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RockNet: Rockfall and Earthquake Detection
and Association via Multitask Learning

and Transfer Learning
Wu-Yu Liao , En-Jui Lee , Chung-Ching Wang, Po Chen , Floriane Provost , Clément Hibert ,

Jean-Philippe Malet , Chung-Ray Chu, and Guan-Wei Lin

Abstract— Seismological data plays a crucial role in timely
slope failure hazard assessments. However, identifying rockfall
waveforms from seismic data poses challenges due to their high
variability across different events and stations. To address this,
we propose RockNet, a deep-learning-based multitask model
capable of detecting both rockfall and earthquake events at
both the single-station and local seismic network levels. RockNet
consists of two submodels: the single-station model, which
computes waveform masks for earthquake and rockfall signals
and performs earthquake P and S phase picking simultaneously
on single-station seismograms, and the association model, which
determines the occurrences of local seismic events by aggregating
hidden feature maps from the trained single-station model across
all stations. Since the rockfall data is relatively scarce and
may not be sufficient to train a deep-learning model effectively,
we augment the dataset with abundant nonrockfall data and
add additional tasks to promote shared interpretability and
robustness. RockNet is trained and tested on a local dataset
collected from the Luhu tribe in Miaoli, Taiwan, achieving macro
F1-scores of 0.983 and 0.990 for the single-station model and
the association model, respectively. Furthermore, we evaluate
RockNet on an independent dataset collected from the Super-
Sauze unstable slope region in France, and it demonstrates
good generalization performance in discriminating earthquake,
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rockfall, and noise with a macro F1-score of 0.927. This study
highlights the potential of deep learning in leveraging diverse
types of inputs for seismic signal detection even with limited
training data.

Index Terms— Multitask learning, rockfall seismic monitoring,
transfer learning.

I. INTRODUCTION

ROCKFALL is one of the socioeconomic exposure risks
in mountainous areas that correlates with other slope

failures (e.g., landslides and debris flow). Rockfall studies
usually consider meteorological factors [1], [2], [3], [4]
and geomorphological evolution via instruments like airborne
LiDAR and terrestrial laser scanning (TLS) that generates
high-resolution topographic data [5], [6], [7], [8], [9]. Time-
lapse imaging of rockfalls obtained from stereographic pairs
of sequential photographs and cameras is also intuitive for
rockfall identification [4], [10]. Although these methods
have facilitated rockfall studies in various aspects, none
are almighty and exist deficiencies. LiDAR and TLS are
expensive when applied to vast areas and are ineffective during
heavy rains that cause much light refraction. Photograph
monitoring is susceptible to environmental visibility, such as
foggy and rainy weather, and poor performance at night.
Seismogram recorded by seismometers is emerging as regular
monitoring data for providing timely dynamic process of mass
movements. Seismic monitoring is relatively cost-effective
and free from weather impacts compared to other methods.
Furthermore, the seismological analysis conducted in the
time and time–frequency domains could provide physical
parameters like source–receiver distance, magnitude, and
source location [11], [12], [13], in which the seismic energy
attenuates with distances and is correlated with rockfall
volume and mechanisms.

The challenge of rockfall seismic monitoring is identifying
rockfall-induced signals on continuous seismic recordings.
A general technique to achieve automatic rockfall waveform
detection is to apply an amplitude-sensitive algorithm in the
time or frequency domain to find potential events and confirm
these events based on a self-designed criterion [2]. In recent
decades, machine-learning algorithms have gained widespread
adoption in this domain. Classical approaches, such as hidden
Markov model [14], fuzzy logic [15], random forest [16], [17],
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Fig. 1. (a) Aerial view of photographs displaying the distribution of stations in the Luhu unstable slope region in Taiwan. (b) Seismic waveforms and
spectrograms of different source types recorded by the local network, including rockfalls, earthquakes, engineering signals, and car-induced vibrations.
(c) Example of detected rockfall and earthquake events and their corresponding model output functions. The RockNet model takes the three-component
recordings and spectrograms of the vertical component recording from stations as inputs. The output of the single-station detection model includes probability
functions for earthquake P and S phases (blue and red lines, respectively), earthquake waveform functions (green line), and rockfall waveform functions
(black lines). The probability functions for earthquake P and S phases provide information on the arrival times of P and S waves, and earthquake mask pairs
the potential P and S phases of the same earthquake. The association model aggregates the encoded features of all station recordings from the single-station
detection model and generates the local occurrence time functions of rockfall and earthquake events (bottom two panels).

