “Transport of Diluted Species” (TDS) to solve the 
transport equation of each charge carrier (electron and 
hole, mobile and trapped). This module, which already 
includes tools to stabilize the solutions and minimize the 
oscillations, has the advantage of being well optimized for 
the modeling of transport phenomena. The mathematical 
module “Poisson Equation” (POEQ) is used to model the 
Poisson equation and to couple it to the transport 
equations. “Backward Differentiation Formula” (BDF) 
solver is used for the time integration. The sample 
thickness (200 µm) is divided into 2000 finite elements of 
length 0.1 µm. 

RESULTS AND DISCUSSION 
Simulations have been performed following the same 
applied electric field protocol as the experimental one. After 
simulation, a post-processing step is necessary in order to 
obtain simulated space charge results comparable to 
experimental ones. This step consists in adding the 
influence charges (i.e. capacitive charge and image 
charges) at each electrode [11].  

Values of the model parameters used for the simulations 
are reported in Table 1. Space charge measurement 
results using the protocol of Fig. 1 at 20°C are presented in 
Fig. 5a as a function of time and position. 

Table 1. Model parameters used for the simulations. 

Parameters Value Units 
Injection barrier heights 
𝑤𝑤𝑚𝑚(𝑒𝑒) for electrons 
𝑤𝑤𝑚𝑚(ℎ) for holes 

 
1.24 
1.16 

 
eV 
eV 

Hopping barrier heights 
𝑤𝑤ℎ𝑜𝑜𝑜𝑜(𝑒𝑒) for electrons 
𝑤𝑤ℎ𝑜𝑜𝑜𝑜(ℎ) for holes 

 
0.3 
0.3 

 
eV 
eV 

Inter-shallow traps distance 
𝜆𝜆(𝑒𝑒) for electrons 
𝜆𝜆(ℎ) for holes 

 
3 × 10-9 
3 × 10-9 

 
m 
m 

Minimum depth of deep traps 
∆𝑚𝑚𝑚𝑚𝑚𝑚(𝑒𝑒) for electrons 
∆𝑚𝑚𝑚𝑚𝑚𝑚(ℎ) for holes 

 
0.4 
0.4 

 
eV 
eV 

Maximum depth of deep traps 
∆𝑚𝑚𝑚𝑚𝑚𝑚(𝑒𝑒) for electrons 
∆𝑚𝑚𝑚𝑚𝑚𝑚(ℎ) for holes 

 
1.5 
1.5 

 
eV 
eV 

Pre-exponential factors 
𝑁𝑁′(𝑒𝑒) for electrons 
𝑁𝑁′(ℎ) for holes 

 
1.8 × 1042 
3.0 × 1042 

 
m-3.J-1 

m-3.J-1 

Shape parameters 
𝑇𝑇0(𝑒𝑒) for electrons 
𝑇𝑇0(ℎ) for holes 

 
1600 
1300 

 
K 
K 

The charge density profile shows a charge injection at the 
electrodes dominated by positive charges. The mobility of 
these positive charges is apparently higher than that of the 
negative charges, as they seem to reach the cathode soon 
after voltage application for an applied electric field of 20 
kV.mm-1. This is more difficult to observe for higher applied 
electric fields. We observe a progressive penetration of 
negative charges with time and with the increase of the 
electric field. This dynamic allows electrons to 
progressively compensate the dominance of positive 
charges in the material. The simulation results for the same 
protocole are presented in Fig. 5b. The simulated space 
charge density globally reproduces the interesting 
characteristics of the measurement results: massive 
injection and dominant accumulation of positive charges, 
higher apparent mobility of positive charges, progressive 
penetration of negative charges in the material with time 
and with increasing the electric field. 

Fig. 6a, Fig. 6b and Fig. 6c compare the simulated current 
densities with the current densities obtained by 
measurements at 20°C for each applied field. 
Experimentally, we observe a decrease of the current with 
time for 20 kV.mm-1, which becomes relatively stable for 
the other electric fields. This decrease corresponds 
probably to the displacement current, i.e. orientation 
polarization phenomena, which is high at short time. For all 
applied electric fields, the simulated current increases at 
short time and then becomes stable, at a level higher than 
the measured current. As polar processes are not 
accounted for in the model, it is not possible to reproduce 
the experimental behaviour at short time. However, the 
order of magnitude of these simulated currents remains 
acceptable compared to the measured currents. 



