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A B S T R A C T

With the ongoing digitization in archives, an increasing number of historical data becomes available for
research. This includes historical aerial images which provide detailed information about the depicted area.
Among the applications enabled by these images are change detection of land use, land cover, glaciers, and
coastal environments as well as the observation of land degradation, and natural hazards. Studying the depicted
areas and occurring 3D deformations requires the generation of a digital surface model (DSM) which is usually
obtained via photogrammetric Structure-from-Motion (SfM). However, conventional SfM workflows often fail in
registering historical aerial images due to their radiometric characteristics introduced by digitization, original
image quality, or vast temporal changes between epochs. We demonstrate that the feature matching step
in the Structure from Motion (SfM) pipeline is particularly crucial. To address this issue, we apply the two
synergetic neural network methods SuperGlue and DISK, improving feature matching for historical aerial
images. This requires several modifications to enable rotational invariance and leveraging the high resolution
of aerial images. In contrast to other studies our workflow does not require any prior information such as
DSMs, flight height, focal lengths, or scan resolution which are often no more extent in archives. It is shown
that our methods using adapted parameter settings are even able to deal with quasi texture-less images. This
enables the simultaneous processing of various kind of mono-temporal and multi-temporal data handled in
a single workflow from data preparation over feature matching through to camera parameter estimation and
the generation of a sparse point cloud. It outperforms conventional strategies in the number of correct feature
matches, number of registered images and calculated 3D points and allows the generation of multi-temporal
DSMs with high quality.

With the flexibility of the method, it enables the automatic processing of formerly unusable or only to be
interactively processed data, e.g. aerial images where the flight route is unknown, or with difficult radiometric
properties. This makes it possible to go back even further in time, where the data quality usually decreases,
and enables a holistic monitoring and comparison of environments of high interest. The code is made publicly
available at https://github.com/tudipffmgt/HAI-SFM.
1. Introduction

In environmental remote sensing, historical aerial images can be
used in various fields such as change detection of land use and land
cover (Picon-Cabrera et al., 2020), glaciers (Mölg et al., 2019; An-
dreassen et al., 2020), forests (Vastaranta et al., 2015; Berveglieri
et al., 2018), coastal environments (Warrick et al., 2017) or for the
observation of land degradation (Bolles and Forman, 2018), land-
slides (DeWitt and Ashland, 2023; Soldato et al., 2018) and natural
hazards (Wang et al., 2021). Compared to satellite images, which are
also capable of mapping large areas, historical aerial images provide the
distinct advantage of extending temporal coverage by approximately
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100 years, dating back to around 1858 (Albertz, 2009). Even after the
advent of earth observation satellites around 1960 (CORONA program),
historical aerial images often remain the only existing records captur-
ing landscapes from around the world with remarkable detail (Pinto
et al., 2019). With an increase of digitization in archives, automatic
processing of these historical aerial images gains even more relevance.

However, automatic analysis and processing of historical aerial
images presents various challenges. For instance, it is important to
carefully document the metadata and the digitization process if high
geometric accuracy wants to be achieved (Sevara, 2016). Currently,
archives deal with challenges, such as physical preservation, integration
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of repositories, and metadata standards (Pinto et al., 2019; Giordano
et al., 2018). Different digitization procedures achieve inconsistent
and varying quality standards, potentially leading to varying digitiza-
tion products between epochs, which complicate especially inter-epoch
processing of historical aerial images.

Further issues arise during automatic processing. Metadata is often
lost so that the flight area, camera parameters, and possible ground
control points (GCPs) are unknown and sometimes, the fiducial marks
are missing (Giordano et al., 2018). Furthermore, the presence of low
overlap in flight strips and/or image pairs can greatly complicate the
process of automatically searching for tie points. Additionally, the de-
picted area may provide a challenging environment, e.g., in forests due
to movement of canopy between image pairs (Velasco et al., 2022), or
over larger water bodies where usually no tie points are found (Rupnik
et al., 2015; Carrivick and Smith, 2018).

Previous studies introduced different automatic approaches to align
historical aerial images. Thereby, time-invariant line features (Nagara-
jan and Schenk, 2016) or patch based methods (Craciun and Bris, 2022)
were developed, considering recent digital surface models (DSMs) and
orthophotos as reference and thus simultaneously allowing for auto-
matic georeferencing. Further, Giordano et al. (2018) propose a method
for finding contemporary GCPs in historical aerial image data. Others
use multi-temporal tie points which can be tracked over several epochs,
originally introduced as Time-SIFT method (Feurer and Vinatier, 2018)
and further generalized by Cook and Dietze (2019) and Blanch et al.
(2021). The most recent studies use contemporary DSMs via a co-
registration algorithm to georeference the SfM products of the historical
data (Zhang et al., 2021; Knuth et al., 2023). Zhang et al. (2021)
introduce a complete workflow for processing specific historical aerial
image datasets including the novel use of the Artificial Intelligence (AI)
based feature matching method SuperGlue (Sarlin et al., 2020). These
works depict the complexity of processing historical aerial image data
and while providing comprehensive toolsets such as using AI, DSM co-
registration and multi-temporal tie points, a general processing strategy
for diverse datasets is not yet available.

This is mainly due to the following persistent issues. Digitized
historical (aerial) images often suffer from poor image quality result-
ing in close-to-zero correct feature matches (Maiwald, 2019; Zhang
et al., 2021; Morelli et al., 2022). Further, even when applying learned
feature matching methods, the texture quality and visual changes,
particularly in forested areas, remain challenging. Another problem is
the need for definition of hypotheses for every specific dataset. This
includes assumptions such as that the topography is variable enough
for automatic registration (Zhang et al., 2021; Craciun and Bris, 2022),
GCPs in the study area (Giordano et al., 2018) exist, enough image
information for finding distinctive features (Feurer and Vinatier, 2018),
and flight information is provided (Knuth et al., 2023).