[18], [19], [20], and support vector machines [19], [21], [22],
rely on carefully selected features for effective classification.
However, rockfall waveforms differ according to the source
mechanisms coupled with their propagation media, numbers
of blocks, volumes, and movements, causing generalization
problems of the detection algorithm [11], [23], [24], [25].

In this study, we propose a deep-learning model that
leverages both waveforms and spectrograms from all stations
in the seismic network to automatically extract relevant
features and interpret the input data at both the single-
station and local seismic network levels. Deep learning,
a subfield of machine learning, boasts several advantages

over classical approaches [26]. These include superior feature
extraction capabilities, scalability for handling large datasets,
enhanced generalizability to unseen data, and the ability to
learn end-to-end representations without handcrafted feature
extraction or processing steps. However, deep-learning models
typically require a substantial amount of training data when
trained from scratch. Given the scarcity of available rockfall
waveforms, which may not be sufficient for training a deep-
learning model alone, we augment the model training data
with additional earthquake and nonearthquake data [27], [28]
for model development. Furthermore, at the single-station
level, our model includes tasks, such as earthquake detection
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and body-wave arrival-time picking in addition to rockfall
waveform detection, while at the local seismic network
level, it performs two tasks: determining local occurrences
of rockfall and earthquake events. By training multitask
models on abundant additional nonrockfall data, our model
can leverage shared interpretability across different task
computations, mitigating the challenge of limited data
availability for rockfall detection tasks.

Fig. 1 provides an overview of our study, where we
collected and labeled four types of seismic events recorded
by a local seismic network with station spacing of less than
1 km, deployed near a slope failure site. The geometry
of the seismic network imposes physical constraints on
seismic event confirmation due to the physics of the observed
signals. For instance, earthquake waveforms would exhibit
coherence in appearance and arrival time across the stations
due to short spacing. In contrast, rockfall waveforms would
have little time delay among all stations, and the ground
motion recordings would become increasingly unclear with
increasing wave propagation distance [Fig. 1(b)]. Hence,
confirming rockfall and earthquake events in the local seismic
network requires associating the interpretation results of all
single-station recordings. Following this logic, we develop
RockNet, consisting of two multitask models: a single-station
detection model for interpreting the single-station recordings
and an association model that performs transfer learning by
aggregating the responses (i.e., feature maps) of the single-
station model on each station data [Fig. 2].

II. DATA

From February 26, 2019, to December 31, 2020,
we deployed a local seismic network consisting of four
three-component geophones produced by DiGOS, sampled
at 100 Hz, in the Luhu tribe, Miaoli, Taiwan. This region
has experienced frequent rockfall events since a slope failure
event in April 2018, resulting in the closure of the main traffic
artery due to unstable slopes [Fig. 1(a)]. We assumed that the
main types of seismic events in this area were earthquakes,
rockfalls, slope stabilization engineering events, and car-
induced vibrations [Fig. 1(b)]. In this study, we incorporated
additional datasets, including the Taiwan earthquake dataset
and the STEAD dataset [27] for the single-station detection
model, the INSTANCE dataset [28] for the association model,
and the artificial rockfall experiment waveforms [25] for both
models. To mitigate imbalanced data issues during model
training, we applied data augmentation and oversampling
strategies.

To compile the database from nearly two years of
continuous recordings, we utilized short-term average/long-
term average (STA/LTA) algorithms [29] to detect pulse-like
signals and then manually labeled the events based on our
field experience with encountered rockfalls. Unlike earthquake
signals that exhibit highly similar waveforms and coherent
time–frequency patterns across all stations, rockfall signals
at all stations display high variability in the time and
frequency domains. Near-field stations show high-frequency
energy (greater than 10 Hz) dominating rockfall waveforms,

while far-field stations exhibit relatively low-frequency energy
due to significant attenuation of high-frequency portions with
increasing distances. We identified engineering signals based
on our field experience and determined car-induced signals by
inspecting the order and speed of signal appearances across
the stations [Fig. 1(b)]. For in situ earthquake waveforms,
we detected and manually checked the P and S arrivals
using the RED-PAN model [30]. In total, we identified
348 rockfall events recorded by more than two stations,
comprising 750 sets of three-component waveforms; 1399 sets
of three-component rockfall waveforms labeled with only
one station; 193 car-induced events with 495 sets of three-
component waveforms; 280 sets of engineering signals with
455 three-component waveforms; and 1834 earthquake events
with 5324 three-component waveforms. The Luhu dataset was
divided into training and testing sets in a 70%–30% ratio, with
all potential rockfall event waveforms labeled with only one
station excluded from the test set.

