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Abstract

Regulations set by governmental and non-governmental maritime regula-
tory bodies are set to highly impact the cruise ship industry and put pressure
on ship owners to invest in energy-efficient ships as well as improve the overall
ship operation. To this end, various studies have been performed to analyze the
economic and environmental impact of energy efficient technologies and ship
operation strategies. These studies typically involve modelling the cruise ship
energy consumers and producers as a non-linear model and analyzing the im-
pact of the technology being studied. In this paper, we propose a formulation
of the cruise ship energy system design optimization as a generic mixed inte-
ger linear program (MILP). The generic formulation of the model allows for a
variety of technologies to be tested without much modification to the underly-
ing formulation. The model is instantiated using internal combustion engines
(ICEs) and solid oxide fuel cell (SOFC) technologies and an analysis of the op-
timization results is carried out for three objective functions: greenhouse gas
(GHG) emissions, lifecycle cost, and lifecycle cost including carbon tax. The
model’s design and operation results were validated by experts. Results from
the case studies indicated significant reductions in GHG emissions using SOFCs,
consistent with the literature. However, the carbon tax analysis over a period
of 15 years showed a surprisingly lower impact of carbon tax measures than
expected, which could have potential consequences on the adoption of cleaner,
yet cost intensive technologies in the cruise ship industry.
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1. Introduction

1.1. Context: cruise ships multi-energy systems

With increasing regulations aimed at reducing the environmental impact
of the marine industry [1, 2], shipping companies and shipyards alike are under
pressure to reduce the carbon footprint of their ships and increase overall energy
efficiency. The Energy Efficiency Design Index requires ships to meet a certain
energy efficiency rating before being allowed to travel while new indicators (e.g.,
Carbon Intensity Indicator (CII)) are set to come into effect in 2023. In addition
to these measures, the International Maritime Organization (IMO) is also con-
sidering implementing market-based carbon pricing measures [3], which could
be an effective method for driving investment in carbon-free fuels [4].

Cruise ships are particularly complex in the context of energy optimization,
owing to their size and variety of producers and consumers on board. While
in operation – with the exception of a shore connection, when possible – cruise
ships are fully autonomous in fulfilling energy requirements. Energy networks
on cruise ships consist of a variety of producers and consumers, comparable to
energy networks of a city. A recent experimentation in the Baltic sea underlines
that primary energy consumers of cruise ships were the propulsion system (46%),
followed by heat and electrical power (27% each) [5]. On board, the main
energy demands can be very similar to those found in cities and buildings –
cabins, restaurants, auditoriums and concert halls, heating ventilation and air
conditioning (HVAC) systems, swimming pools, public spaces, etc – typically
referred to as hotel load. Energy consumers also include machinery required
for the propulsion of the ship such as propulsion motors and thrusters, and
water production equipment such as evaporators and reverse osmosis plants.
Adding to the complexity of the design and operation of cruise ships is the
non-periodic nature of the energy demands. While cruise ship hotel load can
be modeled relatively easily using daily and seasonal profiles, the propulsion
energy is highly dependent on the cruise itinerary and can vary significantly.

From a design perspective, cruise ships are typically installed with diesel
generators to produce electricity to serve the demand, which can exceed tens of
megawatts (MW). In addition, the diesel generators are fitted with heat recovery
systems, that cool down the generators and the heat produced is distributed
to the various downstream consumers. Additional heat is then produced by
producing steam using oil-fired boilers (OFB) which consume hydrocarbons.

While technologies such as photovoltaic cells, wind turbines, batteries, etc.
are starting to be generalized in cities around the world, they have only recently
started to be considered for ships. Integration of these technologies within cruise
ships represents significant engineering problems different from land-based in-
stallations of the same technologies. From a design perspective: certain tech-
nologies used on land (e.g., wind turbines and photovoltaic cells) may be difficult
to install on board a ship [6], while others may not yet be ready for integration
in the maritime sector; technologies need to be adapted to marine environment,
the so-called “marinization” process; space available for installation may be
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very limited compared kilowatt-for-kilowatt to land installations of the same
technologies.

Considering the rapidly evolving and uncertain nature of emerging marine
energy technologies, as well as the difficulty in defining the exact energy de-
mand profile (owing to the voyage routes and itineraries), the design of a cruise
ship multi-energy system represents a very complex problem. In addition, ship
owners’ objectives and governmental and non-governmental objectives often dif-
fer, with the former prioritizing economic feasibility and the latter concerned
primarily with emissions reductions and environmental constraints.

1.2. Related work

Literature review: Recent studies have analyzed the inclusion of potential
technologies that could be integrated into the cruise ship multi-energy system
(MES). Authors of [7] reviewed different fuel cell systems on the basis of the
technology, fuel type and temperature, volume and other design and operational
conditions, and their integration into the maritime ecosystem. In the analy-
sis done in [8], the authors found that solid-oxide fuel cells (SOFC) combined
with battery technology provided significant reductions in both greenhouse gas
(GHG) emissions, as well as lifetime MES cost compared to diesel generators.
Furthermore, authors of [9] performed a similar analysis comparing the use of
hybrid combustion engine-SOFC systems to pure combustion engine systems,
and found large potential GHG emission reductions. The authors employed
a MILP approach using two objective functions (GHG emissions and lifetime
cost). Via a sensitivity analysis, the authors also found that the cost of fuel and
carbon tax rates have a high influence on the optimal system design.

Various heat recovery systems have been thoroughly reviewed [10]. Further
studies have focused on the implementation of a steam turbine and Organic
Rankine Cycle (ORC) on a cruise ship for the production of electricity from
excess steam and high temperature (ht) water, which is a byproduct of heat
recovery from internal combustion engines (ICE) and diesel generators. Notably,
this has been studied in-depth by [11].

The combined use of different energy-saving technology from both gener-
ation and consumption perspectives has also been a subject of many studies.
One notable perspective presented by [12] argues against the current approach
to ship energy system design, which is largely based on steady-state conditions
and stationary methods. These traditional methods occasionally result in over-
sized systems, like air-conditioning. As a more dynamic alternative, the authors
suggest employing 3D modeling and transient simulation software (TRNSYS)
to simulate energy demands. When this method was used to test various system
design strategies, the authors found that the implementation of novel technolo-
gies resulted in substantial gains compared to traditional system designs.

The study conducted by [13] presents a non-linear optimization approach to
optimizing the load distribution of various energy producers. This optimization
process leverages a genetic algorithm, taking into account factors such as the
energy system configuration, energy demands, and fuel and electricity costs. The
study applies these methods to three typical 24-hour profiles, each corresponding
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to a different season - summer, winter, and fall/spring. Within this context,
they examine multiple system configurations using novel technologies, which
range from energy storage to electric motors for propulsion. Additionally, they
explore two optimization strategies, one that includes optimized load sharing
and another without it. From these approaches, the authors analyze and draw
conclusions based on economic, energy, and environmental perspectives.

The integration of gas turbine technologies into an existing cruise ship’s
energy system has been investigated by [14]. Their research employs an evo-
lutionary algorithm to determine the optimal operational parameters at each
timestep. The algorithm includes binary variables, which signify whether a
piece of equipment is turned on or off, and continuous variables that denote the
operational load of each equipment. This approach was separately applied to
13 distinct energy system configurations.

The research presented by [15] offers a genetic-algorithm-based multi-objective
optimization model, specifically designed for optimal system engineering of
a large crude oil tanker. The model’s objectives encompass various lifecycle
gaseous emissions and associated costs. The algorithm selects from a variety
of available main energy, energy-efficiency and emission reduction subsystems.
Once the technologies are selected, a simulation model provides the evaluation
criteria, specifically concerning lifecycle emissions and costs. The findings of
this study reveal that, with the appropriate carbon pricing policy, the proposed
solutions could decrease total CO2 emissions by 37% to 66%.

Using the same methodology and optimization model as above, authors of
[16] follow up their previous work by investigating the impact of various carbon
pricing policies [17] on the cruise ship industry. The authors consider a 140,000
GT cruise ship and find energy system design solutions optimizing for lifecycle
greenhouse gas emissions and lifecycle costs. Pareto-optimal solutions using
carbon capture, as well as, novel fuel cell technologies are presented for each of
the carbon pricing policies.