Novel learned feature matching methods in combination with SfM
are often able to initially process data without any assumptions. How-
ever, they are still challenging to use on historical aerial images. That
is because of their original training procedure on mainly terrestrial
data and low image resolutions (Dusmanu et al., 2019; Sarlin et al.,
2020; Tyszkiewicz et al., 2020; Sun et al., 2021), which also results
in a lack of rotational invariance as reported in Tyszkiewicz et al.
(2020). Retraining the networks would require labeled historical aerial
image datasets, high computational resources and the openly available
training protocol, which is sometimes not accessible (Sarlin et al.,
2020).

Our approach provides a general solution for processing histor-
ical aerial images unlocking the potential of existing aerial image
archives even for difficult datasets. The study deals particularly with
the automatic detection and matching of tie points in challenging
historical aerial image pairs. Finding these points enables a subse-
quent Structure-from-Motion (SfM) pipeline to model 3D geometry,
including the estimation of camera parameters, in one single work-
185

flow. We are using learned feature matchers based on deep neural p
networks due to the limited efficacy of conventional feature matching
techniques applied to historical datasets. Specifically, we focus on
a combination of two AI-based image matching strategies, i.e., Su-
perGlue (Sarlin et al., 2020) and DISK (Tyszkiewicz et al., 2020),
while presenting strategies for dealing with high-resolution aerial im-
ages and rotations between subsequent image pairs. As this workflow
initially operates in image space only, it avoids the need to make
further assumptions while leveraging the potential of learned feature
matching methods. With the aim of providing a complete workflow,
all feature matches and images are imported into a open-source SfM
software where all camera parameters and 3D points are calculated
simultaneously using bundle adjustment. The tie point accuracy and
the quality of the resulting DSMs is metrically estimated for one of the
processed datasets. The code is openly available on https://github.com/
tudipffmgt/HAI-SFM including a small sample image dataset from the
TIME benchmark (Farella et al., 2022).

2. Materials and methods

Our developed approach to match challenging historical aerial im-
ages is tested for two different study areas. The feature matching
methods and their different parameter settings used on the datasets are
explained in detail. Subsequently, a strategy for estimating the metric
accuracy of our method is presented.

2.1. Data

2.1.1. Congo dataset (1961)
The first dataset contains images which could neither be processed

in conventional SfM software nor with the adaptations shown in several
other works (Feurer and Vinatier, 2018; Zhang et al., 2021; Knuth et al.,
2023). Only limited information about the images is available. Flight
plan, flight height, scan size, and the focal length of the camera were
unknown. The site is located in the tropical rainforest and the images
depict a network of rivers in Congo in Central Africa. All 31 images are
taken in 1961 and the only external information is the fact that they are
consecutively numbered from 176 to 192 (17 images) and from 222 to
231 (10 images) according to their positions in successive flight strips
(Fig. 1).

An overview of the data is given in the upper part of Table 1.
The original images have a resolution of 11 400 × 11 408 pixels.

Resampling them, using the available fiducial marks, resulted in a final
resolution of 10 500 × 10 500 pixels. Resampling was done using the
ReSampFid function of MicMac which detects the center of the fiducial
marks and aligns the images respectively (Rupnik et al., 2017).

2.1.2. Occitanie dataset (1971–2001)
The second test site extends over an area of a 170 km2 in the

editerranean landscape in Occitanie in southern France (43◦5N,
◦19E) (Fig. 2).

The area of interest is mainly covered by vineyards with forests
n its uppermost regions. The area exhibited a strong change in land
se because vineyards transformed during the 1980s, from goblet to
rellised vineyards, accompanied by progressive land abandonment and
rbanization during the past 50 years (Vinatier and Arnaiz, 2018). The
act that these images were scanned with photogrammetric scanners is
mportant in regard of the production of geometrically correct outputs
s noted by Sevara (2016). We used a sample of these data from four
ifferent epochs that allowed for a stereo coverage of the entire test
ite. The characteristics of the images are reported in the bottom part
f Table 1.

In order to test the different SfM approaches as if camera data
s unknown, all scanning information and interior camera orienta-
ion parameters were initially omitted. In the post-processing step,
hen estimating the accuracy of the multi-temporal DSMs, the camera

arameters were used as described in Section 2.3.

https://github.com/tudipffmgt/HAI-SFM
https://github.com/tudipffmgt/HAI-SFM
https://github.com/tudipffmgt/HAI-SFM
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Fig. 1. Sequential historical aerial images of the Congo dataset. Similar regions are marked with a red circle.
Table 1
Characteristics of the two datasets used in the experiments.

Congo dataset

Epoch (year) Focal length (mm) Estimated flight height (m) Images (#) Scan size (μm) GSD (cm)

1961 n.a. n.a. 27 n.a. n.a.

Occitanie dataset

1971 152 2700 61 21 37
1981 153 4800 27 21 66
1990 153 5000 31 21 69
2001 153 4000 44 21 55
Fig. 2. Historical aerial image of every epoch of the Occitanie dataset showing the similar geographic region.
186
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2.2. Methods

Two different methods were considered to process historical aerial
images and especially to robustly find tie points between sequential
image pairs. Both approaches have already shown good results on
historical terrestrial images (Maiwald, 2022; Morelli et al., 2022; Mai-
wald et al., 2023). The first method combines the tie point extractor
SuperPoint (DeTone et al., 2018) with the feature matching method Su-
perGlue (Sarlin et al., 2020) and will in the following be referred to as
SuperGlue. The second method is DISK (Tyszkiewicz et al., 2020). Both
methods are experimentally used to find mono-temporal tie points for
the first dataset and mono-temporal and multi-temporal tie points for
the second dataset. A short summary and explanation on the parameters
and limitations are given in the following sub-sections.

After tie points are found with the AI-based approaches, bundle
adjustment is performed in COLMAP to reconstruct the image geom-
etry (Schönberger and Frahm, 2016). Thereby, the camera parameters
and a sparse point cloud are calculated simultaneously.

2.2.1. SuperPoint+SuperGlue
SuperPoint serves as method for the feature detection stage (DeTone

et al., 2018). SuperPoint generates reliable feature points using a
synthetic pre-trained dataset to train the so-called MagicPoint convolu-
tional neural network. Because the model does not perform sufficiently
accurate on real images, DeTone et al. (2018) use Homographic Adap-
tation to transform the input image to multiple random homographic
representations. Subsequently, the feature points are calculated with
MagicPoint for all representations and are eventually aggregated to one
final set of SuperPoint features.