III. METHODS

In this study, we propose RockNet that incorporates
both multitask learning and transfer learning techniques.
Multitask learning facilitates knowledge transfer among
different tasks and allows for learning with limited training
data, thereby improving computational efficiency compared
to using separate models for each task. On the other hand,
transfer learning focuses on leveraging knowledge learned
from pretrained tasks to address related but distinct problems.
In our approach, we transfer the representations learned by
the single-station detection model to the association model,
enabling the buildup of knowledge from the pretrained
model to enhance the performance of the association model.
By combining these two techniques, RockNet can effectively
leverage both shared and transferred knowledge in a local
seismic network.

A. Input of the Neural Network

We construct two sets of input vectors to the neural
network for each sample: three-component seismograms X
and vertical-component spectrogram SZ

xx [Fig. 2(a)]. We denote
seismogram data vector as xc(t), c ∈ {E, N , Z}, t ∈ N,
in which c is the component index standing for east–west
(E), north–south (N ), and up–down (Z ) component of the
recording ground motion at given temporal index t . The input
three-component seismogram matrix can then be defined as
X = [x E (t), x N (t), x Z (t)], t ∈ [t0, t0 + T ], in which t0 = 0 is
the starting temporal index and T = 6000 is the duration of
recordings (60-s-long recordings sampled at 100 Hz) in this
study.

The vertical-component spectrogram matrix SZ
xx is computed

from x Z (t) using the squared absolute value of discrete short-
time Fourier transform (STFT) with a Hann window function
w in the length of N = 20 (i.e., 0.2 s) and a hop size H = 10
(i.e., 0.1 s) that determines how many samples to shift across
x Z (t). M = 100 (i.e., 1 s) is the number of samples used for
the Fourier transform. With regard to the given parameters,
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Fig. 2. Model architecture. (a) Inputs of the single-station detection model consist of three-component seismograms X and vertical-component spectrograms
SZ

xx. These inputs are processed by separate encoders, namely the waveform encoder Renc( j)
wave and the spectrogram encoder Renc( j)

spec . The waveform encoder
and the spectrogram encoder fuse at the feature fusion block, which also connects to the model decoder Rdec( j). The outputs of the single-station detection
model include earthquake phase-time functions, earthquake waveform masking functions, and rockfall waveform masking functions. (b) Association model
concatenates and merges the waveform encoder tensors from all station recordings, which are produced by the trained single-station detection model. The
merged encoder is then skip-connected to a new trainable decoder Ddec( j) to generate network outputs, specifically the local occurrence time functions of
earthquake and rockfall events.

the spectrogram is computed by

SZ
xx(k, m) =

∣∣FZ (k, m)
∣∣2

=

∣∣∣∣∣
N−1∑
n=0

x Z
[n + m H ]w[n]e−i 2π

M nk

∣∣∣∣∣
2

.

(1)

The discrete STFT involves dividing the signal into
overlapping segments x[n+m H ], applying a window function,
and computing the Fourier transform of each windowed
segment. The resulting SZ

xx(k, m) is the real-valued element of
the spectrogram matrix, and FZ (k, m) is the complex-valued

element of the STFT matrix at time frame m ∈ N and
frequency bin k ∈ N. Before computing STFT, we pad
zeros to both ends of x Z (t) to keep the maximal time frame
equal to L/H + 1 = 601. The number of frequency bins is
M /2 + 1 = 51. Finally, the shape of SZ

xx is (51, 601,
2), in which the last axis refers to the real and imaginary
values. To apply our method to continuous data in practical
applications, we utilize a sliding window approach on the
seismograms of all stations. This involves computing matrix
X and SZ

xx per slide as inputs to RockNet, and then performing
postprocessing on the output functions accordingly. For
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Fig. 3. Templates of the model input waveforms and corresponding target
functions for (a) and (b) single-station detection model and (c) and (d)
association model. RF and EQ are abbreviations of rockfall and earthquake
events, respectively. We transform the time labels (i.e., the P and S arrival
times and the local occurrences of earthquake and rockfall waveforms) into
truncated Gaussian functions. (a) and (b) Marching mosaic waveforms are
generated by randomly superimposing the earthquake and rockfall waveforms
and shifting them back and forth. (c) Earthquake-rockfall mosaic waveforms
generated for the single-station detection model are replicated four times as
the augmentation data for the association model. (d) Earthquake event from
the Luhu dataset with a random station order. We replace the waveform data
with random values for the stations with missing data or ground-truth labels.

instance, we set a model input length of 6000 samples and
a sliding interval of 1500 samples. By keeping track of the
output rockfall occurrence function, one can identify any
detected peaks that consistently maintain a high prediction
value over four consecutive predictions (i.e., 6000/1500 =

4 times). This allows for effective monitoring of rockfall events
on continuous data.