A study by [6] proposes a Mixed Integer Linear Programming (MILP) model
to design a cruise ship MES using diesel and gas powered engines, photovoltaic
(PV) panels and wind turbines. The ship energy demand profiles are the same as
those used in [13]. The authors used an augmented-epsilon constraint approach
to solve a bi-objective optimization problem to minimize costs and facility vol-
ume simultaneously.

Knowledge gaps: The majority of studies present in the literature are
limited in a few important ways. Firstly, the studies may be very specific in
the types of technologies that are modeled and tested; Instead of optimizing the
system design itself, different configurations are tested and compared separately.
Secondly, many of the studies involve non-linear functions and constraints and
the optimization algorithms, thus employed, are limited to meta-heuristic meth-
ods. Hence there is no guarantee neither about the quality of the solution nor
about the optimality. To the best of our knowledge, the literature does not
provide a generalized linear-programming (LP) approach that can be employed
to test a variety of energy generating technologies.
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1.3. Contributions and organization of the paper

In this regard, we propose in this work a generic mixed integer linear pro-
gramming (MILP) formulation of a cruise ship multi energy system (MES).
Solving such a linear problem guarantees an optimal solution if one exists, and
the decision variables are easily interpretable. The genericity of the model allows
for different technologies to be instantiated by simply providing model-specific
input parameters. This allows for easy integration of emerging and future tech-
nologies whose characteristics may not be yet known.

In the proposed methodology, cruise profiles representing the expected en-
ergy demands are simulated. We rely on existing simulation models of the
shipyard to produce the relevant demand curves. Various types of energy gen-
erating equipment are modeled generically, and relevant design and operational
constraints are described; finally, by implementing a control strategy, the de-
sign and operation can be optimized simultaneously given a suitable objective
function such as the annual GHG emissions or lifetime system cost. With a
view to bridging the gaps identified in the current literature, our work aims to
extend the examination of cruise ship energy system design. To sum up, the
main contributions of this paper are:

• Introduction of a novel bi-objective mixed integer linear programming
(MILP) formulation for the simultaneous design and operation of a cruise
ship multi-energy system (MES).

• Development of a highly adaptable model that can incorporate a wide
array of technologies, thus facilitating integration of emergent and future
technologies as their characteristics become known.

• Analysis based on a combination of real-world scenarios and simulations,
illustrating the potential impact and utility of the proposed methodology.

• The impact of resolving the bi-objective optimization using a carbon tax
and its implication on the adoption of energy-saving technology.

The rest of the paper is organized as follows: Section 2 describes the cruise
ship multi-energy system (MES) and the generic technology types that are con-
sidered; Section 3 describes the formulation of the design and operational op-
timization as a mathematical optimization problem. Section 4 discusses the
linearization and resolution of the bi-objective optimization model. Sections 5
and 6 describe the experiments performed and the corresponding results respec-
tively using our proposed methodology. Finally in Section 7, we discuss some
of the limits of the proposed methodology, as well as perspective work.

2. Problem definition

In this section we introduce and formally define the cruise ship energy system
design and operation optimization problem. Its main goal is to determine the
values of the design and operation parameters of the system to meet various
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energy demands over a time horizon of one or more weeks with a time resolution
of one hour. These demands must be met by the system while optimizing two
objectives: minimizing the cost of the system and minimize the environmental
impact.

2.1. Cruise ship multi-energy system

A cruise ship consists of a variety of onboard energy consumers and pro-
ducers, forming the multi-energy system. The involved energy networks can
roughly be divided into electrical and thermal networks. The electrical produc-
ers, typically diesel generators, are operated by a Power Management system,
(PMS), which is responsible for dividing the electrical demand by the various
producers. Different strategies to operate the energy system can be deployed
based on the the navigation mode (sea, port, maneuver) or on the desired con-
trol variable (ship speed, propeller RPM, generator load, etc.) such as load
sharing or load shedding. Thermal energy demands are met by heat recovery
systems and oil-fired water boilers (OFBs) that provide any additional heat in
the form of steam.

In this paper, we consider three energy carriers: electrical (e), steam (v),
and high temperature (ht) water. The steam and ht networks form a cascade
such that heat can be transferred, if required, from the steam network to the
ht network without any loss in energy. The cooling demand is assumed to
be provided using electric compressor chillers [13] and is thus included in the
electrical demand.

2.2. Energy demands and balances

The energy demands associated with the three networks (De, Dv, Dht for
electricity, steam and ht respectively) are assumed to be given and are consid-
ered to be input data to the model. The electrical energy produced in the system
is expected to match exactly the electrical demand. The heat produced in the
system must, at a minimum, cover the heat demand, considering the heat net-
work cascade described previously. Similar to previous work on energy system
design [18], [9], we model the energy demands as typical periods. The yearly
and lifetime energy demands are assumed to be represented by these typical pe-
riods, and necessary extrapolations are performed (for example, a typical week’s
consumption can be multiplied by 52 weeks to get the yearly consumption).

2.3. Objectives

In this study we focus on the optimization of the environmental impact as
well as the cost of the multi-energy system. Regarding the environmental im-
pact, to limit the number of objective functions, we consider only the greenhouse
gas (GHG) emissions in this study - other emissions such as sulfur oxides (SOx)
and nitrogen oxides (NOx) are not included. This impact is therefore measured
by the lifetime GHG emissions. Regarding cost, we calculate the lifetime cost
by considering the installation cost, yearly maintenance cost, fuel cost, and, if
considered, costs incurred as a function of GHG emissions (carbon tax).
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2.4. Generic technology types

The optimization model that we propose in this work can be used to configure
cruise ships with various energy production technologies. In order to formulate
the problem as generically as possible, we define two types of energy production
technologies based on the design and operational characteristics.

The first group consists of technologies, TC , whose design and operation can
be defined as continuous variables. The nominal installed capacity of an equip-
ment of this type is a continuous variable. Some examples of technologies of
this type include photovoltaic (PV) cells or fuel cells whose nominal power can
be described as a continuous variable and whose technical and economical char-
acteristics can be defined as a function of the installed power (e.g., installation
cost per kW of PV cells installed).

All energy consumption and production values of these technologies can be
expressed as linear equations of the form:

Pi,k = Fi,j · ηi,j,k j ̸= k, ∀i ∈ TC , j, k ∈ N , (1)

where the variables Pi,k refer to the power produced by the technology i, of
energy type k. The variables Fi,j refer to the energy consumed by technology i
as fuel of type j. ηi,j,k is the energy conversion efficiency from energy type j to
k and is a parameter of the technology.

In this formulation, the variables Fi,j and Pi,k may have any mass or energy
units (for example, kg of fuel, or kWth of heat) and parameters ηi,j,k have units
kW/unit where unit is the unit of Pi,k (for example, kW/g of LNG).

Installation and yearly maintenance costs of each technology of this type
is given as a function of the nominal installed capacity, P ,nom

i,j , expressed as
power of type j (e.g., the nominal power of a fuel cell expressed in kWe and
the nominal power of a steam turbine expressed in kWth, where the subscripts
e and th are electric and thermal respectively).

The second group, TD, consists of technologies that can only be installed in
units, where each unit has a given specific nominal capacity, Pnom

i,j . The most
common example of a technology of this type is a internal combustion engine
(ICE) whose nominal power depends on the nominal power of each cylinder
and the number of cylinders. Furthermore, manufacturers only produce engines
of a fixed number of cylinders (eg. engines with 8 or 12 cylinders might be
available, but not 11 cylinders). Operational characteristics may be obtained
during factory acceptance testing (FAT) at specific loads, or may be given as a
mathematical equation that may be approximated by a piecewise linear function.

The design of a multi-energy system including this type of technology then
consists of selecting the number of units of the technology to be installed. An-
other specificity of this group of technologies is that its operational character-
istics are dependent on the operational load of the unit, Li, and are given for
certain values of the load (for example, fuel consumption at 20%, 50% and 95%
load). The values at a specific load are then calculated by performing a piece-
wise linear interpolation between the two nearest given load values. The energy
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production and consumption values of technologies of this type can then be
written as follows:

Pi,j = fi,j(Li) ∀j ∈ E , i ∈ TD (2)

Fi,j = fi,j(Li) ∀j ∈ F , i ∈ TD (3)

The functions fi,j(Li) refer to the piecewise linear interpolation function for
the calculation of power produced (or fuel consumed) of type j at the given
load, Li, by a single unit of technology i.