Afterwards the extracted feature points are matched with Super-
Glue. SuperGlue is a graph neural network designed for matching tie
points by solving a differentiable optimal transport problem.

However, the methods come with several limitations especially
regarding historical aerial images. The training procedure of SuperGlue
is at the moment not openly available, which means that the user can
only use the pre-defined configurations indoor and outdoor for feature
matching. Sarlin et al. (2020) use scenes from the MegaDepth (Li and
Snavely, 2018) dataset to train the outdoor configuration which how-
ever mainly consists of urban scenes. Thus, the parameter configuration
might not be optimal for our historical aerial images.

We propose a modified outdoor configuration using a maximum edge
length of 1600 pixels in SuperGlue in contrast to the default value of
the outdoor configuration which is set to 1024 pixels. We use this value
because it is recommended by Sarlin et al. (2020) to use images with a
maximum image edge length of 1600 pixels. However, historical aerial
images are usually digitized with a significantly higher resolution be-
tween approximately 10 000 × 10 000 pixels to about 26 000 × 26 000
pixels. Therefore, we propose a tile-based approach (t-ba), which splits
the original images 𝐼𝑖, 𝑖 = 1,… , 𝑁 into 𝑀 × 𝑁 tiles with a maximum
edge length of 1600 pixels. In order to reduce computation time, not
every tile 𝐼𝑖(𝑀 ×𝑁) is matched with every tile 𝐼𝑖+1(𝑀 ×𝑁) and instead
the overlap 𝑂𝑖,𝑖+1 between images is considered (Fig. 3).

The overlap might be available from metadata. If this is not the case,
we assume a maximum strip overlap in flight direction of 60% and a
strip overlap across flight direction of 30%. Consequently, images are
not matched to neighboring images but to corresponding tiles 𝐼𝑖+2, 𝐼𝑖+3
r 𝐼𝑖+4. If every image should be considered for finding tie points, the
verlap has to be set to 100% respectively.

SuperGlue is only rotational invariant up to approximately 45◦

Tyszkiewicz et al., 2020). We use this property to automatically detect
he beginning of the following flight strip. If there are less than 50 geo-
etrically verified matches between sequential images with a matching

onfidence higher than 0.5, image 𝐼𝑖+1 is rotated for 180◦ and feature
atching is repeated (Fig. 4). If the repeated image matching results in
significantly higher number of matches, a new flight strip has been

dentified.
The found feature matches are stored in the Hierarchical Data For-

at (HDF) H5, which is readable and processable by the SfM software
OLMAP.
187
.2.2. DISK
DISK uses reinforcement learning for extracting and matching a

et of local features in an end-to-end trainable approach. Features
re extracted using a U-Net architecture and their optimal matching
s obtained by using the policy gradient method. Again, training is
one on the MegaDepth dataset and not modified during the experi-
ents. Usually, the approach finds less correct matched features than

uperGlue but provides a higher absolute number of detected feature
oints (Maiwald et al., 2021; Morelli et al., 2022).

DISK deploys a set of adjustable parameters. Images can be used at
ull size but also internally downsampled to a pre-defined width and
eight that has to be a multiple of 16. In our experiments we used
esolutions of 1024 × 1024, 1600 × 1600, and 3200 × 3200 pixels.

Larger image sizes are not possible on the NVidia A100 GPU, used
in this study, due to memory limitations. Furthermore, it is possible
to set the maximum numbers of features that are extracted and the
mode of feature extraction. Modes that can be used are non-maxima
suppression (nms) or through training-time grid sampling technique
(rng) as explained in Tyszkiewicz et al. (2020). Basically, nms allows
finding multiple keypoints (or also none) per grid cell (with a prior
defined size) while rng always provides exactly one keypoint per cell.
In order to find an optimal solution for historical aerial images, the
default approach and subsequently different combinations of parameter
settings are used. Initially, we increase the image resolution parameter
while retaining a constant number of maximum features per image. Af-
ter the maximum image resolution is detected, we double the maximum
number of detected features per experiment until the processable limit
is reached. The resulting feature matches are again stored in H5 file
format. As recommended, COLMAP is used for the geometric verifica-
tion of the feature matches using its standard procedure (Schönberger
and Frahm, 2016). That means, that the putative matches derived
from DISK are filtered using the geometric properties of the Funda-
mental Matrix including outlier detection with Progressive Sampling
Consensus (Chum and Matas, 2005).

2.2.3. COLMAP
COLMAP (https://github.com/colmap/colmap, accessed on 03

February 2023) is an open-source SfM software that can be modified
enabling, e.g., the import of calculated feature matches (Schönberger
and Frahm, 2016). In this study, COLMAP serves as a tool to simulta-
neously estimate interior and exterior camera orientation (if unknown)
and to generate a sparse point cloud representing the 3D coordinates
of the tie points. However, similar to the feature matching methods,
COLMAP is mainly designed to reconstruct urban landscapes and less
to process aerial images. Thus, some modifications need to be made. For
instance, if the principal distance (focal length) 𝑓 is known, it should be
set as prior focal length to achieve valid results and if it is unknown it
should still be initialized with a reasonable estimate, e.g. by comparing
to other flight missions at that time and place. Note that in COLMAP
the default initial value of 𝑓 = 1.25 ⋅max(𝑖𝑚𝑎𝑔𝑒𝑤𝑖𝑑𝑡ℎ, 𝑖𝑚𝑎𝑔𝑒ℎ𝑒𝑖𝑔ℎ𝑡), which
is not a suitable estimate for aerial images.

