
HAL Id: hal-04310353
https://hal.science/hal-04310353v1

Submitted on 17 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Managing Linked Nulls in Property Graphs: Tools to
Ensure Consistency and Reduce Redundancy

Dominique Laurent, Jacques Chabin, Mirian Halfeld Ferrari, Nicolas Hiot

To cite this version:
Dominique Laurent, Jacques Chabin, Mirian Halfeld Ferrari, Nicolas Hiot. Managing Linked Nulls
in Property Graphs: Tools to Ensure Consistency and Reduce Redundancy. ADBIS 2023, Sep 2023,
Barcelogne, Spain. pp.180–194, �10.1007/978-3-031-42914-9_13�. �hal-04310353�

https://hal.science/hal-04310353v1
https://hal.archives-ouvertes.fr

Managing Linked Nulls in Property Graphs:
Tools to Ensure Consistency and Reduce

Redundancy

Jacques Chabin1 , Mirian Halfeld-Ferrari1 ,
Nicolas Hiot1,2 , and Dominique Laurent3

1 LIFO – Université d’Orléans, INSA CVL, Orléans, France
2 EnnovLabs – Ennov, France

3 ETIS – CNRS, ENSEA – CY Université, Cergy-Pontoise, France

Abstract. Ensuring the provision of consistent and irredundant data
sets remains essential to minimize bugs, promote maintainable applica-
tion code and obtain dependable results in data analytics. A major chal-
lenge in achieving consistency is handling incomplete data, i.e., missing
information that may be provided later, comes from the fact that, the use
of marked (or linked) nulls is required in many applications to express un-
known but connected information. In this context, it is well known that
maintaining the data consistent and irredundant is not an easy task. This
paper proposes a query-driven incremental maintenance approach for
consistent and irredundant incomplete databases. Can graph databases
improve the efficiency of this operation? How can graph databases ma-
nipulate linked nulls? What is the impact of using graph databases on
other essential maintenance operations? This paper presents an innova-
tive approach to answering these questions, highlighting the proposal’s
strengths and weaknesses and offering avenues for further research.

Keywords: graph databases · incremental maintenance · incomplete
data · constraints · tuple generating dependencies · updates.

1 Introduction

Consistent data stores lead to fewer bugs, easier maintenance, and reliable ana-
lytics. Developers can focus on their tasks without being bogged down by data
consistency issues. Our current research projects focus on data extracted from
clinical cases. We deal with databases which are incomplete but consistent with
respect to some given integrity constraints expressed as tuple-generating depen-
dencies (tgd). Consistency is our first concern. For example, let c1 : Pat(x),
SOSY (x, y)→ PrescExam(x, z) be a constraint which implies that if a patient
x exhibits a symptom y, then they should pass an exam z. If we consider the
fact that Lea is a patient with pain in her hands, i.e., Pat(Lea) and SOSY (Lea,
pain on hands), the database must also include the atom
PrescExam(Lea,N1) for consistency. This atom indicates that an exam has
been prescribed to Lea, but we do not yet know which one.

https://orcid.org/0000-0003-1460-9979
https://orcid.org/0000-0003-2601-3224
https://orcid.org/0000-0003-4318-4906
https://orcid.org/0000-0002-7264-9576

2 Chabin et al.

It is also crucial to address incompleteness, which can take various forms.
Our focus in this work is on a database perspective, where incompleteness arises
when values are missing. We adopt Reiter’s approach [20] that provides First-
Order Logic (FOL) semantics to null values of type ‘value exists but is currently
unknown’. If null values are linked, then the missing data is linked as well. For
instance, the set D1 = {PrescExam(Lea,N1), ExamResult(Lea,N1, N2)} seen
as a database instance, indicates that an examination is prescribed for Lea, with
unknown type denoted by N1, and with unknown result represented by N2.

Several sources can provide cleaned and well-formatted data to our database.
Integrating this new data while maintaining consistency and avoiding redun-
dancy is a challenge - this also involves matching the new data with the miss-
ing data to avoid redundancy. For example, if we add the new information
PrescExam(Lea, x-ray) to D1 above, we cannot replace N1 by x-ray in
PrescExam(Lea,N1), because N1 also appears in ExamResult(Lea,N1, N2),
which indicates that N1 is a linked null. If later we receive the new informa-
tion ExamResult(Lea, x-ray, join inflammation), then we replace N1 by x-ray
since the instantiation of N1 is the same in all atoms where it appears. The
resulting database instance in this case is D′′

1 = {ExamResult(Lea, x-ray,
join inflammation), P rescExam(Lea, x-ray)}.

Work in [6] is well-suited to tackle the aforementioned challenge. However, in
this paper, we take it a step further by introducing an incremental version of the
approach and applying it to a graph database system. Our proposal leverages the
advantages of data access, manipulation, and management capabilities provided
by database systems, contrary to the in-memory version of [6]. Moreover, it
aims to improve the process of creating sets of atoms that are linked by their
null values, which was an expensive step in the earlier approach.

To achieve our objective, we undertook a study to investigate the potential
of using a graph database. Our research aims to overcome the limitations of
the original approach by designing a graph database model that facilitates the
exploration of relationships between null values, along with proposing incremen-
tal update routines. One type of graph model that we have been using in our
projects is the labelled property graph (LPG), which includes named relation-
ships and properties. We have been working with LPG-based graph databases
like Neo4J, and Cypher is the most widely used query language for LPGs. It is
also the basis for the development of GQL, an ISO standard in progress.