The installation and yearly maintenance costs of technologies in TD is given
per unit.

3. Formulation

In our study, we utilize a range of notations and parameters to describe
the various energy types, technologies, and operational constraints involved.
Table 1 provides an overview of these notations, including the types of energy
demands and fuels, the classes of technologies, time periods, and environmental
parameters among others. This table encapsulates the global parameters which
are applicable across all technologies and scenarios in our study.

However, the design and operation of technologies are quite specific and vary
depending on whether they are modeled as continuous or discrete units. There-
fore, we have dedicated separate tables for each type of technology - continu-
ous (Table 2) and discrete (Table 3). These tables list the specific parameters
required for each technology type, including their efficiency, power limits, op-
erational loads, and cost aspects. Together, these tables offer a comprehensive
view of the parameters and notations used throughout our paper.

In order to represent the configuration of technologies TD in the model, we
introduce two additional sets. The first set, denoted by N TD

i , represents the
potential number of units that can be installed for a given technology i ∈ TD,
where TD is the set of all discrete technologies. Each N TD

i is defined as the
set of all integers from the 0 to the maximum, Nmax

i . The second set, TDN ,
represents all the possible configurations of technologies and their respective
numbers of units. It is defined as the union of the Cartesian products of TD and
each N TD

i , effectively generating all possible combinations of technologies and
their respective numbers of units. This is reflected in Table 1.

The mathematical formulation of the optimization problem and its resolution
lead to the determination of optimal values for a certain number of decision
variables. These decision variables are of two types here, namely design and
operation variables. The design variables (Table 4) are used to determine the
size of the units (the rated power of the generators or the area of solar panels).
The operation variables (Table 5) are used to optimize the operation of the
system at each time step t ∈ T , deciding the load at which each unit is operated
at.
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In this article, the decision variables of the mathematical model are high-
lighted in bold and blue (e.g., Pnom

i,j in Table 4), and mathematical terms
depending on these variables are in bold, e.g., Fi,k,t representing the fuel con-
sumed by a unit.

Notation Description
E = {e, v, ht} Types of energy demands on board (e: electricity, v:

steam, ht: high temperature water)
F Types of external fuels (e.g., LNG, MGO, biomass)
N = E ∪ F All energy types
TC Technologies whose design/operation is modeled

as continuous variables
TD Technologies whose design is in discrete units
T = TC ∪ TD All technologies
H = {1, 2, ...H} Set of all hours of demand profile
Y = {1, 2, ...Y } Set of number of years in operation
N TD

i = 0, . . . , Nmax
i Set of potential number of units for technology i ∈

TD
TDN =

⋃
i∈TD

TD ×Ni All possible configurations of technologies and their
respective numbers of units

Dj,t Energy demand of type j ∈ E at time t
Cinitial

k , Ik Initial cost and inflation rate of fuel k ∈ F
Cinitial

CO2
, ICO2 Initial cost and inflation rate of CO2 emissions

ηCO2

k Tons of CO2 per ton fuel k ∈ F burnt

Table 1: Global parameters and notation used in the paper

Parameter Description
ηj,k Efficiency of the technology to convert fuel of

type j to energy of type k, j, k ∈ N
Pmin
j , Pmax

j Minimum and maximum nominal power ex-
pressed as power of type j ∈ E

Lmin, Lmax Minimum and maximum operational load
Cins,kW Installation cost per kW installed
Cmtc,kW Yearly maintenance cost per kW installed

Table 2: Required parameters for each technology of type TC
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Parameter Description
Nmin, Nmax Minimum and maximum number of installed

units
Lmin, Lmax Minimum and maximum operational load
M Number of operational breakpoints
Lm (m = 1..M) Load values at which operational characteris-

tics are known
Ui,m(i ∈ N ,m = 1..M) Operational characteristic values at the given

load values
Cins,unit Installation cost per unit
Cmtc,unit Yearly maintenance cost per unit

Table 3: Required parameters for each technology of type TD

Table 4: Design decision variables

Variable Description
Pnom

i,j Nominal installed capacity expressed as power of type j ∈
E , ∀i ∈ TC

N ins
i Number of installed units, ∀i ∈ TD

Table 5: Operational decision variables

Variable Description
LC

i,t Operating load of each technology i ∈ TC at time t

LT
i,n,t Operating load of each technology (i, n) ∈ TDN at time t

3.1. Objective functions

As described in the previous section, the goal of the optimization model is to
minimize the costs and the GHG emissions of the multi-energy system. The cost
over the lifetime operation of the ship (Y years) includes the capital investment
(installation costs) as well as the operational costs over the lifetime of the ship
(OPEX) costs and represents our first objective function:

Clifetime := Cins +

Y∑
i=1

COPEX,yearly
i (4)

The total installation cost is calculated as a function of nominal power for
all technologies TC and per unit for all technologies TD, as shown in equation
4a. Yearly OPEX includes the yearly maintenance costs and fuel costs for every
year i ∈ Y and its calculation is given by equation 4b.

Cins =
∑
i∈TC

Cins,kW
i · Pnom

i,j +
∑
i∈TD

Cins,unit
i ·N ins

i j ∈ N (4a)
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COPEX,yearly
a =

∑
k∈F

Cyearly
k,a +Cmtc,yearly ∀a ∈ Y (4b)

The maintenance costs of the system are assumed to be proportional to the
installed capacities of the technologies and its calculation is given by equation
4c. Fuel costs assume a fixed initial fuel cost per unit Cinitial

k and allow for an
annual inflation rate Ik. Its calculation is given by equation 4d.

Cmtc,yearly =
∑
i∈TC

Cmtc,kW
i · Pnom

i,j +
∑
i∈TD

Cmtc,unit
i ·N ins

i j ∈ N (4c)

Cyearly
k,a = Cinitial

k · (1 + Ik)
a · (

∑
t∈H

Fk,t) ·
52

Tp
∀k ∈ F , a ∈ Y (4d)

where Fk,t is the hourly fuel consumption for each fuel type f ∈ F and its cal-
culation is described later in this section. Tp is the number of weeks represented
by the demand profiles given by H

7×24 where H is the length of H.
The second objective function is the GHG emissions over the lifetime of the

ship and is calculated as the yearly GHG emissions - assumed to be constant
for the given typical period - multiplied by the number of years of operation, Y :

Elifetime := Eyearly · Y (5)

Similar to the yearly fuel cost calculation, the yearly GHG emissions is pro-
portional to the number of weeks represented by the demand profiles. Its cal-
culation is based on the equivalent amount of CO2 for each unit of fuel burnt,
ηCO2

k for each fuel k ∈ F . The calculation of the yearly GHG emissions is given
by equation 5a.

Eyearly = (
∑
t∈H

∑
k∈F

Fk,t · ηCO2

k ) · 52
Tp

∀k ∈ F , t ∈ H (5a)

3.2. Fuel, power and load calculations

In this section we present the equations for the calculation of the energy
carriers and the equipment load. As discussed previously, the fuel and power
may have a linear relationship to each other (as in the case of technologies TC)
or may each be independently calculated as a function of load (as in the case of
technologies TD).

3.2.1. Fuel consumption

The hourly fuel consumption for each fuel type k ∈ F is the sum of the fuel
consumption values of each technology and is given by equation 6.

Fk,t =
∑
i∈T

Fi,k,t ∀k ∈ F , t ∈ H (6)
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Whereas the relationship between fuel and power is a linear one in the case
of technologies TC , for technologies of type TDN , the hourly fuel consumption of
each unit is calculated using piecewise linear interpolation of the fuel consump-
tion as a function of load, as seen in equation 7. The total fuel consumed by
all units of technology i ∈ TDN is the sum of the fuel consumed by all units of
type i (equation 8).

Fi,n,k,t = fi,k(L
T
i,n,t) ∀k ∈ F , (i, n) ∈ TDN , t ∈ H (7)

Fi,k,t =

Nmax
i∑
n=1

Fi,n,k,t ∀k ∈ F , (i, n) ∈ TDN , t ∈ H (8)

In the equation above, fi,k(·) refers to the piecewise linear interpolation of
fuel k as a function of load for one unit of technology i. The equation is non-
linear and its linearization is described in Section 4.1.

3.2.2. Power production

The power produced by each technology of type TC and TD is given by equa-
tions 9 and 11 respectively, while the power produced by each unit of technology
i ∈ TDN is given by equation 10.