 
 

 

The proposed model is qualitatively and quantitatively able 
to reproduce the experimental space charge density 
values. Concerning the current, the simulation results 
indicate higher values than the experimentally measured 
currents; however, it is interesting to note that these values 
tend to get closer as the applied electric field increases. 
One of the assumption was that a model with only 
electronic carriers (i. e. electrons and holes) could 
reproduce the space charge and current behaviour of a 
fully degassed XLPE. This seems to be true, as most of the 
features of space charge dynamics have been reproduced. 
Moreover, although the mobility of charge carriers is 
relatively high compared to the one included in the other 
two types of charge transport models [1, 2], the present 
model is able to reproduce the charge accumulation 
experimentally observed. Simulations performed using the 
same protocol with the other two models (two-level of traps 
model with optimized parameters for LDPE [1], and model 
with an exponential trap distribution  with parameters 
𝑇𝑇0(𝑒𝑒,ℎ), 𝑁𝑁′(𝑒𝑒,ℎ), ∆𝑚𝑚𝑚𝑚𝑚𝑚(𝑒𝑒,ℎ) and 𝑤𝑤𝑚𝑚(𝑒𝑒,ℎ) from Table 1) give 
completely different results than our model and do not 
reproduce the space charge and current behaviour 
measured in our XLPE sam ples. 

In order to further validate our model, the same set of 
parameters (Table 1) is used to simulate the space charge 
behaviour at 50°C. The comparison between the 

experimental data and the simulated ones are presented in 
Fig. 7 a and b respectively. In contrast to the results at 
20°C, the measurement at 50°C shows an intensive 
injection of negative charges at the cathode as soon as the 
electric field (20 kV.mm-1) is applied. At the anode, the 
injection of holes greatly increases with the applied electric 
field. This generation of holes and their increased mobility 
in the insulation allows these positive charges to 

 
a. applied electric field : 20 kV.mm-1 

 
b. applied electric field : 30 kV.mm-1 

 
c. applied electric field : 40 kV.mm-1 

Fig. 6: Current density vs. time from experimental 
measurement (in blue), and modelling (in red), for 

degassed XLPE sample of 200 μm thickness, at 20°C, 
under (a) 20 kV.mm-1, (b) 30 kV.mm-1, (c) 40 kV.mm-1. 
The duration of polarization at each applied electric 

field is 24h. A depolarization period of 1h is 
introduced after each 24h during polarization. 
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a. experimental 

 
b. simulation 

Fig. 5: Spatio-temporal profiles of the net charge 
density from (a) experimental measurement, and (b) 
simulation results, for degassed XLPE sample of 200 
μm thickness, at 20°C. The polarization time at each 

applied electric field (20, 30 and 40 kV.mm-1) is 24h. A 
depolarization period of 1h is introduced after each 

polarization step. 



 
 

 

accumulate in the majority of the material bulk, thus hiding 
the presence and dynamic of electrons. This last behaviour 
is not reproduced by the model (using the same 
parameters as those used at 20°C). The model does 
however reproduce some important features of the charge 
behaviour, for example the positive and negative charge 
fronts that are observed at the beginning of the electric field 
application and the intensive injection of electrons at the 
cathode. The steady state is reached faster than in 
experiments. 

CONCLUSION 
A fluid bipolar charge transport model, based on the 
assumption of a single trapping energy level for mobile 
charges and an exponential distribution for deep traps, is 
described and the simulation results of this model for a 
degassed XLPE sample are compared to the experimental 
results of space charge and current. The obtained results 
show that overall, the proposed model (with the used 
parameters set) correctly reproduces the space charge

density distribution at 20°C and moderately reproduces the 
space charge behaviour at 50°C. The simulated current 
densities show significantly higher values than the 
measured current densities, with an increase at short time 
that is not observed experimentally. The set of parameters 
used has not yet been optimized for all experimental 
available data. An optimization tool will now be used in 
order to find the better set of parameters reproducing most 
of our experimental data. Moreover, the model will now be 
adapted to a one-dimensional cylindrical geometry, 
function of the cable radius, in order to be representative of 
degassed model cables. The last step will be to consider 
non-degassed XLPE, i.e. to add the ionic transport. 
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a. experimental 

 
b. simulation 

Fig. 7 : Spatio-temporal profiles of the net charge 
density from (a) experimental measurement, and (b) 
simulation results, for degassed XLPE sample of 200 
μm thickness, at 50°C. The polarization time at each 

applied electric field (20, 30 and 40 kV.mm-1) is 24h. A 
depolarization period of 1h is introduced after each 

24h during polarization. 
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