In summary, our paper introduces an innovative approach that leverages the
advantages of graph databases to enhance the creation of linked atoms with null
values. We also examine the impact of this approach on other essential mainte-
nance operations, providing insights into its overall effectiveness. Our paper also
presents a critical analysis of the use of graphs in this context, highlighting the
strengths and weaknesses of this approach and offering suggestions for future
research directions. Additionally, we provide an overview of the advantages of
our incremental version. The rest of this section showcases the contribution of
our work and discusses the representation of null information in LPG-graphs.

Managing Linked Nulls in Property Graphs 3

Incremental Database Evolution. Database evolution is initiated by update
requests. Its maintenance involves two main actions: chasing and simplification.
The chase procedure is used to ensure consistency with a set of integrity con-
straints, expressed as rules, and which may generate new null values. The sim-
plification process eliminates redundancies by removing null values that can be
instantiated without breaking their links. This action corresponds to the com-
putation of the core [9]. We adopt the policy in [6] to define the evolution of
our database, but the proposal in this paper differs from the in-memory version
in [6] in the following aspects:

1. Incrementality is the kernel of our approach: (a) Chasing is performed
only on constraints concerned by the update, whereas in [6], all constraints are
checked. (b) Simplification is guided by the null values potentially simplifiable
due to the update, in contrast to [6], where simplification considers all null values.

2. Our approach is query-driven as it deals with data stored in database sys-
tems, unlike the in-memory version in [6]: (a) A constraint is a rule with a con-
junction of atoms in its body. It is triggered, to produce the atom in its head, only
when its body is fully instantiated based on the update atoms and the database
instance. A chase query, partially instantiated with update constants, searches
the database to fully instantiate the body of that constraint. (b) Queries, de-
noted as qbucket, retrieve the null values appearing in the database instance and
connected to the update being performed. (c) The process relies on the results
of query qbucket to identify atoms with nulls linked to those in qbucket’s results.
Then, a conjunction of these atoms is used to construct a new query, denoted
by qcore, which guides the simplification decisions.

3. When working with database systems, we assess which database model is
better suited for our approach. (a) Relational database model is used as our base-
line. Each atom R(A) is represented as a tuple A in table R. In this context,
it is observed that the most costly task is the extraction of sets of atoms that
are linked through their null values. Indeed, this operation requires scanning all
tables, since null values can be associated to any attribute in a table, and thus
cannot be indexed. (b) Query engines typically assume that graphs in graph
databases are complete, but this assumption is not valid in practice due to miss-
ing data. Neo4J’s approach of treating nulls as ‘value does not exist’ is however
not adequate in case of linked nulls. To address this challenge, we propose a novel
database design that treats nulls as first-class citizens. (c) Our graph database
model enables null values to be treated as first-class citizens and indexed. This
model simplifies operations in which we can identify all atoms that are directly
or indirectly linked to a null value by simply selecting that null value.

Our proposal follows the database evolution semantics from [6], which has
been shown to be effective4, deterministic, and adhere to a minimal change
property. Let D be an incomplete but consistent database instance and U be
a set of updates. The notation D♦U represents the insertion or deletion of the
4 If an update is not rejected, the updated database contains the inserted data and

does not contain the deleted ones

4 Chabin et al.

required updates in or from D. In [6], a from-scratch approach generates a new
database instance denoted as D′ = core(upd(D♦U)), where upd is the update
process described in [6]. In contrast, our paper describes an incremental version
of the update process denoted as upd|U . Therefore, the new database instance
is represented as D′ = core|NullBucket(upd|U (D♦U)), where NullBucket refers
to the set of nulls affected by the update (upd|U) applied to D♦U .

Paper Organization. Section 2 presents the background necessary to under-
stand our approach described in Sections 3-4. Here, we recall the logic formalism
used in our algorithms, while more practical considerations about the design
of our graph database aim to highlight the implementation of the queries on
Cypher. Section 5 presents our experimental study, and Section 6 overviews re-
lated work and presents future work.

2 Preliminary Considerations: Theory and Application

Theoretical Background. Assuming familiarity with FOL, we consider atoms
as P (t1, . . . , tn) where P is a predicate of arity n and t1, . . . , tn are terms (con-
stants, nulls, or variables). A fact is an atom with only constants and an instan-
tiated atom has no variables. null(A) denotes the set of nulls in an instantiated
atom A. Homomorphisms between sets of atoms A1 and A2 map terms in A1 to
A2, such that: (i) h(t) = t if t is a constant, (ii) if P (t1, . . . , tn) is in A1, then
P (h(t1), . . . , h(tn)) is in A2. If h1 is a homomorphism from A1 to A2 with an
inverse homomorphism, then A1 is isomorphic to A2.

Φ denotes the set of existentially quantified formulas φ, which are conjunc-
tions of atomic formulas. The set of atomic formulas in φ is denoted by atoms(φ).
A model M of a formula φ in Φ is a set of facts that has a homomorphism from
atoms(φ) to M . If each model of φ1 is a model of φ2, then we write φ1 ⇒ φ2,
and φ1 and φ2 are said to be equivalent, denoted by φ1 ⇔ φ2, if φ1 ⇒ φ2 and
φ2 ⇒ φ1 hold. φ1 is said to be simpler than φ2, denoted by φ1 v φ2, if φ1 ⇔ φ2

and atoms(φ1) ⊆ atoms(φ2). A simplification φ1 of φ2 is minimal if φ1 v φ2 and
there is no φ′

1 such that φ′
1 @ φ1. For instance, if φ is (∃x, y)(P (a, x) ∧ P (a, y)),

then (∃x)(P (a, x)) and (∃y)(P (a, y)) are distinct but equivalent simplifications
of φ. It is proven in [6] that if φ is in Φ and φ1 and φ2 are minimal simplifications
of φ, then atoms(φ1) and atoms(φ2) are isomorphic. Minimal simplifications are
called cores and the core of a given formula φ is denoted by core(φ).