B. Single-Station Detection Model

An earthquake signal typically includes P and S phases
[Fig. 1(c)]. In comparison, rockfall signals are induced
by rock impacts with various sizes on the weight-bearing
medium with rolling, free-falling, or bouncing movements.
Thus, a rockfall waveform can appear as successive or
discrete pulse-like signals with broad energy frequency ranges

and is usually more easily identified in the time–frequency
domain [Fig. 1(c)]. We take three-component seismograms X
and vertical-component spectrogram SZ

xx as the single-station
detection model inputs [Fig. 2(a)].

The single-station detection model consists of: 1) two
encoders processing two kinds of input data independently
(i.e., three-component waveforms X for the waveform
encoder and the vertical-component spectrogram SZ

xx for the
spectrogram encoder); 2) a feature fusion block merging
the two encoder features; and 3) a decoder decoding the
high-dimensional features from the feature fusion block and
generate output sequences aligned with the input seismograms
along time axis [Fig. 2(a)]. The two encoders separately map
the Z score standardized input data to a high-dimensional
feature space with a series of recurrent-residual convolution
(RRC) blocks [30], [31], [32]. Let Renc( j)

wave and Renc( j)
spec be the

j th level RRC layer of waveform encoder and spectrogram
encoder, Renc( j=5)

wave ∈ R(10∗30) and Renc( j=5)
spec ∈ R(1∗8∗30) are the

last layer of both encoders in this study, which are also the
inputs for the feature fusion block.

Let conv(·) denote the general convolution operation in our
network and [·] being the concatenation operation. We define

α = Renc( j=5)
wave , β = conv(Renc( j=5)

spec ) that expands and
transforms the shape of Renc( j=5)

spec to be aligned with that of
Renc( j=5)

wave [Fig. 2(a 1⃝)], and then γ = conv([α, β]) ∈ R(10∗30)

is available [Fig. 2(a 2⃝)]. The products of feature fusion block
can be simplified as ν = α + AG(target : γ ; gate : α)

[Fig. 2(a 4⃝)], where the attention gate AG(target : γ ; gate :

α) [32], [33] computes the attention score using target signal
γ and gating signal α from a coarser level [Fig. 2(a 3⃝)]

AG(γ ; α) = γ · σ {conv(ρ(conv(γ ) + conv(α)))} (2)

in which ρ(·) and σ(·) separately represents the ReLU and
Sigmoid activation function. The decoder Rdec( j) upsamples
its first input feature map ν with a series of RRC blocks that
skip-connected with the feature maps of waveform encoder
at the same depth j (i.e., in the same shape of feature map).
The three output vectors associated with the assigned tasks
of earthquake P and S phase arrival time picking, earthquake
waveform masking, and rockfall waveform masking are then
branched from Rdec( j)=1 with regular convolution layers. Here,
the P and S phase-time functions label the P and S arrivals
along X, and the earthquake waveform mask wraps the P–S
pair of the same waveform. We considered the earthquake
waveform mask as an additional constraint to facilitate the
process of earthquake location [34], [35].

C. Association Model

The encoders of the single-station detection model learn to
extract informative features from the input data to accomplish
the assigned tasks. The core idea of the association model is
to assemble the encoder representations of the trained single-
station detection model for all station recordings and determine
the seismic event occurrence times, which are highly related to
the tasks of the single-station model. The association model
is also constructed using a U-Net architecture in which the
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encoder and the first layer of the decoder are based on the
pretrained single-station detection model [Fig. 2(b)].