Using the default settings, COLMAP triangulates 3D points only if
they are seen in three or more images, i.e., corresponding to the so-
called (multi-view) feature tracks. We adapt that behavior by allowing
two-view feature tracks during bundle adjustment to enable triangu-
lation of 3D points seen in a minimum of two images considering
the smaller overlap of historical aerial images. If desired the principal
distance can be set to be fixed in the bundle adjustment, especially if
a stable camera geometry can be assumed for the high quality aerial
cameras developed for mapping tasks. This might avoid inaccurate
reconstructions or dome effects.

https://github.com/colmap/colmap


ISPRS Journal of Photogrammetry and Remote Sensing 206 (2023) 184–200F. Maiwald et al.
Fig. 3. Explanation of the tile-based approach (t-ba) illustrated for the Congo dataset. (a) Image sequence of four historical aerial images. (b) Due to their high resolution images
are split into 𝑀 × 𝑁 tiles. (c) Only possibly overlapping tiles in green are matched with the subsequent image. (d) The second next image is matched with even less possible
combinations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Left: original image pair configuration where only incorrect feature matches with mostly low confidence (blue lines) can be found using SuperGlue (and DISK). Right: Image
configuration with the subsequent image rotated by 180◦. The image rotation enables finding a lot of correct feature matches depicted using green lines between the identified
red tie points for SuperGlue (and DISK). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
2.2.4. Proposed workflow using a combination of methods
For maximum efficiency a synergetic workflow is proposed using

the contrary properties of both AI-based image matching methods
(Fig. 5).

Step 1: Data preprocessing:
For faster preprocessing the images are downsampled to a max-

imum edge length of 1600 pixels using bilinear interpolation while
maintaining the aspect ratio. Afterwards, our workflow proposes three
different strategies for reliably finding feature matches in historical
aerial images. This includes the default approach using a combination
of SuperGlue and DISK, the computationally expensive but feature-rich
tile-based approach, and the approach for texture-less images using DISK
exclusively.

Step 2: Determination of image rotation:
To determine the image rotation, all strategies start with the use of

the default SuperGlue feature matching method on the downsampled
images because SuperGlue usually outperforms other learned matchers
even on difficult datasets (Maiwald, 2022; Morelli et al., 2022). If more
than 50 feature matches with a 𝑚𝑎𝑡𝑐ℎ_𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 > 0.5 are found be-
tween sequential images, SuperGlue can be used to identify consecutive
flight strips as explained in Section 2.2.1, Fig. 4. If SuperGlue is not able
188
to find a sufficient number of feature matches, especially in textureless
scenes like for the Congo dataset, DISK is used instead to determine the
image rotation in the downsampled images.

Step 3: Feature matching: Using the correct rotation, feature
matching can be applied on the fully sized historical aerial images.
Therefore, we propose two different strategies. If DISK was used to find
feature matches (because SuperGlue failed), it should also be applied
on the images with full resolution (Fig. 5, DISK approach). In our ex-
periments a parameter setting with an image resolution of 3200 × 3200
pixels and a maximum allowed number of feature matches 𝑛 = 32768
provided the most reliable results. DISK has the advantage of being
directly applicable to the original image resolution because it uses
a convolution neural networks. This allows yielding precise tie point
coordinates (in sub-pixel accuracy), which is why it is proposed as our
default approach. However, for more equally distributed inter-epoch tie
points, SuperGlue can also be used on historical aerial images with full
resolution. In this case, the images have to be divided into separate tiles
to enhance robustness and accuracy as explained in Section 2.2.1. Our
approach keeps the a-priori determined tie-points of the downsampled
images and the overlap information to enable a smart matching scheme
of the different image tiles. Still, this approach is more computationally
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Fig. 5. Our proposed pipeline for processing historical aerial images. To accelerate initial processing, the images are downsampled first to determine the image rotation using
SuperGlue as default method or DISK in the case of texture-less images. The rotated images are processed in full resolution using a specific DISK parameter setting with an image
size parameter of 3200 × 3200 and a maximum number of extracted tie points of 32 768. An alternative is given using the tile-based approach for leveraging the high resolution
of the original image material. The rotated images in full resolution, the derived feature matches, and interior camera parameters (if available) are used in the COLMAP bundle
adjustment to determine interior and exterior camera parameters of all images as well as a sparse point cloud.
expensive because multiple tiles have to be matched to each other
and all found tie points have to be merged into a single file for the
respective image pair. As an example, a single photograph with an
image resolution of 16 000 × 16 000 pixels is already divided into
100 separate tiles (with an image resolution of 1600 × 1600 pixels).
Considering four successive images of one flight strip with 60% overlap
this accumulates to a final number of 14 400 matching procedures as
seen in Eq. (1) in comparison to the DISK matching process with only
5 procedures as calculated in Eq. (2).

𝑝𝑎𝑖𝑟𝑠𝑡−𝑏𝑎 =𝑃1−2 + 𝑃1−3 + 𝑃2−3 + 𝑃2−4 + 𝑃3−4

= 60 ⋅ 60 + 60 ⋅ 30 + 60 ⋅ 60 + 60 ⋅ 30 + 60 ⋅ 60

= 14400

(1)

𝑝𝑎𝑖𝑟𝑠𝐷𝐼𝑆𝐾 =𝑃1−2 + 𝑃1−3 + 𝑃2−3 + 𝑃2−4 + 𝑃3−4

= 1 + 1 + 1 + 1 + 1

= 5

(2)

We are able to slightly reduce this high number of matching pairs by
only matching the tiles that fall into the bounding box of pre-calculated
matches in the downsampled image pairs.

Step 4: Bundle adjustment: The potentially rotated full-resolution
photographs are imported in COLMAP and the image geometry is
calculated using the feature matches. If interior camera orientation
189
parameters (IOPs) are known a-priori, they will be imported. The
bundle adjustment in COLMAP is performed allowing two-view tracks
eventually resulting in the estimated interior and exterior camera ori-
entation parameters (EOPs) for the historical aerial images and in a
sparse point cloud.

The source-code to our introduced automatic workflow to match
historical aerial images, including an experimental data sample is avail-
able at https://github.com/tudipffmgt/HAI-SFM. The final compilation
of all tested and compared methods on the respective datasets can be
seen in Table 2.