A database instance is a set of instantiated atoms written as atoms(Sk(φ)),
where Sk(φ) is the Skolem version of a formula φ in Φ such that core(φ) =
φ. A constraint (or rule) is a tuple-generating dependency (tgd) of the form
(∀X,Y)(body(X,Y) → (∃Z)head(X,Z)), more simply written body(X,Y) →
head(X,Z), where X, Y , and Z are vectors of variables, body(X,Y) is a con-
junction of atoms and head(X,Z) is an atom. Constraint satisfaction is de-
fined as usual: given a set I of instantiated atoms, I |= c if for every homo-
morphism h such that h(body(c)) ⊆ I, there is a homomorphism h′ such that
h(body(c)) = h′(body(c)) and h′(head(c)) belongs to I. Here, by homomorphism

Managing Linked Nulls in Property Graphs 5

we mean any mapping from the variables in c to constants or nulls. If C is a set
of constraints, I |= C if for every c in C, I |= c.

6 Chabin et al.

Graph Database Design in Neo4J. Our incremental approach is imple-
mented through Cypher queries on a database, with the goal of optimizing the
costly process of creating sets of atoms linked by null values. To make such re-
trieval efficient, given an atom P (t1, . . . , tn) our graph model represents P as a
node, linked to other nodes representing the terms t1, . . . , tn. All nodes have a
symbol property and are classified into three types distinguished by their labels:
Atom has the label :Atom and the value of their symbol property corresponds to
the predicate symbol P ; Constant represent constant values and have two labels,
:Element and :Constant. The value of their symbol property is the constant
itself, and Null represent nulls and have two labels, :Element and :Null. The
symbol property of such nodes is the null name, which is prefixed with ‘_’

Atom are connected by an edge to Constant and Null having a rank property
that identifies the position of the term within the atom. The model of the atom
P (t1, . . . , tn) is illustrated in Figure 1a, where ti represents constants and tj
represents nulls. The notation on the right of the edges indicates the relationship
cardinality between an atom and its terms: each element is connected to at least
one atom, while atoms may have no terms. Figure 1b illustrates part of our
database instance (rectangular nodes are atoms and circular nodes are elements)
where optimization labels and attributes are omitted.

:Atom
symbol: P

terms: {t1, . . . , tn}

:Element
:Constant
value: ti

:Element
:Null

value: tj

0..∗
1..∗:P { rank: i }

0..∗
1..∗

:P { rank: j }

(a) Model

n1

Lea
n11

Pat

n2

N1

n3

x-ray

n4

PrescExam
n5

SOSY

n6

ResultExam
n7

N3

n8

pain

n9

Diag
n10

N2

r1

rank: 0

r2rank: 0

r3

rank: 1
r4 rank: 0

r5

rank: 1

r6

rank: 0
r7rank: 1

r8

rank: 2
r9rank: 0

r10

rank: 1
r11

rank: 2

(b) Instance (example)

Fig. 1: Graph database model and an instance

Our model offers advantages for certain operations, but it increases the cost
of converting between graph and logic formats for atoms. These conversions are
essential for communication between the database and local computation proce-
dures. To optimize conversions and graph traversals, we introduce the following
design redundancies that significantly improve performance.
• To avoid edge traversal:
(a) Each Atom stores, as a property called terms, an ordered list containing
the terms of the atom (rectangular node in Figure 1a); e.g., to obtain atom
SOSY (Lea, pain) in Figure 1b starting with the node n5, instead of traversing
edges r4 and r5, we retrieve the attributes terms of node n5.
(b) Each edge is assigned a label P named as the attribute symbol of its source
Atom node (edges with label P in Figure 1a); e.g., to obtain all atoms of the form

Managing Linked Nulls in Property Graphs 7

SOSY (Lea,_), starting from node n1 in Figure 1b, we just have to traverse r4.
Edges r1, r2, r9 and r6 have not to be visited.
• To allow efficient access to nodes:
(a) A uniqueness constraint is added on the property symbol of nodes with label
:Element (implying that, e.g., there is a unique node representing Lea).
(b) An index is built on the property symbol of each node with label :Atom, and
a uniqueness constraint is defined on the pair of properties symbol/terms (im-
plying that, e.g., there is a unique node representing atom SOSY (Lea, pain)).

3 Incremental Redundancy Reduction

In our approach, a database D is expected to be equal to its core to avoid data
redundancy. Formally, given a set of atoms I and a set of nulls ν occurring in
I, we look for a homomorphism h such that h(N) = N if N 6∈ ν and h(I)
is minimal so as h(I) ⊆ I. For instance, let I1 = { PrescExam(Lea,N1),
ExamResult(Lea,N1, N2), P rescExam(Lea, x-ray), ExamResult(Lea, x-ray,
N3), ExamResult(Lea, scanner,N4) }, and ν = {N1, N2}. For h1 such that
h1(N1) = x-ray and h1(N2) = N3, we have I ′1 = h(I1) = { PrescExam(Lea,
x-ray), ExamResult(Lea, x-ray, N3), ExamResult(Lea, scanner,N4) }. Notice
that N4 is not involved in the simplification.