Specifically, the feature maps for transfer learning are
from the waveform encoder i Renc( j)

wave , j ∈ [1, 5], i ∈ N
and the feature fusion block iν, where i is the station
index [Fig. 2(b A⃝)]. The j th level layer of the associ-
ation model encoder Denc( j), j ∈ [1, 5] is obtained by
performing a 1 × 1 convolution on the concatenation of
i Renc( j)

wave (i.e., [
1Renc( j)

wave ;
2 Renc( j)

wave ;
3 Renc( j)

wave ;
4 Renc( j)

wave ] in this study
[Fig. 2(b B⃝)]). The first layer of the association model decoder
at depth j = 5, Ddec( j=5), is obtained by performing a 1 × 1
convolution on the concatenation of iν (i.e., [

1ν;
2 ν;

3 ν;
4 ν])

[Fig. 2(b B⃝)]. Here, the pretrained weights from the feature
maps i Renc( j)

wave and iν are not trainable during the training
process of the association model. In this way, we can assure the
knowledge transfer from the pretrained single-station detection
model. The rest of four RRC layers (i.e., Ddec( j=4), Ddec( j=3),
Ddec( j=2), and Ddec( j=1)) of the decoder are trained from
scratch, while skip-connected with the encoder for learning
to interpret the assemblages of i Renc( j)

wave and iν [Fig. 2(b C⃝)].
Finally, the output layers of determining the occurrence of
earthquake and rockfall are branched from Ddec( j=1) with a
preceding Bi-LSTM layer [36], respectively.

Generally, the single-station detection model is independent
but included in the association model, and the prediction
results of the two models do not interfere with each other.
Rather than training a single model that can produce the same
outputs, we build RockNet with two related but independent
models. The reason for doing so is to explore the methods of
transfer learning. Also, many more computing resources are
needed to train a new model that optimizes both the single-
station detection and association tasks from scratch.

D. Target Function Prototypes and Model Optimization

RockNet optimizes two types of target functions: mask
functions that wrap the target waveforms and truncated
Gaussian functions that are transformed from the ground-truth
time labels of the P and S phase arrivals of earthquakes
and local seismic event occurrences with standard deviations
of 0.2, 0.3, and 0.5 s [Fig. 3]. The standard deviation
values of 0.2 and 0.3 are obtained with model calibration
experiments [32]. The time index of P arrival, S arrival,
and event occurrences can be retrieved by the peak values
of the truncated Gaussian functions. Overall, the two models
of RockNet are built under a multitask learning framework
with relevant tasks. The single-station model optimizes three
tasks: seismic phase arrival time picking; earthquake waveform
masking; and rockfall waveform masking [Fig. 2(a)]. The
association model optimizes two functions for estimating the
local occurrences of earthquake and rockfall events, in which
the truncated Gaussian functions are centered at the sample
0.5 s before the first label of all stations [Fig. 2(b)]. For
every task, we add a function of the “others” class to meet
the softmax normalization criterion of the model output layer,
which squeezes the model outputs to [0, 1] and sums them
up to 1 for every sample along the time axis. During model
training, cross-entropy is applied as a loss function H to

estimate the differences between the current predictions p (i.e.,
the softmax-normalized outputs) and the target functions q for
model optimization purposes; the optimizer is Adam [37] with
a learning rate of 1e-4 in this study

H(p, q) = −

6000∑
x

N∑
1

pN (x) log qN (x). (3)

In (3), x refers to the number of samples along the time
axis (a total of 6000 samples in this study) and N refers to
the number of target function vectors (three for the earthquake
phase arrival time picking functions and two for the other
functions). The total loss L of training epoch I is defined as
the weighted sum of the cross-entropy values computed for
each task k

L(I ) =

N∑
k

λk(I )H(p(I ), q(I ))k (4)

where the task weightings λ are estimated using the dynamic
weight averaging (DWA) strategy [30], [38].

E. Additional Training Dataset and Data Augmentation

The challenge of limited sample availability has long
been a concern in training rockfall detection algorithms.
However, this study addresses this issue by incorporating a
substantial dataset of hundreds of thousands of earthquake
and nonearthquake samples for model training. Within the
multitask learning framework, the inclusion of a large non-
rockfall dataset aids in enhancing the model’s interpretability
of seismograms and enables the development of pattern
recognition capabilities for rockfall waveforms by leveraging
information from different tasks.

To further enhance the model’s generalizability, two
augmentation approaches are employed: the marching mosaic
waveform augmentation (MMWA) and the earthquake early
warning augmentation (EEWA). The MMWA technique
involves superimposing multiple earthquake samples on each
other and applying shifts to the semisynthetic waveforms
in both forward and backward directions. The EEWA
approach, on the other hand, employs time-clipped earthquake
waveforms where only P-waves are visible within the
receptive field of the model, as described in Liao et al. [30].
The earthquake and nonearthquake samples used in this study
were collected and generated from the Taiwan earthquake
dataset and the STEAD dataset for the single-station model,
while the INSTANCE dataset was utilized for developing
the association model. Each sample consists of four station
recordings with a random station order. The training and
validation data for both models were split with an 80%–20%
ratio.