Pi,k,t = Fi,j,t · ηi,j,k j ̸= k,∀i ∈ TC , j, k ∈ N , t ∈ H (9)

Pi,n,k,t = fi,k(L
T
i,n,t) ∀(i, n) ∈ TDN , k ∈ E , t ∈ H (10)

Pi,k,t =

Nmax
i∑
n=1

Pi,n,k,t ∀(i, n) ∈ TDN , k ∈ E , t ∈ H (11)

The functions fi,k(·) representing piecewise linear interpolation functions of
power as a function of load introduces non-linear constraints. The linearization
of this non-linear constraint is presented in Section 4.1.3

The total power produced by each technology and for each type of energy is
given by equation 12

Pk,t =
∑
i∈T

Pi,k,t ∀k ∈ N , t ∈ H (12)

3.2.3. Load calculation

The operating load is the ratio of the power produced by an equipment to its
nominal power. For technologies of type TC , the load calculation is as follows:

LC
i,t =

Pi,k,t

Pnom
i,j

∀i ∈ TC , k ∈ N , t ∈ H (13)

For technologies of type TD, the load calculation is as follows:
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LT
i,n,t =

Pi,n,k,t

Pnom
i,j

∀i ∈ TD, k ∈ N , t ∈ H (14)

The difference between the equations 13 and 14 is that the nominal power
is a variable in the first equation and is a constant/parameter in the second.

Constraint 13 is non-linear due to the division of two variables. Its lineariza-
tion is described in Section 4.1.1.

3.2.4. Operating hours of technologies TDN

Let Oi,n,t be a binary variable representing whether the unit (i, n) ∈ TDN

is turned on at time t. The number of operating hours of the equipment, Ototal
i,n

is then given by

Ototal
i,n =

∑
t∈H

Oi,n,t ∀(i, n) ∈ TDN (15)

Let Oused
i,n be a binary variable indicating whether the unit was used during

the entirety of the given profile, as described below

Oused
i,n =

{
1, if Ototal

i,n > 0

0 otherwise
∀(i, n) ∈ TDN (16)

The linearization of the above equation is given in Section 4.1. The number
of installed units, N ins

i is then given by

N ins
i =

Nmax
i∑
n=1

Oused
i,n ∀i ∈ TD (17)

3.3. Design constraints

Certain constraints are applied on the system design. With respect to tech-
nologies TC , the nominal power of the technology must be within the minimum
and maximum available nominal power as described in equation 18. The num-
ber of units of technologies TD must be within the minimum and maximum
number number of units specified, as described in equation 19.

Pmin
i,j ≤ Pnom

i,j ≤ Pmax
i,j ∀i ∈ TC , j ∈ N (18)

Nmin
i ≤ N ins

i ≤ Nmax
i ∀i ∈ TD (19)
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3.3.1. Limiting installed rating

Depending on the objective function being optimized, in certain cases, con-
straint 18 may not be enough to limit the design to the necessary minimum.
For example, minimizing the greenhouse gas emissions may lead to the nominal
installed power of a technology being much higher than the actual power used
at any timestep. We therefore include the following constraint to the model:

Pnom
i,j = max

t∈H
Pi,j,t ∀i ∈ TC , j ∈ N , t ∈ H (20)

The constraint above is non-linear and its linearization is described in Sec-
tion 4.1.2.

3.4. Operational constraints

3.4.1. Load limitation

The equipment can be restricted to perform only within a given operating
range.

Lmin
i ≤ LC

i,t ≤ Lmax
i ∀i ∈ TC , t ∈ H (21)

Lmin
i ≤ LT

i,n,t ≤ Lmax
i ∀i ∈ TDN , t ∈ H (22)

3.4.2. Energy balances

As described in 2.2, the electrical energy produced must match the electrical
demand. The thermal energy produced must be at least as much as the demand
and follows a thermal cascade. These constraints are introduced into the model
as follows:

Pe,t = De,t ∀t ∈ T (23)

Pv,t ≥ Dv,t ∀t ∈ T (24)

Pv,t + Pht,t ≥ Dv,t +Dht,t ∀t ∈ T (25)

4. Resolution

4.1. Linearization

In this section we describe the various techniques that were employed to
linearize the non-linear equations that appear in the mathematical formula-
tion (see Section 3). As discussed previously, it is common to use non-linear
optimization techniques like evolutionary algorithms to solve these types of op-
timization problems [13, 14, 15]. Evolutionary algorithms have the advantage
of typically converging quickly to a local optimum. Although this may be ben-
eficial to quickly get a variety of solutions, it is difficult to evaluate how far
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the obtained solutions are from the true optimum. Linear, and by extension,
mixed-integer linear programs do not suffer from this drawback, as the optimal
solution, if exists, is guaranteed, albeit with a possible loss in precision due to
the linearization of non-linear functions.

For the sake of clarity, all variables that are introduced for the purpose of
linearization are denoted by bold Greek letters.

4.1.1. Linearization of Operational Constraints of TC
One way to linearize the operational constraints and simultaneously handle

the minimum and maximum limits is to directly apply the limits on the power
output Pi,k,t rather than on the load LC

i,t. This approach results in the following
linear constraints:

Lmin
i · Pnom

i,j ≤ Pi,k,t ≤ Lmax
i · Pnom

i,j ∀i ∈ TC , k ∈ N , t ∈ H (26)

With this reformulation, the original non-linear constraint is eliminated from
the optimization model. Instead, the load variable LC

i,t can be computed in a
post-processing step.

4.1.2. Limiting installed equipment to minimum requirement

Equation 20 presents max functions that are non-linear w.r.t. the variables.
We can linearize the constraint by introducing binary variables δi,t∀i ∈ TC , t ∈
H and adding the following constraints to the program:∑

t∈H
δi, t = 1 ∀i ∈ TC (27)

Pnom
i,j ≤ Pi,j,t + Pmax

i (1− δi,t) ∀i,∈ TC , t ∈ H (28)

4.1.3. Piecewise linear interpolation

As previously noted, all power production and fuel consumption character-
istics of technologies TD are expressed as a function of load (see equations 11
and 8). In this section, we describe the linearization of the piecewise linear
interpolation of any arbitrary function f as a function of load.

The load breakpoints for a given technology i ∈ TD are parameters denoted
herein as Li,m (m = {1, . . . ,Mi}), where m is the index of the breakpoint and
Mi is the number of breakpoints characterizing the operation of technology
i. The function values at the corresponding breakpoints are denoted as Ui,j,m

(m = {1, . . . ,Mi}, i ∈ TD, j ∈ N ).
We introduce continuous variables αi,m,t ∈ [0, 1](m = {1, . . . ,Mi}, i ∈

TD, t ∈ H) for each breakpoint. We also introduce binary variables βi,m,t

for each segment or interval, such that βi,m,t ∈ {0, 1}(m = {1, . . . ,Mi − 1}, j ∈
D, t ∈ H). Segments below the minimum load and above the maximum load are
given a dummy values 0, such that βi,0,t = βi,Mi,t = 0(∀j ∈ D, t ∈ H). The
following constraints are then added to the problem:
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Mi∑
m=1

αi,m,t = 1 ∀t ∈ H,∀i ∈ TD (29)

Mi−1∑
m=1

βi,m,t = 1 ∀t ∈ H,∀i ∈ TD (30)

αi,m,t ≤ βi,m,t + βi,m−1,t ∀m ∈ 1..Mi,∀i ∈ TD,∀t ∈ H (31)

Li,t =

Mi∑
m=1

αi,m,t · Li,m ∀t ∈ H,∀i ∈ TD (32)

Equation 30 ensures that only one linear segment is selected. Equations 29
and 31 ensure that the only two consecutive α variables can have values other
than 0 and that their sum is 1. 32 then constrains the load values to be the sum
of the load breakpoints, weighted by their corresponding α values.

The value of function f at the given load can then be calculated as the
sum of all the function values at the given breakpoint loads, weighted by their
corresponding α values:

f(Li,t) =

Mi∑
m=1

αi,m,t · Ui,j,m ∀t ∈ H,∀i ∈ TD, j ∈ N (33)

4.1.4. Detecting the use of a unit of technology

Equation 16 can be linearized using the Big M method. For this, we introduce
the following constraints to Oused

i,n :

Oused
i,n ·M ≥ Ototal

i,n (34)

Oused
i,n ≤ Ototal

i,n (35)

The above constraints ensure that when Ototal
i,n , the total operating hours of

the unit is greater than 0, Oused
i,n is equal to 1, and conversely, when Ototal

i,n is

equal to 0, Oused
i,n is also equal to 0.