2.3. Accuracy assessment

Giving reliable estimates about the accuracy of historical data often
proves to be difficult due to missing reference data also being visible
in images of the past. Only the Occitanie dataset was explored to
assess the accuracy of scaled 3D models because it was not possible to
identify stable reference points in the Congo images. The area with the
largest image overlap was considered to ensure a comparison across all
four epochs (Fig. 6). Multiple procedures of accuracy assessment were
carried out.

Reprojection error and tie point accuracy: The interior orientations,
camera poses and sparse point clouds derived from our workflow
were transferred from COLMAP to Metashape for further analysis.

https://github.com/tudipffmgt/HAI-SFM
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Table 2
Methods and parameter settings used on the Congo and Occitanie dataset.

SuperGlue DISK

Congo dataset

Default Default (1024 × 1024 pixels, 2048 features, nms)
max. edge length 1600 pixels 1024 × 1024 pixels, 4096 features, nms
1600 px + ReSampFid 1600 × 1600 pixels, 4096 features, nms
1600 px + tile-based approach (t-ba) 3200 × 3200 pixels, 4096 features, nms
1600 px + ReSampFid + t-ba 3200 × 3200 pixels, 4096 features, rng

3200 × 3200 pixels, 8192 features, nms
3200 × 3200 pixels, 16 384 features, nms
3200 × 3200 pixels, 32 768 features, nms
3200 × 3200 pixels, 65 536 features, nms

Occitanie dataset Default Default
Proposed method using combination of SuperGlue and DISK
Fig. 6. Top-left: Location of region of interest (ROI) in France. Top-right: Example of one recent aerial image of the ROI. Bottom-left: Image overlap for all epochs and selected
ROI. Bottom-right: Selected ROI transferred to a more detailed aerial view, including the display of the control scale bar (Scale 1) and the check scale bar (Scale 2) used for the
accuracy assessment of scaled 3D models.
Image source: https://www.geoportail.gouv.fr.
Afterwards, the quality of our introduced SfM process was estimated
using stable objects that were visible in all epochs. These points were
measured manually in the images of all epochs and then compared to
the corresponding projected image point. This allowed the visualization
of the tie point accuracies and the calculation of the mean reprojection
error across multiple epochs.

Multi-temporal comparison of scaled models: The model of the four
epochs from Occitanie was scaled by introducing one control scale
(Scale 1) into the adjustment of the camera alignment. During the
alignment, the given flight protocol was also considered. For the in-
dependent estimation of the accuracy of the refined, i.e., scaled model,
an additional check scale (Scale 2) was used. The 3D point coordinates
to calculate the scales were obtained as UTM coordinates from the
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French geoportal (https://www.geoportail.gouv.fr/carte). The image
measurement of the scales in the historical images were performed
using the dataset from 2001 to ensure using points in the dataset with
the smallest likelihood of change until recently. The a-priori accuracy of
the control scale was set to 1 m. Scale 1 spanned the area from north-
east to south-west with a length of 26.5 km. The check scale had a
length of 17.6 km. The final error at Scale 2 (i.e., after the adjustment)
was 0.49 m.

Four different historical point clouds were generated using solely
images of the respective epoch, i.e., the originally merged model was
separated by acquisition year. The dense point clouds were calculated
in Metashape using High quality and Mild depth filtering settings. The
3D point clouds enabled the comparison of stable regions. Therefore,

https://www.geoportail.gouv.fr
https://www.geoportail.gouv.fr/carte
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Fig. 7. Overview of the regions of interest used for the quality estimation considering
tie point accuracy and reprojection error (1–3), accuracy estimation with multi-temporal
DSMs (4–6), and qualitative use of the DSMs for change detection analysis close to the
city Pézenas (7).

we calculated the cloud-to-cloud (C2C) distance for small DSM patches
in CloudCompare 2.12.4. The most recent epoch was used as the
reference (i.e., primary) for the comparison between all other epochs
(i.e., secondary).

Qualitative change detection: The last step of accuracy assessment
involved a test, whether the final dense point cloud products can be
used for a fast detection of environmental changes in a region near the
city of Pézenas. All selected areas of interest are shown in Fig. 7.

3. Results and discussion

We use the Congo dataset to introduce our developed approach as a
proof-of-concept regarding the possibility of leveraging learned feature
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Fig. 8. SuperGlue feature matches for the Congo dataset. Top: Historical image pair
with fiducial marks where similar regions are marked by a red circle and the matches
are shown using a maximum edge length of 1600 pixels. Bottom: The aerial image with
resampled fiducial marks is shown. All detected tie points are marked as red pixels and
calculated feature matches are shown as green connected lines for both approaches.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

matching methods (trained on urban, terrestrial data) for historical
aerial images. The Occitanie dataset is used to assess the capabilities
of our workflow to match images taken at different points in time
(inter-epoch) simultaneously with images taken during the same epoch
(intra-epoch). This dataset is also used to provide insights about the
accuracy of the aligned dense point cloud, which is relevant to assess
the suitability of our workflow for multi-temporal change detection
applications. The Occitanie dataset is the least challenging in our study.
Hence, the standard configurations of the SuperGlue and DISK methods
could be applied. Both datasets, Congo and Occitanie, provide different
results and insights into the challenges when using our automatic
approach of image matching to perform 3D reconstruction across time.

3.1. Congo dataset: Intra-epoch matching of low-texture scenes

The Congo dataset was captured in a very challenging environment
with quasi texture-less images, unknown camera parameters, and miss-
ing information about the study area (Fig. 8). The images show the
canopy and a network of rivers in the tropical rainforest.
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Fig. 9. Top: Historical image pair where similar regions are marked by a red circle for better readability. Middle: Initial tie points and matches found by SuperPoint and SuperGlue
between all possible combinations of image tiles. Bottom: Geometrical verification of matches results in only 79 remaining incorrect matches.
3.1.1. Results for the SuperGlue approach
Results for matches between all image pairs using SuperGlue show

that only the image frames are matched and that no correct tie points
could be assigned. Resampling the images to a maximum edge length of
1600 pixels did not improve the results (Fig. 8-top) and removing the
image borders with its fiducial marks using ReSampFid (Section 2.1)
still did not solve the issue (Fig. 8-bottom).