Given I and ν0, nulls linked in I to nulls in ν0 have to be identified. We do
so by computing for every N in ν0, the set LinkedNullI,N obtained as the limit of
the sequence

(
LinkedNullkI,N

)
k≥0

defined by: (i) LinkedNull0I,N = {Ai ∈ I | N ∈

null(Ai)} and (ii) LinkedNullkI,N = {Ai ∈ I | (∃Aj ∈ LinkedNullk−1
I,N)(null(Ai)∩

null(Aj) 6= ∅)}. It is indeed easy to see that for every k ≥ 0, LinkedNullkI,N ⊆
LinkedNullk+1

I,N and LinkedNullkI,N ⊆ I. Thus the sequence
(

LinkedNullkI,N
)
k≥0

is
monotonic and bounded by I. As I is finite, this sequence has a unique limit,
which is precisely the sub-set of I denoted by LinkedNullI,N .

It therefore turns out that redundancy has only to be checked with respect
to the atoms in

⋃
N∈ν0

LinkedNullI,N and the set ν of nulls occurring in this set.

Algorithm 1: Simplify(I, ν0)

1: PSet := {LinkedNullI,N | N ∈ ν0}
2: for all P ∈ PSet do
3: Build the query qcore and compute its answer qcore(I)
4: if | (qcore(I)) |> 1 then
5: hm := ChooseMostSpec(qcore(I))
6: I := (I \ P) ∪ hm(P)
7: return I

Algorithm 1 shows how redundancies are dealt with, given input I and ν0:
LinkedNullI,N is computed for each N in ν0 (line 1), and so, the nulls in PSet
constitute the set ν with respect to which I is simplified. On line 3, for each P in

8 Chabin et al.

PSet, a query qcore : ans(X) ← A1(X1), . . . , An(Xn) is built by replacing each
occurrence of Ni in P by a variable xi. Thus, assuming that p nulls occur in P ,
when evaluating the answer qcore(I) of qcore, the tuple (N1, . . . , Np) is obviously
returned. However, it may happen that the answer contains other tuples, each
of which defining a possible instantiation of the nulls in P , meaning that P is
redundant. To implement these remarks, when the evaluation of qcore over I
returns more than one tuple (line 4), one most specific tuple is chosen (line 5),
and denoting by hm the associated homomorphism, I is simplified (line 6) by
replacing all atoms A in P by hm(A). Let us consider the set I1 as above and
ν0 = {N1}. Then, LinkedNullI,N1 = { PrescExam(Lea,N1), ExamResult(Lea,
N1, N2) }. Thus: qcore : ans(x1, x2)← PrescExam(Lea, x1), ExamResult(Lea,
x1, x2)} and qcore(I1) = {(N1, N2), (x-ray, N3)}. Hence, hm such that hm(N1) =
x-ray and hm(N2) = N3 is returned (line 5), and I1 is simplified into I ′1 as above.

To compute the most specific homomorphism hm, we construct a table HP

with p columns and q rows, where p is the number of nulls in P = LinkedNullI,N ,
q is the number of answers returned by qcore(I), and each hi is an answer of
qcore(I) with h1 being the identity. A cell HP [i, j] in HP is set to hi(Nj). Given
h1 and h2 over the same set of symbols Σ, h1 is said to be less specific than
h2, denoted by h1 � h2, if there exists a homomorphism h over Σ such that
h ◦ h1 = h2. We use HP for identifying among the answers h1, . . . hq, one most
specific homomorphism hm (see [5] for more details). Our approach is compara-
ble to query optimization techniques [2,7] because we use tableau optimization.
However, our approach differs from [2] in two fundamental ways: (1) our tableau
is based on query answers rather than on the query body, and (2) we generate one
most specific homomorphism, whereas in [2] non-most specific homomorphisms
are discarded.

We compute LinkedNull with a Cypher query whose template is shown in
Figure 2. The UNWIND clause is used to convert a list into individual rows. A
MATCH clause is used to identify patterns through homomorphisms in the LPG
graph and returns a table of variable instantiations. Here, the MATCH clause looks
for paths starting with the null of the nullValueNode to any other node repre-
senting an atom which is not nullValueNode itself (condition imposed by the
WHERE clause). On line 6, the WITH clause performs a ‘group by’ to structure
the table with tuples where each null nullValueNode is associated to a list of
endNodes (the nodes reached by paths pathP). On line 7 a new organisation
is built: linkedNodes is divided into two lists, one containing nodes that rep-
resent predicate symbols (linkedAtoms) and one for those representing nulls
(linkedNulls). Notice that we place the initial node nullValueNode in the first
position of the latter list. In the resulting table, each atom is associated to a list
of nulls.