4.2. Bi-objective optimization

Equations 4 and 5 represent two practical objective functions that are re-
quired to be minimized simultaneously. For example, from the point of view of a
regulatory body, GHG emissions reduction is of primary importance, while, from
a ship owner’s perspective, installation and operational costs are critical factors
in decision making. Bi-objective optimization consists of optimizing two di-
verging objective functions simultaneously. A common approach to bi-objective
optimization is the so-called epsilon-constraint (ϵ-constraint) method. Alongside
this, we also utilize the carbon tax method as an alternative approach. In this
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section, we present both these methods and their specific applications within
the context of cruise ship energy system optimization. The epsilon-constraint
method, a prevalent choice in the literature, provides a useful visualization tool
for decision-makers. Conversely, the carbon tax method resonates strongly with
decision makers, especially given the prominent role that cost objectives play in
the decision-making and design processes for cruise ships.

4.2.1. Pareto front using epsilon-constraint method

The first method considered for the resolution of the bi-objective optimiza-
tion problem is the ϵ-constraint method. Details of the method and its appli-
cation to mathematical programming problems has been provided by [19]. In
general, for the bi-objective case, the ϵ-constraint method consists in iteratively
solving equation 36 with gradually increasing (or decreasing) values of ϵ, where
x defines the vector of decision variables, S is the feasible region of the solution
space and g1(x) and g2(x) represent the two different objective functions and ϵ
is the maximum value that g2(x) can take. The idea is to minimize g1(x) while
setting an upper limit on g2(x). The upper limit is first set to a high value and
is gradually reduced for each iteration.

Minimize g1(x)

x ∈ S

s.t. g2(x) ≤ ϵ

(36)

In this study, we use the lifetime cost to be the main objective function,
g1 and lifetime GHG emissions to be the secondary objective function to be
used in the constrained formulation above. To get different values of ϵ, we first
solve for the two objective functions separately. The values of the lifetime GHG
emissions of of the two resulting solutions are then used as the extreme values
and n evenly spaced points are taken between the two. In our study, we use
n = 8 points between the extremes for a total of 10 points.

4.2.2. Carbon tax scheme as an implementation of the weighted-sum approach

Another way to resolve the bi-objective optimization problem is to add a
carbon tax to the operational GHG emissions. The objective function used is
then a sum of the carbon tax and all other associated costs (installation, main-
tenance, fuel). As the price of carbon is based on market forces, its value at any
given time fluctuates. We have chosen to model carbon tax as a price associated
to each ton of CO2 emitted, starting with a base price and compounded annu-
ally. We introduce two parameters: base carbon tax ($), Cinitial

CO2
, representing

the cost to the shipping company for each ton of CO2 emitted in the first year of
ship operation; and carbon inflation rate, ICO2

∈ [0, 1], representing the annual
rate of increase of carbon tax compared to the previous year.

The lifetime carbon tax over Y years is then calculated as follows:

CCO2 =

Y−1∑
a=0

Eyearly · Cinitial
CO2

· (1 + ICO2
)a (37)

17



The new objective function considering the lifetime costs including carbon
tax can thus be written as follows:

Clifetime+CO2 = Clifetime +CCO2 (38)

5. Experimental Setting

In this section we describe the experiments that we perform to validate the
solutions produced by the optimization model and the utility of these solutions
in a real-world setting. We first validate the results of the model empirically
and with feedback from energy experts. We then test the model’s ability to be
used in supporting the decision making process from the point of view of a ship
owner.

5.1. Model validation and case studies

5.1.1. Validation methods

To validate the solutions produced by the optimization model, we employ
two approaches. The first is an empirical approach whereby a Pareto front
of the optimal solutions is produced using the bi-objective epsilon-constraint
method (see Section 4.2.1. This is performed using the lifetime cost and the
lifetime GHG solutions as the two objective functions. At one extreme of the
front we expect a solution consisting of the energy system design that produces
the least amount of GHG emissions, but that is associated with the highest
lifetime cost. At the other extreme we expect to see the opposite, i.e., an energy
system that is the most cost-efficient while producing the largest amount of GHG
emissions. Other points on the Pareto front should include some combination
of cost efficient and emissions-efficient design solutions. The technologies tested
for these experiments and their parameters can be found in Tables 8, 9, and 10.
Other parameters including fuel cost hypotheses and equivalent CO2 emissions
for each fuel are listed in Table 11.

We also validate the results of the model with energy analysts having par-
ticular domain expertise in cruise ship energy systems design and operation. It
is particularly important to qualitatively validate the feasibility of a proposed
design and operational setting proposed by the model, given that not every
constraint has been accounted for.

5.1.2. Case Study 1: Effect of new technologies on optimal design and lifetime
cost

After validation of the feasibility of the model’s solutions, we are interested
in testing the utility of the solutions in common, real-world scenarios. Given
the high importance of the economic impact of the proposed solutions, we per-
form these experiments considering lifetime cost as the objective function to be
optimized.

We compare the current energy system installed on a real ship (hereby re-
ferred to as Mcur) with the optimal design found considering new technologies
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(Mopt). The comparison is done by optimizing the operational parameters for
the given system design, MEScur. This is done by fixing the design variables to
constant values. The optimization is then performed only on the operational pa-
rameters. The MESopt model is optimized for both the design and operational
parameters. This is done to ensure that the optimal operational parameters in
both cases and the comparison is performed only on the design using best case
operational scenario of each design. We expect that Mopt will be at least as
cost effective as the current installation, and ideally with have an improved cost
profile. Mcur consists of four 12-cylinder standard dual fuel ICEs (see Table 8
for more details).

5.1.3. Case study 2: Effect of carbon tax on optimal design and lifetime cost

We test the impact that a future carbon tax scheme (or equivalent regulation)
may have on the designing of the energy system. We are particularly interested
in knowing whether the costs related to high greenhouse gas emissions via a
carbon tax scheme necessitate the installation of generally more expensive, yet
cleaner - sources of energy production. The same technologies are used as those
used in the model validation tests. The economic parameters including fuel costs
hypotheses are also the same as those listed in Table 11, with the exception of the
base carbon tax cost and carbon tax inflation rate. The carbon tax hypotheses
tested are given in Table 6. The annual inflation rate was considered to be the
same as the annual fuel inflation rate, i.e., 2%.

For each carbon tax hypothesis, a new optimization model was solved with
the objective function described in equation 38, i.e., total system cost in-
cluding carbon tax.

Table 6: Carbon tax parameters tested

Parameter Value
Cinitial

CO2
[0,50,100,125,150,200,250,300]

ICO2
2%

5.2. Demand profiles

To perform the experiments described above, we use energy demand profiles
that were simulated using the ship yard energy simulation tools. The electrical
and steam and HT heat demand of an existing ship (in terms of energy system
design) and for a typical one-week cruise were simulated. The electricity and
heat demand is depicted in Figures 1a and 1b respectively. The demand peaks
occur when the ship is at sea. The relatively stable, lower values (around 11MW
electric) correspond to port calls.

5.3. Technologies and parameters

In this section we describe the technologies that were used during the experi-
mentation process. Internal combustion engines (ICEs) being the most common
type of technology is included. This gives us a baseline technology that is rel-
atively cheap. We also include Solid-oxide fuel cells (SOFCs) as an alternative
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(a) Electricity demand (b) Steam and HT demand

Figure 1: Simulated energy demands used as energy profiles

energy production technology. SOFCs have only recently been introduced to
the maritime industry and their exact performance characteristics may vary
and are not yet certain [9]. However, this is a promising technology in terms of
fuel efficiency, but is currently associated to high installation and maintenance
costs.