To force SuperGlue to focus on other image regions, the original im-
ages are split into tiles with a maximum edge length of 1600 using the
presented tile-based approach (Section 2.2.1). Although, this approach
of using full image resolution provides a high number of image feature
points extracted by SuperPoint, the subsequent feature matching with
SuperGlue is not able to connect the image tiles correctly, still leading
to insufficient results (Fig. 9).

Superglue performs well on feature-rich datasets (Zhang et al.,
2021). However, the texture-less scene of the Congo dataset is too
difficult to find reliable feature matches, also when testing multiple
modifications.
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3.1.2. Results for the DISK approach
The DISK approach is directly applied to the aerial images with

resampled fiducial marks as often the border regions hampered feature
matching resulting in a possibly lower accuracy also reported by Feurer
and Vinatier (2018). In contrast to SuperGlue, the default setting is the
usage of input images with a downsampled resolution of 1024 × 1024
pixels, a maximum allowed number of 2048 detected features per
image and considering the non-maximum suppression (nms) mode.
This also provides no correct feature matches, but when the maximum
number of detected features is increased to 4096 the first correct
matches occur.

To retrieve the optimal parameter settings for the historical aerial
images of the Congo site, the parameters image size and number of
features n are modified one after another. In regard of feature detection
mode, mainly nms is used as recommended by Tyszkiewicz et al.
(2020). Tests have also been done for multiple different parameter
settings with the rng mode (only one is shown in the publication).
However, the results were consistently worse, i.e. producing systematic
outliers, when compared to the nms mode (Fig. 10).
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Fig. 10. DISK feature matches for the Congo dataset using varying sets of steering parameters. The best and most consistent results are generated using a configuration of
3200 × 3200 pixels image resolution and 32 768 extracted features. For all depicted tests, except one example, the nms mode is used.
Modifying the image resolution and number of extracted features
leads to the following results. A larger image size initially increases
the total number of correct feature matches. However, the increase
of the image resolution from 1600 × 1600 pixels to 3200 × 3200 pixels
(corresponds to the limit for the NVidia A100 GPUs) results in a
approximately constant number of determined feature matches, when
considering a constant maximum number of 4096 detected tie points.

Increasing the maximum number of detected features without limits
results in an exponential growth of features until COLMAP can no
longer read the h5 file and also the number of correct feature matches
decreases (seen for 𝑛 = 65 536 and larger). According to the authors of
DISK, this happens because the space of descriptors is saturated with
too many detected features and the feature matching process obtains in-
correct results because of too many false positives (Michał Tyszkiewicz,
personal correspondence, 04 Feb 2023). Limiting the maximum number
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of extracted features to 32 768 provides more reliable results. The
number of correct matches and the matching ratio = correct matches

total matches in
relation to the DISK configurations is shown in Fig. 11.

3.1.3. Results in COLMAP
Using this optimal configuration for DISK, the Congo dataset is

processed in COLMAP to obtain the camera parameters and a sparse
point cloud. It is recommended to only estimate one single camera
model during intra-epoch reconstruction as we assume sufficient stabil-
ity of the aerial cameras. Using multiple different camera models leads
to strong variations of the estimated focal lengths and consequently
of the flight heights (camera height). Additionally, it causes strong
dome effects of the models due to overparameterization, especially
considering the limited image overlap of the historical data (Eltner and
Schneider, 2015).
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Fig. 11. DISK matching ratio and total number of inliers for the Congo dataset. The configuration 3200 × 3200 with 32 768 extracted tie points provides the highest number of
981 inliers with a matching ratio of 99.1%.
With our method all images could be used in a single SfM workflow,
producing a DSM of this region. Furthermore, the flight route of two
connected flight strips and one single flight strip not connected to
the others was automatically reconstructed in two separate COLMAP
models (Fig. 12).

3.2. Occitanie dataset: Intra-epoch and inter-epoch feature matching

Feurer and Vinatier (2018) and Zhang et al. (2021) already pro-
cessed the Occitanie dataset and evaluated their results using the
Time-SIFT method and the DSM-based approach respectively. How-
ever, it is of high interest if our adaptations and the use of learned
feature matching method exclusively in image space are also capable
of processing these mono-temporal and multi-temporal data in one
single workflow. Thereby, we could show that the default method
of SuperGlue is already capable of finding reliable inter-epoch and
intra-epoch tie points (see comparison of all methods in Fig. 14).

Without further modifications, COLMAP generates several recon-
structions for a different number of images. However, a single recon-
struction using all images could not be calculated. As SuperGlue is not
rotational invariant, some image blocks cannot be connected to others
resulting in separated models. All images, except for two, are registered
in four different models with a varying number of images (Fig. 13).

The same procedure is followed with the default DISK configura-
tion. DISK is also able to find keypoints inter-epoch and intra-epoch
wise. However, the default DISK approach found significantly less
inter-epoch matches when compared to SuperGlue and especially our
proposed method with adapted DISK parameter settings (Table 3 and
Fig. 14).

The workflow in COLMAP leads to slightly worse results when using
DISK based tie points. Although, DISK generates a similar amount of
3D points, these are not as evenly distributed throughout the images
compared to the SuperGlue workflow (Figs. 13 and 15).

Both learned feature matching methods are able to match historical
aerial images from the same epoch and between different epochs even
in their default configurations. However, they revealed several limi-
tations as already discussed previously (Section 2.2.1). Both methods
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Table 3
Comparison of the number of tie points for one inter-epoch (1981–1990) and one intra-
epoch (1971–1971) image pair found by SuperGlue and DISK with default settings, and
our method.

Intra-epoch tie points Inter-epoch tie points

SuperGlue 1248 369
DISK 798 195
Our method 7837 1616

Table 4
Comparison of the results of the default method and our proposed workflow on the
Occitanie dataset consisting of 148 images. The largest model is compared regarding
its total number of 3D points, the mean number of observations per image, and its
mean reprojection error calculated by COLMAP.