When dealing with a large number of additional earthquake
training samples, the issue of imbalanced learning arises
due to severely skewed class distributions. To address
this challenge, we employ the MMWA strategy, which
involves superimposing and randomly shifting the rockfall
and earthquake waveforms [Fig. 3] to augment the datasets.
This augmentation technique is applied to the training sets of
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TABLE I
MODEL PERFORMANCE ACHIEVED ON THE LUHU TESTING DATASET∗

both the single-station model and the association model. For
the association model, which takes inputs from four stations,
we replicate the single-station mosaic waveforms four times
as the inputs for the association model. To prevent the model
from memorizing specific orders of recorded stations and
waveforms, we randomly set the station order of the input
tensor. It should be noted that not all events in the Luhu dataset
have four station recordings. Some samples may have missing
data or insufficiently distinct target waveforms for labeling.
To address this, we complement or substitute these samples
with random values in the association model to ensure robust
training and prevent bias toward specific events.

IV. RESULTS

A. Benchmark Test on the Luhu Dataset

For the benchmark test on the Luhu dataset, we computed
the evaluation metrics for three classes: rockfall, earthquake,
and others, in which the last class involves car-induced
vibrations and engineering noises. Table I lists the best
performance of all models on the Luhu dataset, in which
the optimal positive detection threshold is determined by
argmax(F1(τ )), τ ∈ [0.1, 0.2, . . . , 0.8], with τ being the
threshold value and F1(τ ) being the macro F1-score under τ .
Considering the single-station detection model, we compare
the performances achieved by the model with and without
the vertical-component spectrogram serving as the model
input. With the additional time–frequency information, the
model improves its rockfall recall rate by 10.6%, indicating
fewer false-negative detections (i.e., misidentifying rockfalls
as earthquakes and others). The performance improvement
conforms to our experiences in distinguishing between differ-
ent seismic sources, in which time–frequency representations
help when time-series features are not highly typical and vice
versa. For the association model, we explore the training
data quantity factor under the transfer learning framework.
The association model that trains with only the Luhu dataset
achieves a macro-F1-score of 0.968. With the additional
training dataset of INSTANCE, the total dataset gets more
imbalanced. However, the association model performs better
with a macro-F1-score of 0.990, in which the rockfall recall

Fig. 4. Detection examples of rockfall events that occur between stations
LH01 and LH02. These examples are not included in the training data. (a) and
(b) Overall rockfall waveform amplitudes, SNRs, and high-frequency energy
attenuation processes from stations LH01 and LH02 to stations LH03 and
LH04 are conspicuous. (b) P wave of the earthquake strongly interferes
with the rockfall waveform, and the single-station model does not detect
the arrival of the phase at station LH02. The rockfall waveform amplitude
and SNR discrepancies are more evident than the earthquake waveforms with
same-scale amplitudes over all stations. Nevertheless, the association model
still identifies the earthquake and rockfall occurrences with high prediction
values.

rate improves by 8%. We infer that its advances are derived
from the positive transfer of knowledge from the well-trained
single-station detection model. Fig. 4(a) shows prediction
examples in which the rockfall waveform amplitude, signal-to-
noise ratio (SNR), and high-frequency energy attenuate with
increasing distance. In Fig. 4(b), the rockfall waveform is
unclear at stations LH03 and LH04, and the P wave of the
earthquake interferes with the rockfall waveform, while other
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TABLE II
ASSOCIATION MODEL PERFORMANCE ON THE SUPER-SAUZE DATASET∗

TABLE III

ASSOCIATION MODEL PERFORMANCE ON THE SUPER-SAUZE DATASET COMPARED TO MODELS OF JIANG ET AL. [39]∗

TABLE IV
ASSOCIATION MODEL PERFORMANCE ON THE LUHU DATASET COMPARED TO MODELS OF JIANG ET AL. [39]

station recordings can help to confirm the coherency of the
rockfall and earthquake occurrences.