5.3.1. Internal combustion engines

Internal combustion engines are modeled as technologies of type TD. As ex-
plained previously, this is done because the nominal power of a dual-fuel engine
depends on the make and model of the engine, and the number of cylinders it
has, and thus cannot be modeled as a continuous variable. In our case studies,
the types of ICEs we consider use LNG and MGO as input fuel (the former
being the primary fuel and the latter being the pilot fuel) and produce electric-
ity as well as steam and HT heat. In addition to the hydrocarbon fuels that
are consumed, these engines also produce methane emissions due to partially
unburnt LNG. These methane emissions are modeled as a fuel consumption and
therefore their equivalent emissions are calculated using a CO2 conversion fac-
tor, ηCO2

methane in equation 5a. Fuel consumption and other characteristic values
of the engines are obtained during factory acceptance tests (FAT). The required
parameters for each ICE is given in Table 7.

Table 8 contains the FAT values of the two families of diesel generators
considered in the experiments, namely Standard dual fuel engines and New-
generation dual fuel engines. The required parameters in Table 7 are pre-
calculated using appropriate conversions. For example, the electrical power
produced by a 12-cylinder new-generation engine at 25% load is given by

Ui,e,0 = 302× 12 = 3624kW

where the first index, i corresponds to the 12-cylinder new generation engine
and the third index, 0 refers to the first breakpoint at 25% load.
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Parameter Description Value
Nmin

i , Nmax
i Minimum and maximum number of in-

stalled generators of type i
0, 5

Lmin
i , Lmax

i Minimum and maximum operational
load of each unit generator

[0.25, 0.85]

Mi Number of operational breakpoints of
unit generator

6

Li,m(m = {1, . . . ,Mi}) Load values at which operational
characteristics are known [0, 0.25, 0.5, 0.75, 0.85, 1]

Ui,e,m(m = {1, . . . ,Mi}) Electrical production at the given load
values

(varies per model)

Ui,v,m(m = {1, . . . ,Mi}) Steam production at the given load val-
ues

(varies per model)

Ui,ht,m(m = {1, . . . ,Mi}) ht heat production at the given load
values

(varies per model)

Ui,LNG,m(m = {1, . . . ,Mi}) LNG fuel consumption at the given load
values

(varies per model)

Ui,MGO,m(m = {1, . . . ,Mi}) MGO fuel consumption at the given
load values

(varies per model)

Ui,methane,m(m = {1, . . . ,Mi}) Methane gas slip at the given load val-
ues

(varies per model)

Cins,unit
i Installation cost per unit generator (varies per model)

Cmtc,unit
i Maintenance cost per unit generator (varies per model)

Table 7: Parameters for each ICE technology

Standard Engine New-generation Engine
Nominal mechanical power (@100% load) per
cylinder (kW)

1145 1300

Operating load (%) 25-100 25-100
Electrical power per cylinder (kW) 266-1065 302-1210
Specific fuel oil consumption (LNG) (g/kWh) 169-218 154-194
Specific fuel oil consumption (MGO) (g/kWh) 1.1-7.0 1.5-8
Methane emissions (g/kWh) 2.7-10.7 1.7-2
ht recovery per cylinder (kW) 91-380 129-400
Steam recovery per cylinder (kW) 154-302 165-229

Table 8: Internal combustion engine characteristics and considered operating ranges

In this paper, for each family of ICEs, we consider models containing 8,
12, and 14 cylinders. The installation costs for all ICEs were considered to be
$1,000/kW [20] and maintenance costs were assumed to be 4% of the installation
cost ($40/kW).

5.3.2. Solid-oxide fuel cells

Various works have studied the use of solid-oxide fuel cells and their imple-
mentation in marine applications [7, 8, 9]. In this paper we model SOFCs as
a technology of type TC . The parameters of the SOFC are given in Table 9.
They produce electricity as the primary power using LNG. Heat is produced as
a byproduct by waste heat recovery. The nominal electrical power of the SOFC
is a design decision variable and the power produced for each energy type as
well as the LNG consumption at each timestep are operational variables. The
heat produced and fuel consumed are coefficients treated as parameters η.
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Parameter Description Value
ηLNG,e Electricity (kWh) produced per unit LNG (g)

consumed
0.008

ηe,v Steam (kWh) produced as byproduct per unit
of electricity (kWH) produced

0.15

ηe,ht ht heat (kWh) produced as byproduct per unit
of electricity (kWh) produced

0.33

Pmin, Pmax Minimum and maximum nominal electrical
power (kW)

[0, 20000]

Lmin, Lmax Minimum and maximum operational load (%) [20, 80]
Cins,kW Installation cost per kW installed ($) 3500
Cmtc,kW Maintenance cost per kW installed ($) 280

Table 9: Parameters for solid oxide fuel cells

The installation cost for the SOFCs were considered to be $3500/kW [20].
The maintenance costs were assumed to be 8% of the installation cost ($280/kW).
As SOFCs are known to have a slow startup [9, 20], the minimum operational
load was set to 20%. In this way, the fuel cell, if installed, is not allowed to turn
off, but operates continuously within the given load range (20% - 80%).

5.3.3. Oil-fired boilers

Like SOFCs, oil-fired boilers are modeled as a technology of type TC . The
parameters of the OFBs are given in Table 10. They produce steam by con-
suming LNG. The nominal steam power is a design decision variable. The fuel
consumed is a parameter of the model.

Parameter Description Value
ηLNG,v Steam (kWH) produced per unit LNG (g) con-

sumed
0.11

Pmin, Pmax Minimum and maximum nominal steam
power (kW)

[0, 20000]

Lmin, Lmax Minimum and maximum operational load (%) [0, 100]
Cins,kW Installation cost per kW installed ($) 0
Cmtc,kW Maintenance cost per kW installed ($) 0

Table 10: Parameters for oil-fired boilers

From the point of view of the ship yard, the OFB installation and mainte-
nance costs are not considered to play an important role in design. These costs
are therefore set to $0.

5.3.4. Global model parameters

The parameters specified in Table 11 govern the experimental setup for our
optimization model. They define the types of energy demands and fuels consid-
ered, alongside the technologies that are available for energy production.
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Table 11: Global parameters for all experiments

Parameter Description Value
E Types of energy demands {e, v, ht}
F Types of external fuels {LNG,MGO,methane}

Dj,t∀j ∈ E Energy demand of type j at time t
TC Set of all technologies TC {SOFC,OFB}
TD Set of all technologies TD {DGstd−8cy , . . . , DGnew−14cy}
H Set of all hours {0, 1, . . . , 168}
Y Set of number of years in operation {2023, 2024, . . . , 2037}

Cinitial
LNG , ILNG Initial cost and inflation rate of LNG $1000/ton, 2%

Cinitial
MGO , IMGO Initial cost and inflation rate of MGO $1000/ton, 2%

Cinitial
CO2

, ICO2
Initial cost and inflation rate of CO2

emissions
$0/ton, 0%

ηCO2
LNG Tons of CO2 per ton LNG burnt 2.75

ηCO2
LNG Tons of CO2 per ton MGO burnt 3.206

ηCO2
methane Tons of CO2 per ton methane slip 30

6. Results and discussion

6.1. Model validation

Fig. 2 shows the Pareto front obtained from the bi-objective optimization
using the ϵ-constraint method. For all values of ϵ, the optimization algorithm
only selected diesel engine configurations from the new generation dual fuel
engine family. This was expected as the new generation engines are more fuel
efficient and the costs associated with their installation and maintenance were
considered to be the same as those of the standard engines. The corresponding
optimal designs, lifetime GHG emissions and lifetime costs for each value of
ϵ are given in Table 12. The solution at ϵ = 1.87e6 represents the a design
and operation associated with the least GHG emissions and the one at ϵ =
2.16e6 represents the solution associated with the least lifetime costs. The
installation cost of the former ($125 million) is double that of the latter ($62
million) while the lifetime cost difference between the two is about $70 million.
On the other hand, the lifetime GHG emissions of the former is ≈ 284,000 tons
(19,000 tons/year) less than the latter, corresponding to approximately 13.2%
reduction.

We observe that as the ϵ value increases, the nominal SOFC power decreases
and the configuration of the diesel engines changes accordingly. For ϵ = 2.16e6,
ie. lifetime costs minimized without constraints on GHG emissions, we see that
a second 14-cylinder (large) engine is required to meet the demands in the
absence of SOFCs.

Furthermore, with the exception of ϵ = 2.07e6, in reducing the value of
epsilon (and thus the maximum permissible GHG emissions), the model prefers
installing smaller engines (8 and 12 cylinders) to larger ones in tandem with
SOFCs. This is because such these smaller engines can be operated at higher
loads where their fuel efficiency is considerably higher compared to that of a
larger engine at lower load.