4 Incremental Chase and Update Procedures

Insertions. Algorithm 2 inserts atoms from set iRequest into D. The side-effects
are computed using a chase procedure (line 1), and the core of D ∪ ToIns is

Managing Linked Nulls in Property Graphs 9

1 UNWIND $ n u l l s AS nullPredName
2 MATCH (nullValueNode : Element : Nul l { value : nullPredName }) ,
3 pathP = (nullValueNode) − [∗1 . . maxPathLength] −(endNode)
4 WHERE endNode <> nullValueNode AND
5 ALL(n IN nodes (pathP) WHERE NOT (n : Constant))
6 WITH COLLECT(DISTINCT endNode) AS linkedNodes , nullValueNode
7 WITH [n IN l inkedNodes WHERE (n : Atom)] AS linkedAtoms ,
8 [nullValueNode] + [n IN l inkedNodes WHERE (n : Nul l)] AS l i n k e d N u l l s
9 UNWIND linkedAtoms AS a RETURN a . symbol as a , a . terms as e , l i n k e d N u l l s

Fig. 2: Cypher template to find LinkedNull sets

computed by considering only the nulls in NullBucket (retrieved through qbucket
line 2) and their linked nulls. qbucket(I)[S] searches for null values that appear
in atoms that are less specific than one in S. Instead of imposing restriction on
the constraint format, we use a maximal degree δmax to control null value depth
and avoid infinite chasing. At each insertion, null degrees are set to 0. When
a constraint is applied, generated nulls are assigned a degree of δ + 1, where δ
is the maximal degree of nulls in the constraint body, or 0 if no null occurs. If
δ(N) ≥ δmax, insertion is stopped, and D is not changed. In Algorithm 2, if all
nulls in the simplified instance have degree less than δmax (check through qdegree
line 4), null degrees are set to 0 (through qδ line 5), and D′ is returned since it
is always consistent (as proven in [6]); otherwise, the database is not modified.

Algorithm 2: Insert(D,C, δmax, iRequest)
1: ToIns := Chase4Insert(D,C, δmax, iRequest)
2: NullBucket := {Nj | Nj is a null obtained by qbucket(D ∪ ToIns)}
3: D′ := Simplify(D ∪ ToIns,NullBucket)
4: if qdegree(D

′)[NullBucket,δmax] then
5: qδ(D

′)[NullBucket,0] {for each N in NullBucket, if in D′, sets δ(N) to 0}
6: return D′

7: else
8: return D

Deletions. Our incremental algorithm for the deletion from D of atoms in
dRequest is displayed in Algorithm 3. On line 1, all atoms in D isomorphic
to one in the set dRequest are retrieved through the query qIso. For instance, if
dRequest = {P (a,N1)} and D1 = {P (a,N5)}, then query qIso returns {P (a,N5)}.
On line 2, the Chase4Delete function incrementally computes the side-effects
by generating two sets of atoms, ToDel and ToIns, which represent atoms that
should be deleted and inserted as side-effects, respectively. Once these side-effects
have been incorporated in D to produce D′ (line 3), this new instance is simpli-
fied as in the case of insertion: impacted nulls are generated on line 4 and the
simplified instance is computed on line 5. We notice that, contrary to insertions,
deletions are never rejected.

10 Chabin et al.

Algorithm 3: Delete(D,C, δmax, dRequest)
1: isoDel := qIso(D)

[dRequest]
2: ToDel, ToIns := Chase4Delete(D,C, δmax, isoDel)
3: D′ := (D ∪ ToIns) \ ToDel
4: NullBucket := {Nj | Nj is a null obtained by qbucket(D

′)[ToIns∪ToDel]}
5: D′ := Simplify(D′, NullBucket)
6: return D′

Chasing. Different chasing versions have been suggested in literature [19]. Our
method uses the parameter δmax to deal with constraints without any limitations.
Our approach is an incremental version of the chasing method presented in [6],
which is closely related to standard and core chase procedures. Two similar
routines implement the chasing reasoning by using a query denoted by qch.

c1 : Pat(x), SOSY (x, y)− → PrescExam(x, z)

c2 : PrescExam(x, z)
−
, PlaceOfExam(z, w)

→ ExamResult(x, z, y)

c3 : ExamResult(x, y, z)− → Diag(x, y, w)

Fig. 3: Set of (general) constraints

Chase4Insert is called on line 1
of Algorithm 2. It avoids the genera-
tion of unnecessary side effect atoms
by activating a constraint c only if:
(i) body(c) contains at least one atom
being inserted, (ii) atoms in body(c)
that don’t meet (i) map to atoms in the database instance D, and (iii) the instan-
tiation of head(c) is inserted only if no equivalent atom already exists in D. In
logical terms, the query is qch : Q(α)← L1(α1), . . . , Lm(αm), not L0(α0), where
α is the list of variables corresponding to variables in body(c). If ht(body(c)) ⊆ D,
then qch has a non-empty answer only if h′

t(L0(α0)) 6∈ D for any extension h′
t of

ht. Furthermore, in Chase4Insert, during a chase step, the degree of newly cre-
ated nulls is computed and the condition δ(h′(head(c))) ≤ δmax is verified i.e.,
we do not trigger rules having nulls in body(c) that do not meet this condition.

Chase4Delete is called at line 2 of Algorithm 3. To determine the constraints
affected by the deletion of atom A, a backward chase is performed. This chase
identifies an instantiation h such that h(head(c)) = A. Then the homomorphism
restriction h|body(c) is applied to c to generate an extended instantiation h′.
We check if h′(head(c)) is isomorphic to the atom h(head(c)) being deleted,
using the following reasoning: (1) If an isomorphic atom is generated, we insert
the atom marked as ‘−’ from h(body(c)) into ToDel, as at least one atom in
h(body(c)) must be deleted to prevent c from being triggered. Notice that, to
avoid non-determinism, one atom in the body of the constraints is marked as ‘−’
during constraint design (to indicate deletion priority). (2) If no isomorphic atom
is generated, we add h′(head(c)) to ToIns along with its side effects. However,
we also check whether δmax is respected when computing the side effects of
h′(head(c)). If not, we insert the marked atom from h(body(c)) into ToDel.