B. Examination on the Super-Sauze Unstable Slope Dataset

We evaluated the generalization of our trained model
using an independent dataset collected from the Super-
Sauze unstable slope [18]. The labeled dataset contains
anthropogenic/environmental noises (351 events), earthquakes
(391 events), rockfalls (406 events), and “quake” signals
(235 events) that we excluded due to potential ambiguity
in label meaning across different datasets. We considered
the anthropogenic/environmental noises as “other” events
relative to rockfall and earthquake events. The dataset was
collected from three time periods (11 October–19 November
2013, 10–30 November 2014, and 9 June–15 August 2015)
using six one-component short-period seismometers (Noemax
and Sercel L4C) and two three-component broadband
seismometers (RefTek 130S-01). The seismometers were
arranged in two equilateral triangular arrays, with a three-
component seismometer placed at the center surrounded by

three vertical one-component seismometers on the east and
west sides of the Super-Sauze unstable slope. To meet the input
criterion of four three-component seismograms for our model,
we treated the three vertical one-component seismograms as
a three-channel vector. Our association model achieved a
macro-F1-score of 0.927 on all samples, with F1 scores of
0.968, 0.922, and 0.890 for earthquakes, rockfalls, and others
(anthropogenic/environmental noises), respectively (Table II).

C. Compared With Other Developed
Machine-Learning Models

To compare RockNet with the random forest model
from [18], we excluded the labeled “quake” samples and
derived the confusion matrix components (true-positive, true-
negative, false-positive, and false-negative) for the earthquake,
rockfall, and anthropogenic/environmental noise classes using
the data from [18, Table 2]. We then computed the evaluation
metrics for earthquake, rockfall, and “others” class, which
includes anthropogenic/environmental noise and all samples
classified as “quake” events. Provost et al. [18] tested on
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70 samples for each class, with the rest used for training, and
the results were averaged over 100 runs. We also computed
the evaluation metrics using randomly selected 70 samples
for each class, 100 times, and found that the average results
were similar to those reported in [18], despite not using any
Super-Sauze unstable slope data in our model training process.
These results demonstrate that our model generalizes well to
independent datasets, which may be due to the similar physical
mechanisms underlying events in different regions, as reflected
in the seismic recordings [40].

In a recent study by Jiang et al. [39], three deep-learning
models were trained on the Super-Sauze dataset using
six-channel input data with a duration of 10 s and a
sampling rate of 250 Hz, provided in three forms: raw
time-series seismograms, STFT spectrograms, and continuous
wavelet transform (CWT) spectrograms. The models classify
anthropogenic/environmental noises, earthquakes, rockfalls,
and “quake” events using one-hot encoded outputs. We con-
ducted a benchmark test on the same test data used by
Jiang et al. [39], excluding the “quake” events, and report
the results in Table III. While the models developed by
Jiang et al. [39] generally outperform our model on the
Super-Sauze dataset, our model achieved a noteworthy macro-
F1-score, approximately 3% lower than theirs. Furthermore,
we compared RockNet and the models developed by
Jiang et al. [39] on the Luhu dataset in our study, presenting
the results in Table IV. We randomly selected data from two
stations with manual labels, resulting in six input channels
for the models developed by [39]. The comparison shows a
significant performance gap between the models developed
by [39] on the Super-Sauze and Luhu datasets. Our cross-
validation of the models on both datasets highlights the
superior generalizability and robustness of RockNet.

V. DISCUSSION

Accurately discriminating between rockfalls, earthquakes,
and other sources using seismic recordings is a challenging
and crucial task. Unlike earthquakes, which typically exhibit
body waves, waveforms of rockfalls vary greatly depending
on the type, amount of rocks, and dynamics of the event.
To distinguish between seismic recordings of rockfalls and
other sources, previous studies have used characteristics
such as waveform and spectral features. For example,
Provost et al. [18] utilized 71 attributes on the waveform
and spectral features to build a random forest model. Other
studies have used features on spectrograms of waveforms
to develop deep-learning models (e.g., [41], [42]), or have
used waveforms and different spectrograms individually for
different deep-learning models [39]. However, these previous
studies either relied on expert-selected features or used
seismic waveforms and spectrograms individually. In contrast,
RockNet uses both seismic waveforms and spectrograms
jointly to distinguish different seismic sources, achieving
better performance than using only one of them (Table I).
Moreover, RockNet leverages the feature maps from the
single-station model and incorporates them into the association
model [Fig. 2], which estimates the probabilities of rockfall

occurrences based on the seismic recordings obtained from the
local seismic network. Additionally, RockNet addresses the
challenge of incomplete waveforms by using MMWA, which
applies random time shifts in training data [30]. By using
multiple features in a multitask learning framework, RockNet
achieves high accuracy in discriminating between different
rockfalls, earthquakes, and other sources and has potential
applications in real-time monitoring and hazard assessment.