To examine the feasibility of the solutions from an operational perspective,
we take a deeper look at the solutions obtained at the extremes of the Pareto
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Figure 2: Pareto front of the ϵ-constraint bi-objective optimization

ϵ New-Gen 8-cyl New-Gen 12-cyl New-Gen 14-cyl SOFC Nominal Power (kW) Lifetime
GHG (tons)

Lifetime cost
($)

1.87M 2 1 1 20,000 1.87M 1,030M
1.90M 1 1 1 18,754 1.89M 1,007M
1.93M 3 1 0 16,060 1.92M 998M
1.96M 0 2 1 14,479 1.94M 998M
1.99M 2 2 0 11,802 1.98M 993M
2.02M 2 2 0 10,673 2.00M 986M
2.04M 2 1 1 7,980 2.04M 979M
2.07M 2 0 2 5,737 2.07M 975M
2.10M 1 2 1 3,779 2.10M 970M
2.13M 1 2 1 2,593 2.12M 965M
2.16M 1 1 2 0 2.16M 959M

Table 12: Optimal design for various ϵ-values

front, ie. minimizing only one objective function at a time. Fig. 3 shows the
electricity balance and the operational load of the two extreme points of the
Pareto front. In Figs. 3a and 3b the dark blue line represents the electricity
demand for each hour of the week. The shaded areas below show the line
show the stacked electrical power produced by each technology group (ICEs
and SOFC). It can be seen that the demand is exactly met by the various
electrical equipment owing to constraint 23. Figs. 3c and 3d show the optimal
operational load for each technology. It can be seen that the design obtained
by minimizing the lifetime costs employs only ICEs (as shown in Table 12) and
they are operated at optimal loads. This is especially evident during port calls
where typically only the 12-cylinder new generation engine is used at around
75% load. On the other hand, the design obtained by minimizing lifetime GHG
emissions employs 20MW of SOFC. The SOFC is used during all port calls as
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seen in Figs. 3b and3d.
The run between hours 80 and 155 show different operational strategies em-

ployed by the the two models owing to the fact that the technologies installed are
different. In Fig. 3c, although there are many fluctuations visible throughout,
we regularly see the second 14-cylinder engine being regulated while the other,
smaller generators remain constant at maximum load (85%). However, in Fig.
3d, we see that the two bigger engines (12- and 14-cylinders) and the SOFC
are kept at constant load, while the smaller engine is regulated to meet the
remaining demand. This operation, though initially counter-intuitive, was con-
firmed through manual verification and with energy analysts to be the optimal
operational operating point.
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(a) Electrical balance: lifetime cost objective
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(b) Electrical balance: GHG emissions objective
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(c) Operational load: lifetime cost objective
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(d) Operational load: GHG emissions objective

Figure 3: Electrical balance of the two extreme points of the Pareto front.

The analysts noted that some of the operational patterns may not be techni-
cally feasible during real-time operation, such as those seen in Fig. 3b between
hours 7 and 17. The turning on and off of the second 12-cylinder dual fuel
engine multiple times in a short time span is generally avoided in operation.

Figs. 4 and 5 show the steam and ht power balances respectively for the two
designs (left: lifetime cost objective function, right: lifetime GHG emissions
objective function), with the dark blue lines corresponding to the respective
demands in each heat network. In Fig. 4, we see that the steam produced
from the steam heat recovery system is always higher than the steam demand.
However, in both designs, we can see that the OFB is used to produce additional
steam on multiple occasions (for example, between hours 6 and 26). This can
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be explained by the heat demand in the ht network that is not met solely by
the heat recovery system. We see this demonstrated in Fig. 5: in both designs,
for hours 6 to 26, the waste heat recovery in the form of ht power from the
various technologies is about 8MW (area under the brown shaded area); the
heat recovered in the form of steam and not used by the steam consumers
(brown shaded area, is still not sufficient to meet the ht demand. Therefore the
OFB is used to provide the additional heat in these cases (pink shaded area).
This illustrates the correct functioning of the thermal energy balance constraints
as described in equations 24, 25.
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Figure 4: Steam balance of the two extreme points of the Pareto front
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Figure 5: High temperature (HT) heat balance of the two extreme points of the Pareto front

6.2. Case Study 1: Effect of new technologies on optimal design and lifetime
cost

As discussed in Section 5, model MEScur refers to the actual configuration
which consists of four 14-cylinder engines of the standard engine family of dual
fuel engines and no fuel cells. MESopt refers to the energy system design ob-
tained by solving the optimization model which minimizes overall costs. This is
the same model obtained at ϵ = 1 of the Pareto front. The designs of the two
models are listed in Table 13 for comparison. It can be seen that in minimizing
the overall costs, MESopt is installed with four engines of different sizes of the
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new generation engines only. However, as seen in the previous results, SOFCs
represent a very high cost and are therefore not present in the optimal design.
Due to the lower heat production from the smaller engines, MESopt has a much
larger OFB (1925 kW) versus MEScur.

Table 13: Baseline vs. Optimal Model Design

Technology MEScur MESopt

Standard 14cyl 4 (fixed) 0
New generation 8cyl 0 1
New generation 12cyl 0 1
New generation 14cyl 0 2

SOFC nominal power (kW) 0 0
OFB nominal power (kW) 215 1925

Table 14 shows the costs and GHG emissions associated with the two sys-
tems. We see a potential saving of around $53 million (≈ 5%) over fifteen
years using the new technologies. The bulk of the saving comes from the re-
duced operating fuel costs (≈ $50 million) of MESopt. This is expected as
the new generation dual fuel engines have a higher fuel conversion efficiency as
compared to the standard dual fuel engines. As a result of the reduced fuel
consumption, overall GHG emissions significantly decrease as well (≈ 13%) in
the case of MESopt.

Table 14: Baseline vs. Optimal Model Results: Installation cost, Yearly Maintenance Cost,
Lifetime Cost (without carbon tax), Yearly and Lifetime GHG Emissions

Design Installation Cost Maintenance Cost Lifetime Cost Yearly GHG Lifetime GHG
MEScur $64.1M $2.56M $1,012M 164,973 tons 2.48M tons
MESopt $62.4M $2.50M $959M 143,677 tons 2.16M tons

These results suggest that a significant saving in costs can be obtained by
using the new generation engines. The model selects the optimal combination of
these generators so as to perform at optimal load for the given demand profile.
It must be noted that in this experiment, we have not considered the effect of
carbon tax on the overall costs. If considered, the reduced emissions of MESopt

will contribute to even greater cost savings.

6.3. Case study 2: Effect of carbon tax on optimal design and lifetime cost

The optimal design obtained by optimizing the lifetime cost under increasing
base carbon rate hypotheses are listed in Table 15. As was the case in the
previous tests, the model only selects new generation ICEs, thus the standard
engines are not included in the table. Table 16 lists the associated costs and
GHG emissions for the different hypotheses. It can be seen that for all carbon
rates up to $125, the design is unchanged and is the same as the design obtained
by minimizing costs with no carbon tax (MESopt). This design includes no
SOFCs at all. However, starting at $150/ton of CO2, the model opts to install
a large amount of fuel cells. These latter designs are equivalent to those obtained
using ϵ-constraint optimization with ϵ = 0.1 and ϵ = 0.2.
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Table 15: Optimal design under various tax schemes

Base Carbon Rate ($) New-Gen 8-cyl New-Gen 12-cyl New-Gen 14-cyl SOFC Nominal
Power (kW)

OFB Nominal
Power (kW)

0 1 1 2 0 1,925
50 1 1 2 0 1,925
100 1 1 2 0 1,925
125 1 1 2 0 1,925
150 3 1 0 16,060 2,541
200 3 1 0 16,060 2,541
250 1 1 1 18,574 2,456
300 1 1 1 18,574 2,456

Table 16: Carbon Tax Schemes Results: Installation cost, Yearly Maintenance Cost, Lifetime
Cost (without carbon tax), Yearly and Lifetime GHG Emissions

Base carbon rate Installation Cost Maintenance Cost Lifetime Cost Yearly GHG Lifetime GHG
$0 $62.40M $2.50M $959.0M 143,644 tons 2.15M tons
$50 $62.40M $2.50M $1,093.4M 143,644 tons 2.15M tons
$100 $62.40M $2.50M $1,227.3M 143,644 tons 2.15M tons
$125 $62.40M $2.50M $1,294.7M 143,644 tons 2.15M tons
$150 $103.12M $6.37M $1,357.8M 127,978 tons 1.92M tons
$200 $103.12M $6.37M $1,476.2M 127,978 tons 1.92M tons
$250 $109.84M $7.02M $1,595.8M 125,896 tons 1.89M tons
$300 $109.84M $7.02M $1,712.8M 125,896 tons 1.89M tons

The study aimed to investigate the effect of increasing carbon tax rates on
optimal design and technology selection in the cruise ship industry. The results
showed that, contrary to expectations, the adoption of energy-saving technolo-
gies did not gradually increase with increasing carbon tax rates. Instead, the
study found an all-or-nothing effect, where the optimal design remained un-
changed up to a certain carbon tax rate threshold, after which a significant
shift occurred towards the adoption of fuel cells. These findings suggest that
the current approach to carbon taxation may not effectively incentivize gradual
adoption of energy-saving technologies, and alternative policy instruments may
need to be considered.