Example 1. In the context of clinical cases, let C be the abridged version of constraints
depicted in Figure 3. Constraint c2 links prescribed exams, that have taken place in a
medical center, to results, while constraint c3 connects exam results to diagnoses.

Managing Linked Nulls in Property Graphs 11

Let D1 = {Pat(Lea), SOSY (Lea, pain on hands), P rescExam(Lea,N1)} be a
database instance consistent with respect to C and δmax = 3. Given iRequest =
{PrescExam(N2, testCovid), PlaceOfExam(testCovid, LabA), P rescExam(Lea,
x-ray)}, only constraints c2 and c3 are triggered. Algorithm 2 (line 1) returns the set
ToIns = {PrescExam(Lea, x-ray), P rescExam(N0

2 , testCovid), Diag(N0
2 , covidTest,

N2
4), PlaceOfExam(testCovid, LabA), ExamResult(N0

2 , covidTest,N
1
3)} where expo-

nents represent null degree. Let I = D1 ∪ ToIns.
For core computation, the query qBucket find null values in I that concerns the

predicates in ToIns. Thus, NullBucket = {N1, N2, N3, N4} and by Algorithm 1, we
obtain that LinkedNullsI,N1 = {N1} and LinkedNullsI,N2 = {N2, N3, N4}. The simplifi-
cation of I (line 3 of Algorithm 2) results in: D2 = {Pat(Lea), P rescExam(Lea, x-ray),
SOSY (Lea, pain on hands), PlaceOfExam(covidTest, LabA), Diag(N2, covidTest,N4),
P rescExam(N2, covidTest), ExamResult(N2, covidTest,N3)}.

Consider now Algorithm 3 applied to D3 = { SOSY (Lea, pain on hands), Pat(Lea),
P rescExam(Lea, x-ray)}. The deletion of PrescExam(Lea, x-ray) implies ToDel =
{PrescExam(Lea, x-ray)} and ToIns = {PrescExam(Lea, N1)}, since re-applying c1
on D3 \ {PrescExam(Lea, x-ray)} generates an atom with a null value. The new up-
dated instance is D4 = {PrescExam(Lea,N1), Pat(Lea), SOSY (Lea, pain on hands)}.
If we now require the deletion of PrescExam(Lea,N1) from D4, re-applying c1 on
D4 \ {PrescExam(Lea,N1)} generates an atom isomorphic to the one being deleted.
Regarding side-effect deletions, ToDel = {PrescExam(Lea,N1), SOSY (Lea, pain on
hands)} and ToIns = ∅. The updated instance is D5 = {Pat(Lea)}. �

5 Experimental Study

We tested using three data sets: Movie5 and GOT6 are Neo4J instances with
7 and 19 predicate symbols, respectively, and Social7 is a data set from the
Linked Data Benchmark Council with 23 predicate symbols. We refer to [5]
and our gitlab repository [17] for a detailed explanation of how we generated
additional data from the original sources, ensured consistency in our database,
and controlled the generation of nulls. We have 9 instances as illustrated in
Table 1, where 8 of them contains nulls and 1 instance without nulls.

Database Nb of facts Nb of nulls Nb of rules Null/Facts (τ)
Movie 604 340 12 0.56
GOT 24818 17232 32 0.69
Social1K 2248 190 39 0.08
Social10K 16559 1183 39 0.07
Social0N10K 16559 0 39 0.00
Social50N10K 16559 50 39 0.00
Social100N10K 16559 100 39 0.01
Social500N10K 16559 500 39 0.03
Social1000N10K 16559 1000 39 0.06

Table 1: Datasets used in experiments

Runs are built from instances
in Table 1 by varying the update
type (insertion or deletion), adjust-
ing the size of the update (1, 5,
10 and 20 atoms), and artificially
increasing the number of facts by
duplicating data n-times (scales 1,
2 and 5). During each run, 10 it-
erations were performed, with 3
warm-up iterations to preload the system and database cache. The database
is restored between each iteration and the Java garbage collector is triggered
5 https://github.com/neo4j-graph-examples/movies
6 https://github.com/neo4j-graph-examples/graph-data-science
7 https://ldbcouncil.org/benchmarks/graphalytics/

https://github.com/neo4j-graph-examples/movies
https://github.com/neo4j-graph-examples/graph-data-science
https://ldbcouncil.org/benchmarks/graphalytics/

12 Chabin et al.

to ensure consistent timing. The benchmarks were implemented in Java 16 with
MySQL 8 and Neo4J 4.4, running on a Rocky Linux 8.7 with 4 vCPU and 16GB
of memory, achieving an average of 1GB s−1 read/write on disk, using docker
20.10.21.

Impact of our incremental maintenance approach. The results demon-
strate the effectiveness of using a DBMS that implements incremental update
processing for efficiently updating large databases. Due to the high memory re-
quirements of the from-scratch method, the comparison is limited to the Movie
database only. When tested on Movie-scale1, these updating approaches are com-
parable. We obtain, on average: 9017ms for the in-memory, from-scratch version
and, for the query-based, incremental ones, 151ms for MySQL and 2380ms
for Neo4J. When considering an instance five times larger, we get an average of
888 966ms for the in-memory version, 595ms for MySQL and 2706ms for Neo4J.