Largest model
(# images)

3D points Mean obs/img repr. err. (px)

SuperGlue 81 98 500 3270.4 0.61
DISK 63 64 259 2203.6 0.25
Our method 148 1 006 539 17 173.1 1.11

are not fully rotational invariant and also require adjustments for
processing the original image size.

With our proposed workflow using the combination of SuperGlue
on downsampled images to determine the rotation and the subsequent
DISK matching procedure applied to the full resolution images, we are
able to estimate the camera parameters for all historical aerial images
of the original Occitanie dataset in one single automatic run (Fig. 16).

A comparison of the final models reveals the increase in registered
images, number of observations per images, estimated 3D points, and
also a increase in the final reprojection error (Table 4). However, this
is to be expected for larger datasets as a higher number of camera
parameters needs to be optimized in the bundle adjustment procedure
because we consider a separate single camera for every epoch. A mean
reprojection error of 1.1 pixels can still be considered very accurate for
a model with 148 historical images with generally lower image quality
but does not yet give insights on the metric quality of the result.
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Fig. 12. Top: One flight strip of the Congo dataset including 10 images with a mean reprojection error of 0.84 pixels. The red frustum depict the camera orientation in relation to
the estimated gray 3D points. Bottom: Dense point cloud created using OpenMVG (Moulon et al., 2016). OpenMVG falls short in providing a complete model due to the scarcity
of reconstructed 3D points in the central region of the original sparse point cloud. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
Fig. 13. Largest SfM model reconstructed using the default SuperGlue feature matching workflow. The model consists of 81 images from a total of 148. It includes aerial images
of all four epochs and has a final mean reprojection error of 0.61 pixels.
3.2.1. Accuracies achieved for a scaled model
The previously presented results only show results in image space

and in the local, arbitrary coordinate system defined by COLMAP. Here,
we give insights into the tie-point accuracy, compare multi-temporal
DSMs, and perform change detection using the Occitanie dataset.
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To assess the final tie point accuracy, a few stable points were
measured in the historical images (Fig. 17).

Note that conventionally used natural GCPs such as manholes or
street corners were often not visible due to insufficient image quality or
plant growth, or changes due to construction work during the 50 year
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Fig. 14. Top-left: Intra-epoch image pair of 1971; Top-right: Inter-epoch image pair between epochs 1981 and 1990; Similar image regions are circled in red. Second row:
Intra-epoch and inter-epoch SuperGlue feature matches are visualized by connected green lines. Third row: DISK feature matches. Fourth row: Feature matches resulting from our
proposed method. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 15. Largest SfM model reconstructed using the default DISK feature matching
workflow. The model consists of 63 images from a total of 148. It includes aerial
images of the first three epochs with a final mean reprojection error of 0.25 pixels. A
separate model is generated for the most recent epoch of 2001.
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Fig. 16. All 148 images of the Occitanie dataset are included in one SfM model using
the established workflow combining SuperGlue, DISK and COLMAP.
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Fig. 17. Tie point accuracy for three selected stable structures. All tie points were selected in epoch 2001 and then projected into the images of the three other epochs of the
aligned image block (see image patches). The mean reprojection error was afterwards calculated by manually correcting the marker positions including and excluding epoch 1971
(see columns).
observation period (i.e., from the most recent images used to extract
the scale and to the earliest images dating back to the 1970’s). Three
different three-dimensional objects (pit, statue, fountain) were used for
the tie point based accuracy assessment. While usually flat objects are
advantageous to assess the reprojection error, such targets could not be
identified in the dataset with sufficient quality.

The reprojection errors excluding epoch 1971 range between 0.4
and 1.6 pixels. They coincide with or are even superior to the overall
mean reprojection error of the model estimated in COLMAP. When
epoch 1971 is also included into the error analysis, the reprojection
error increases to values between 1.2 and 2.1 pixels. The lower quality
of the 1971 dataset could also be observed in the DSMs, because the
overall image quality of the aerial photographs from 1971 is consid-
erable worse compared to the later epochs. Furthermore, the object
pit is located closer to the border of the image block of the 1971
epoch, which is another potential reason for the lower performance
because a decrease of accuracy can be expected due to lower image
overlap. Nevertheless, our feature matching strategy was capable of
finding many similar points between several epochs with an accuracy of
approximately 2 pixels and better. This also shows that SuperGlue and
DISK were able to operate in subpixel accuracy for distinctive objects.

To assess the quality of a scaled model, small patches of interest
were compared within the region of interest (Fig. 18). The DSM com-
parison was obvious between the three epochs 2001, 1990, and 1981.
However, the DSM of epoch 1971 revealed many incomplete regions
and therefore mostly hindered an accuracy assessment in that regard.
Two patches containing a football field and a town center seemed to be
the most stable regions in our analysis.

It was possible to identify stable areas throughout the observation
period. The mean differences of the C2C distances were mostly close to
zero meters (Table 5). Again, the accuracy was lower for the incomplete
models of epoch 1971. When analyzing the individual patches, it
could be revealed that center and football field exhibited a normally
distributed error for the height values with a standard deviation of
0.81 m, which is about twice the GSD. It should be noted that the
patch football field was overgrown by grass in 1981 and therefore the
C2C difference might not actually represent aligned DSM accuracy but
vegetation heights. The street patch might have changed throughout
the observation period – again highlighting the challenge to find stable
areas – because average deviations are mostly negative.

To evaluate the quality of the DSMs for relative change detection be-
tween different epochs, a larger area of interest was observed (Fig. 19).
Major changes in the range of several meters become easily visible
and should be considered for further analysis. Tree growth, building
construction and possibly erosion can be seen.
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Table 5
Comparison of the mean difference and standard deviation of C2C distances considering
only the Z-component.

Dataset Epoch Mean [m] Median [m] std. dev. [m]

Street
1971–2001 0.10 0.10 0.49
1981–2001 −0.44 −0.22 1.33
1990–2001 −0.55 −0.54 1.06

Center
1971–2001 −0.91 −0.89 0.97
1981–2001 0.02 0.00 0.81
1990–2001 0.10 0.02 0.82

Football
1971–2001 1.09 1.11 0.87
1981–2001 0.51 0.53 0.62
1990–2001 −0.02 −0.06 0.78

Considering the diverse multi-temporal data, the assessment of dif-
ferences between scaled models highlighted that a sufficient accuracy
could be achieved with our approach because the high number of tie
points increased the quality of the geometry of the multi-temporal
image block.