7. Conclusions and perspectives

In this paper, we have presented a novel bi-objective mixed integer linear
programming (MILP) formulation for the design and operation of a cruise ship
multi-energy system (MES). The developed model is very generic and adaptable
to any kind of new and emerging technologies, which is a key advantage when
considering the integration of future technologies with unknown characteristics.
A generic MILP formulation can be easily modified to include new constraints
and objectives, enabling researchers and decision makers to address a wide range
of questions related to technology performance and design.

Our MILP approach is especially advantageous as it guarantees the iden-
tification of the Pareto front, which is the set of non-dominated solutions. In
contrast, non-linear optimization approaches may not always provide this guar-
antee. This is critical in our study as it allows for a clear trade-off analysis
between the two objectives: minimizing the environmental impact and the sys-
tem cost.

The proposed methodology relies on simulating cruise profiles represent-
ing the expected energy demands using existing shipyard simulation models.
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We have introduced generic energy generating equipment models and described
their design and operational constraints. By implementing a control strategy,
the design and operation can be optimized simultaneously, considering suitable
objective functions such as the annual greenhouse gas (GHG) emissions or life-
time system cost. Additionally, it allows for the identification of potential issues
that may arise during operation and enables them to be addressed during the
design phase, leading to a more robust and reliable system. One drawback
associated with this method is that alterations in operating conditions can neg-
atively impact the system’s efficiency, which may deviate from the efficiency it
was originally designed to achieve.

We have demonstrated the applicability and effectiveness of the proposed
methodology through a series of experiments detailed in Sections 5 and 6. The
results show that our approach enables the optimization of both the environ-
mental impact and the cost of the cruise ship MES, ensuring the energy demands
are met while minimizing the lifetime GHG emissions and system costs.

However, the proposed methodology has some limitations. For instance,
it considers only GHG emissions in the environmental impact assessment, ne-
glecting other emissions such as sulfur oxides (SOx) and nitrogen oxides (NOx).
Additionally, the model assumes that the cooling demand is provided using elec-
tric compressor chillers, which may not always be the case in practice. One of
the limits of the study was the fluctuations on the engines in certain cases where
the engines were turned on and off frequently. Doing so continuously can cause
wear and tear on the engines and reduce their lifespan and is thus avoided in
real operation. Additionally, frequent transitions can increase fuel consumption
and emissions. To avoid excessive transitions, a penalty can be included in the
optimization objective function that discourages the system from making fre-
quent changes in the operation of the engines. This penalty can be adjusted
to balance the trade-off between minimizing transitions and achieving optimal
performance. Another limitation of the study is that it did not consider the
degradation of the various technologies over time. This could lead to increased
fuel consumption and other inefficiencies that were not accounted for in the
analysis.

Future work could focus on addressing these limitations and further im-
proving the model’s applicability in real-world scenarios. This may include
considering other environmental impacts and incorporating additional energy
network types, as well as investigating more advanced control strategies for the
optimization of the design and operation of cruise ship MESs. Overall, the
proposed methodology provides a valuable framework for the design and oper-
ational optimization of cruise ship energy systems, facilitating the integration
of new and emerging technologies and contributing to more sustainable and
cost-effective solutions for the maritime industry.
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cells in future ship energy systems, Energy 194 (2020) 116811. doi:10.

1016/J.ENERGY.2019.116811. 3, 6, 20, 21, 22

30

https://www.imo.org/en/OurWork/Environment/Pages/Technical-and-Operational-Measures.aspx
https://www.imo.org/en/OurWork/Environment/Pages/Technical-and-Operational-Measures.aspx
https://www.imo.org/en/OurWork/Environment/Pages/Technical-and-Operational-Measures.aspx
https://www.imo.org/en/MediaCentre/PressBriefings/pages/CII-and-EEXI-entry-into-force.aspx
https://www.imo.org/en/MediaCentre/PressBriefings/pages/CII-and-EEXI-entry-into-force.aspx
https://www.imo.org/en/MediaCentre/PressBriefings/pages/CII-and-EEXI-entry-into-force.aspx
https://www.imo.org/en/MediaCentre/PressBriefings/pages/ISWGHGMay2022.aspx
https://www.imo.org/en/MediaCentre/PressBriefings/pages/ISWGHGMay2022.aspx
https://www.imo.org/en/MediaCentre/PressBriefings/pages/ISWGHGMay2022.aspx
https://www.imo.org/en/MediaCentre/PressBriefings/pages/ISWGHGMay2022.aspx
https://doi.org/10.3390/en11102508
https://doi.org/10.3390/en11102508
https://doi.org/10.1016/J.JCLEPRO.2019.06.047
https://doi.org/10.1016/J.JPOWSOUR.2016.07.007
https://doi.org/10.1016/J.JPOWSOUR.2021.230328
https://doi.org/10.1016/J.JPOWSOUR.2021.230328
https://doi.org/10.1016/J.ENERGY.2019.116811
https://doi.org/10.1016/J.ENERGY.2019.116811


[10] D. V. Singh, E. Pedersen, A review of waste heat recovery technologies for
maritime applications, Energy Conversion and Management 111 (2016)
315–328. doi:https://doi.org/10.1016/j.enconman.2015.12.073.
URL https://www.sciencedirect.com/science/article/pii/

S0196890415011826 3

[11] A. Uusitalo, J. Nerg, A. Grönman, S. Nikkanen, M. Elg, Numerical analysis
on utilizing excess steam for electricity production in cruise ships, Journal of
Cleaner Production 209 (2019) 424–438. doi:10.1016/J.JCLEPRO.2018.

10.279. 3

[12] G. Barone, A. Buonomano, C. Forzano, A. Palombo, Implementing the
dynamic simulation approach for the design and optimization of ships
energy systems: Methodology and applicability to modern cruise ships,
Renewable and Sustainable Energy Reviews 150 (2021) 111488. doi:

10.1016/J.RSER.2021.111488. 3

[13] M. A. Ancona, F. Baldi, M. Bianchi, L. Branchini, F. Melino, A. Peretto,
J. Rosati, Efficiency improvement on a cruise ship: Load allocation op-
timization, Energy Conversion and Management 164 (2018) 42–58. doi:

10.1016/J.ENCONMAN.2018.02.080. 3, 4, 6, 14

[14] A. Armellini, S. Daniotti, P. Pinamonti, M. Reini, Reducing the environ-
mental impact of large cruise ships by the adoption of complex cogener-
ative/trigenerative energy systems, Energy Conversion and Management
198 (2019) 111806. doi:10.1016/J.ENCONMAN.2019.111806. 4, 14

[15] N. L. Trivyza, A. Rentizelas, G. Theotokatos, A novel multi-objective
decision support method for ship energy systems synthesis to enhance
sustainability, Energy Conversion and Management 168 (2018) 128–149.
doi:10.1016/J.ENCONMAN.2018.04.020. 4, 14

[16] N. L. Trivyza, A. Rentizelas, G. Theotokatos, Impact of carbon pricing on
the cruise ship energy systems optimal configuration, Energy 175 (2019)
952–966. doi:10.1016/J.ENERGY.2019.03.139. 4

[17] World energy outlook, vol. 32 (2017).
URL https://doi.org/10.1787/weo-2017-en 4

[18] S. Fazlollahi, S. L. Bungener, P. Mandel, G. Becker, F. Maréchal, Multi-
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