Impact of using a graph database. The primary goal of our experiments is
to leverage the benefits of graph databases in enhancing the linked null search
operation. An implementation of our incremental approach over a relational
database (with nulls represented by special (Skolem) constants) is settled as
our baseline. The results demonstrate that our graph data model significantly
enhances retrieving LinkedNull sets, but its impact on other essential maintenance
operations was more negative than expected. The retrieval of LinkedNull sets was
found to be the most expensive operation of our updating policy in the relational
model, as shown in Figure 4 where outsiders with more than 30 s differences are
removed. Our graph model, discussed in Section 2, focuses on optimizing this
aspect. The results are amazing with the retrieval of LinkedNull sets being 25
times less expensive in the graph model than in the relational model (a reduction
of 96%). We expected our proposed model to have a bad performance for chasing,
as pattern matching is known to be time-consuming, and our model generates
queries with more complex patterns. However, the actual results were even worse
than anticipated, with the chasing operation being 170 times more expensive in
the graph model than in the relational model. As a result, the overall performance
of the relational model outperforms the graph model.

MySQL

Neo4J

5.35

910.9

46.95

30.73

194.05

7.63

166.8

161.3

Chase Null bucket
LinkedNulls Simplifications

Fig. 4: Average time (ms) per DBMS

Detailed performance analysis.
We analyze incremental updating per-
formance with respect to database size,
the number of nulls and the number
of queries generated to interact with
the DBMS. In Figure 5, each plot’s
right axis represents the total number
of facts in the instance. The curves in-
dicate the average resulting values for
all runs corresponding to the displayed
abscissa. To enhance readability, the plots disregard outcomes for GOT occur-
rences with over 17 000 nulls. Figures 5a and 5b show that for MySQL databases,

Managing Linked Nulls in Property Graphs 13

the updating runtime increases with the number of nulls, but it is slightly im-
pacted by the database instance size. For Neo4J, the situation is the completely
inverse of what was observed in MySQL. The type of the update (insert or delete)
does not affect the performance of our approach, regardless of the database sys-
tem. The number of generated queries increases with the increase of the number
of nulls. The increase in nulls implies an augmentation in the number and size of
LinkedNull sets. As a consequence, the MySQL version generates a large amount
of queries that impacts its performance while the impact on the Neo4J version
is negligible. Our approach is better suited for data sets with predicates of high
arity, rather than those composed of binary atoms, such as the Social dataset.

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500
0

5

10

Nb of nulls

T
im

e
[s
]

0

20,000

40,000

60,000

80,000

N
b

of
fa

ct
s

(a) Time per null for MySQL

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500
0

200

400

600

Nb of nulls

T
im

e
[s
]

Insert Delete

0

20,000

40,000

60,000

80,000

N
b

of
fa

ct
s

Number of facts

(b) Time per null for Neo4J

Fig. 5: Benchmarks results of 540 scenarios, average over 10 runs

Reproducibility. Results obtained by our experiments are reproducible through
the use of the benchmarks and implementation available in [17].

6 Related and Future Work: conclusions

Given our experimental results, how can we address the questions posed in our
abstract? Yes, utilizing a graph database and our data model can significantly
improve the efficiency of retrieving linked null partitions. However, this improve-
ment comes at a high cost, as the chasing operation is considerably less efficient
on a graph compared to the relational model. A potential solution is to add
design redundancy by overlaying different graph designs, such as connecting
Atoms (e.g., connecting patient and exam nodes with an edge prescribeTo). Yet,
the graph’s complexity and update difficulty should be noted.

14 Chabin et al.

Our study confirms the pros and cons of using graph databases. They perform
poorly when it comes to handling intricate pattern matching. The design of
a graph database heavily relies on queries, unlike a relational database that
presents a uniform data structure to work with. Consequently, queries that are
not optimized for the database model may result in poor performance. However,
they excel at path traversal queries, as nodes store information concerning their
neighbourhood. As a result, they are an attractive option for exploring data
relationships and for considering data analytics techniques such as predicting
node connections. But how accurate are the results of data analytics on possibly
inconsistent data? Constraints in graph databases are not widely used, but Neo4J
has proposed some options. Starting with key for graphs [12], the graph entity
dependencies (GEDs) have been proposed and their static analysis properties
have been studied [13]. We refer to [4,3] for excellent overviews on the subject.

Updates are often less prioritized than queries in scientific research, despite
evidence that maintaining database coherence in a dynamic environment can be
complicated (see e.g., [15,21]). Handling incomplete data in databases is also a
difficult problem. Today, it deserves attention, especially in light of the increasing
interest in certain answers [8]. While there is a solid foundation for addressing
incompleteness in relational databases [10,14,18,20,24,1,11,23], incompleteness
beyond the relational data model has received less attention [22]. As a result,
updating with respect to constraints is rarely considered in this context.

Our approach is a step in this direction and raises the question of how repre-
senting linked nulls on graphs. It employs Reiter’s semantics for unknown data
to address the consistency maintenance problem from a logical standpoint. Our
exclusively positive constraints allow for proven correction and completion of
our updating policy (in [6]). It is possible to encounter null values in the query
answers, which implies that, for the moment, nothing in our database allows us
to provide their instantiation. They may also indicate a connection with other
data. This aligns with the needs of our projects, but we must also consider mod-
ern applications that require data analytics. Which model should we adopt to
meet these needs? A hybrid database model [16] could potentially be a solution,
but it needs to be flexible enough to handle multiple representations of the data
in each data model. Our incremental approach is a valuable tool in this context
because it is designed to be independent of the data model.