In our comparisons of the RockNet with other deep-learning
models (Tables III and IV), the RockNet achieved a macro-
F1-score of over 0.9 on the Super-Sauze dataset, while other
models [39] achieved a macro-F1-score of lower than 0.7 on
the Luhu dataset. The superior generalizability of the RockNet
on an independent dataset could be attributed to its joint use
of both waveforms and spectrograms for detecting rockfall
waveforms, whereas other models only used one of these
features independently. However, we also recognize that other
factors can affect model performance, such as the quality and
quantity of training data used. In this case, the length of
input data used in training may be a critical factor influencing
model performance. For instance, while the RockNet takes
60 s of seismic waveforms and spectrograms as inputs, models
developed by [39] only takes 10 s of seismic waveforms
or spectrograms as inputs. However, it should be noted that
some rockfall events may take longer than 10 s to complete,
as illustrated in Fig. 1(b) and (c). It is important to note that
besides the model architecture, there are other factors that can
significantly affect the performance of a deep learning model.

While the RockNet model has demonstrated promising
performance in detecting and characterizing rockfall events,
there are several limitations to consider. One major limitation
is the scarcity of seismic recordings of rockfalls, which can
hinder the model’s ability to generalize to other sites and
conditions. Due to the small energy released by rockfall
events, only the seismometers located near the site can record
them. Moreover, the complex dynamic processes and different
types of rockfalls (e.g., rockfalls, debris falls, or mixed) can
result in various features of seismic recordings, which can
further challenge the development of a robust and generalized
model. Compared to earthquakes, there are considerably fewer
available seismic recordings of rockfall events. This shortage
of data may limit the ability of the RockNet and other deep-
learning models to achieve high performance on independent
datasets. For instance, while models developed for earthquake
waveform detection or seismic phase picking often exhibit
similar performances on unseen datasets from other study
areas, the RockNet and the models developed by [39] show
varying degrees of performance degradation on independent
datasets (Tables III and IV). To overcome this limitation, it is
essential to collect more diverse seismic recordings of rockfalls
to develop models that can generalize well to different sites
and conditions.

To develop a more reliable machine-learning model for
rockfall event detection, efforts can be made in both data
collection and advanced machine-learning techniques. The
availability of a large dataset that contains high-quality
seismic recordings of rockfalls will benefit both model
training and evaluation of model performance. Unsupervised
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clustering methods have recently shown promise in grouping
seismic recordings according to their waveform features
without relying on manual labeling. This approach could
be useful in providing a more objective and efficient
identification of recordings of rockfalls, reducing the need for
manual identifications and potentially improving the quality
of datasets [43]. Additionally, advanced machine-learning
techniques can be adopted to further improve the accuracy
of the model. For example, physics-informed neural networks
(PINNs) [44] can be used to incorporate physical equations
into the learning process as rigid restrictions, potentially
improving the accuracy and interpretability of the models.
Advanced deep ensemble learning approaches [45] can be
used to ensemble information from multiple stations, similar
to our association model, for more reliable detection of
rockfall recordings. With ongoing developments in deep
learning and the increasing availability of data and resources,
further optimization and advancements in seismic event
discrimination are expected in the future.

VI. CONCLUSION

In this study, we presented RockNet, a deep-learning-
based model for detecting rockfall and earthquake events in
local seismic networks. By jointly utilizing the waveforms
and spectrograms of seismic recordings and associating
information from individual stations, RockNet achieves high
accuracy in event detection. Additionally, we addressed
the challenge of imbalanced learning through the use of
multitask learning and transfer learning strategies, as well as
a data augmentation technique that superimposes and shifts
waveforms. Our model exhibits strong performance on both
testing and independent datasets, indicating its potential for
use in onsite earthquake and rockfall monitoring. However,
the limited availability of seismic recordings of rockfalls
currently poses a challenge to developing even more reliable
models. To further improve the accuracy and interpretability of
these models, future work could explore advanced machine-
learning techniques. Additionally, ongoing advancements in
deep learning and the increasing availability of data and
resources will likely lead to further progress in seismic event
discrimination. We anticipate that the development of more
reliable models for detecting rockfall and earthquake events
in local seismic networks will contribute to improved onsite
monitoring and disaster management in the future.

VII. OPEN RESEARCH

The labeled data [46] are available in Dryad (https://doi.
org/10.5061/dryad.tx95x6b2f). The code and model are open
sources at GitHub (https://github.com/tso1257771/RockNet)
and Zenodo (https://doi.org/10.5281/zenodo.7458571, [47]).
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