3.3. Implications and limitations

Working on the two different datasets using learned feature match-
ing methods leads to several findings. Both, DISK and SuperGlue are
able to find feature matches between historical aerial images of differ-
ent epochs and within the same epoch as highlighted with the Occitanie
dataset. The Congo dataset reveals that SIFT (not shown in the publica-
tion) and SuperGlue are not able to find feature matches in texture-less
scenes of the tropical rainforest. Also, the default configuration of
DISK results only in few correct feature correspondences. However, an
extensive parameter testing enabled the finding of the optimal settings
for historical aerial images.

Some limitations of our workflow have to be emphasized. Feature
matching becomes more computationally expensive the more images
are compared to each other. The number of exhaustive matching of
image pairs is calculated as (𝑛2 + 𝑛)∕2 and hence increases significantly
for large datasets, which is also the case for our presented tile-based
approach. We intercept this increase slightly by including assumptions
about the image overlap within and across flight strips and by using
downsampled images to generate matches. It is recommended to use
one or multiple GPUs for feature matching. As an example, the cal-
culation of SuperGlue feature matches for one single image pair takes
about 10 s on a common Intel i7-1165Gz @ 2.80 GHz while it reduces
significantly to 0.1 s when using a single NVidia A100 GPU.

Due to the synergetic characteristics of SuperGlue and DISK, our
workflow requires setting up both matching strategies, which can be
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Fig. 18. Cloud-to-cloud distances between DSMs; epochs (1971, 1981, 1990) were
compared to epoch 2001. The metric distances are shown color-coded in Z direction.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

challenging. Therefore, we provide the complete pipeline as separate
open-source modules performing the different steps one after another
according to the user’s needs.

Further, the applied learned feature matching methods were origi-
nally trained on terrestrial images. Although they provide good results
on the aerial datasets of our case studies, the approaches might fail
on other data and the general transferability from terrestrial to aerial
perspective needs to be investigated more broadly. A future strategy
could be the training of DISK with historical aerial images. However,
this requires a (historical) ground truth dataset providing the images,
depths and calibration protocols. One option for such a training proce-
dure might be the newly established TIME benchmark dataset (Farella
et al., 2022). In order to reach a comparable size of training data
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Fig. 19. Comparison of Z-difference of a larger area between 1981 and 2001. Larger
regional changes are visualized with yellow ellipses in the aerial photograph of 2001.
This includes natural phenomena such as tree growth but also man-made changes like
the construction of a highway or logistics center. The changes are clearly visible in
the distance image where positive changes larger than 3 m are visualized in red, and
negative changes larger than 3 m in blue. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

as large as the MegaDepth dataset with 135 scenes used for DISK,
a similar amount of reconstructed historical aerial scenes would be
necessary. With the 28 different scenes from the TIME benchmark and
more historical data openly available, our workflow could possibly be
used for generating this large amount of COLMAP reconstructions.

SuperGlue does not allow for such a training procedure because the
architecture and corresponding weights of the neural network model
are not openly available. However, first available open variants of
SuperGlue might be alternatives (Viniavskyi et al., 2022).

Generation of DSMs becomes possible when using the proposed
method with post-processing in Agisoft Metashape. It could be ob-
served, that the comparison of DSMs between 2001, 1990 and 1981
of the Occitanie dataset lead to reasonable results with standard de-
viations in Z-direction of twice the GSD. However, for epoch 1971
with actually a lower GSD the final dense point cloud was more
erroneous with visible holes and larger radiometric differences between
overlapping areas. Consequently, the result for tie point accuracy and
DSM comparison were worse than for the other epochs. This could not
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be directly observed during feature matching but only after detailed
analysis of the final sparse and dense point clouds.

We agree with Feurer and Vinatier (2018) and Knuth et al. (2023)
who state that processing multiple epochs simultaneously is advanta-
geous, as it may help to cope with the correlation between flying height
and focal length. In the multi-temporal dataset less systematic errors
occur, like e.g., the dome effect for the Congo flight strip. The multi-
temporal feature matching enabled a reasonable convergence of the
bundle adjustment with small final mean reprojection errors already
in COLMAP without prior definition of camera parameters opposed to
the Congo dataset.

4. Conclusions

Historical aerial images offer the potential to enable long-term
observations of environments as early flight campaigns date back to
the 19th century. However, this data often suffers from degradation,
inadequate digitization quality, and missing flight information.

The study presents a comprehensive workflow for processing these
historical aerial images and unlocking the potential of existing data
lying in numerous archives. It especially focuses on mono-temporal and
multi-temporal data with difficult radiometric properties and unknown
camera parameters. We significantly improve the feature matching
in the SfM workflow enabling the automatic detection of tie points
between image pairs that could not yet be matched using existing
strategies. Our workflow does initially not need any other information
except that the processed data is an aerial image dataset. This will
allow an extended observation period of different study areas and a
monitoring of time-dependent environmental changes.

The results show a significant increase in tie points found in his-
torical aerial image pairs and a low mean reprojection error of 1.1
pixels for the final 3D model determined by COLMAP. The accuracy
investigation shows that this reprojection error can also be reproduced
for several stable regions. After metrically scaling the point cloud, the
comparison of multi-temporal DSMs reveal that our method is capable
of producing reliable DSMs with a standard deviation of 0.8 meters in
stable areas. Additionally, environmental changes in larger areas can
be detected.

As the presented work only deals with two datasets (and the TIME
benchmark dataset integrated in the open-source code), we intend
to test on further historical aerial images in the future. With DISK
especially working well for the presented image datasets and provid-
ing an openly available training procedure, it is planned to integrate
historical aerial images in the training of the neural network. This
requires calculating approximately 100 COLMAP reconstructions from
(historical) aerial image dataset, mirroring the training process applied
to the original terrestrial datasets, which can then be used in the custom
training procedure.
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