Acknowledgements Work partially supported by projet SENDUP (ANR-18-
CE23-0010) and developed in the context of the DOING action (MADICS and
DIAMS). We express our gratitude to the interns who contributed to this project,
in particular Lucas Moret-Bailly for his valuable suggestions.

References

1. Abiteboul, S., Grahne, G.: Mise-à-jour des bases de données contenant de l’infor-
mation incomplète. In: Journées Bases de Données Avancés, 6-8 Mars 1985, St.
Pierre de Chartreuse (Informal Proceedings). (1985)

Managing Linked Nulls in Property Graphs 15

2. Aho, A.V., Sagiv, Y., Ullman, J.D.: Efficient optimization of a class of relational
expressions. ACM Trans. Database Syst. 4(4), 435–454 (1979)

3. Angles, R., Bonifati, A., Dumbrava, S., Fletcher, G., Hare, K.W., Hidders, J.,
Lee, V.E., Li, B., Libkin, L., Martens, W., Murlak, F., Perryman, J., Savkovic,
O., Schmidt, M., Sequeda, J.F., Staworko, S., Tomaszuk, D.: Pg-keys: Keys for
property graphs. In: SIGMOD Conference. pp. 2423–2436. ACM (2021)

4. Bonifati, A., H. L. Fletcher, G., Voigt, H., Yakovets, N.: Querying Graphs. Syn-
thesis Lectures on Data Management, Morgan & Claypool Publishers (2018)

5. Chabin, J., Halfeld Ferrari, M., Hiot, N., Laurent, D.: Incremental consistent up-
dating of incomplete databases (extended version - technical report). Tech. rep.,
LIFO- Université d’Orléans, (2023), https://hal.science/hal-03982841

6. Chabin, J., Halfeld Ferrari, M., Laurent, D.: Consistent updating of databases with
marked nulls. Knowl. Inf. Syst. 62(4), 1571–1609 (2020)

7. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in
relational data bases. In: Symposium on the Theory of Computing (1977)

8. Console, M., Guagliardo, P., Libkin, L., Toussaint, E.: Coping with incomplete
data: Recent advances. In: PODS. pp. 33–47. ACM (2020)

9. Fagin, R., Kolaitis, P.G., Popa, L.: Data exchange: getting to the core. ACM Trans.
Database Syst. 30(1), 174–210 (2005)

10. Fagin, R., Kuper, G.M., Ullman, J.D., Vardi, M.Y.: Updating logical databases.
Advances in Computing Research 3, 1–18 (1986)

11. Fagin, R., Ullman, J.D., Vardi, M.Y.: On the semantics of updates in databases.
In: Proceedings of the Second ACM SIGACT-SIGMOD Symposium on Principles
of Database Systems, Atlanta, Georgia, USA. pp. 352–365 (1983)

12. Fan, W., Fan, Z., Tian, C., Dong, X.L.: Keys for graphs. Proc. VLDB Endow.
8(12), 1590–1601 (2015)

13. Fan, W., Lu, P.: Dependencies for graphs. In: Proceedings of the 36th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS,
Chicago, USA. pp. 403–416 (2017)

14. Grahne, G.: The Problem of Incomplete Information in Relational Databases, Lec-
ture Notes in Computer Science, vol. 554. Springer (1991)

15. Halfeld Ferrari Alves, M., Laurent, D., Spyratos, N.: Update rules in datalog pro-
grams. J. Log. Comput. 8(6), 745–775 (1998)

16. Hassan, M.S., Kuznetsova, T., Jeong, H.C., Aref, W.G., Sadoghi, M.: Grfusion:
Graphs as first-class citizens in main-memory relational database systems. In: SIG-
MOD Conference. pp. 1789–1792. ACM (2018)

17. Hiot, N., Moret-Bailly, L., Chabin, J.: https://gitlab.com/jacques-chabin/
UpdateChase (2023)

18. Imielinski, T., Lipski Jr., W.: Incomplete information in relational databases. J.
ACM 31(4), 761–791 (1984)

19. Onet, A.: The chase procedure and its applications in data exchange. In: Data
Exchange, Integration, and Streams, pp. 1–37 (2013)

20. Reiter, R.: A sound and sometimes complete query evaluation algorithm for rela-
tional databases with null values. J. ACM 33(2), 349–370 (1986)

21. Schewe, K., Thalheim, B.: Limitations of rule triggering systems for integrity main-
tenance in the context of transition specifications. Acta Cybern. 13(3), 277–304
(1998)

22. Sirangelo, C.: Representing and Querying Incomplete Information: a Data Interop-
erability Perspective (2014), https://tel.archives-ouvertes.fr/tel-01092547

23. Winslett, M.: Updating Logical Databases. Cambridge University Press, New York,
NY, USA (1990)

https://hal.science/hal-03982841
https://gitlab.com/jacques-chabin/UpdateChase
https://gitlab.com/jacques-chabin/UpdateChase
https://tel.archives-ouvertes.fr/tel-01092547

16 Chabin et al.

24. Zaniolo, C.: Database relations with null values. J. Comput. Syst. Sci. 28(1),
142–166 (1984)

	Managing Linked Nulls in Property Graphs: Tools to Ensure Consistency and Reduce Redundancy

